Academic literature on the topic 'Elastomers in dentistry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Elastomers in dentistry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Elastomers in dentistry"
Haider, Yagthan Mohammed, Zainab Salih Abdullah, Ghasak H. Jani, and Norehan Mokhtar. "Evaluation of Some Mechanical Properties of a Maxillofacial Silicon Elastomer Reinforced with Polyester Powder." International Journal of Dentistry 2019 (November 28, 2019): 1–6. http://dx.doi.org/10.1155/2019/2948457.
Full textMcCabe, J. F., and T. E. Carrick. "Rheological Properties of Elastomers during Setting." Journal of Dental Research 68, no. 8 (August 1989): 1218–22. http://dx.doi.org/10.1177/00220345890680080101.
Full textMcCabe, J. F., and T. E. Carrick. "Onset of Elasticity in Setting Elastomers." Journal of Dental Research 69, no. 9 (September 1990): 1573–75. http://dx.doi.org/10.1177/00220345900690090701.
Full textCarlo, Hugo Lemes, Rodrigo Borges Fonseca, Carlos José Soares, Américo Bortolazzo Correr, Lourenço Correr-Sobrinho, and Mário Alexandre Coelho Sinhoreti. "Inorganic particle analysis of dental impression elastomers." Brazilian Dental Journal 21, no. 6 (2010): 520–27. http://dx.doi.org/10.1590/s0103-64402010000600007.
Full textSalem, N. S., D. C. Watts, and E. C. Combe. "Stress relaxation of elastomers." Dental Materials 3, no. 1 (February 1987): 37–39. http://dx.doi.org/10.1016/s0109-5641(87)80059-3.
Full textTaumaturgo, Vandre Mesquita, Lícia Camila Rocha Leal, Evamiris França Landim Vasques, Maria Daniela Balbino Silva, Edson Vaz Lima, and Taciana França Landim. "Use of silicones in fixed aesthetic rehabilitations: clinical case." ARCHIVES OF HEALTH INVESTIGATION 10, no. 5 (May 4, 2021): 777–82. http://dx.doi.org/10.21270/archi.v10i5.5066.
Full textKalha, Anmol. "Fluoridated elastomers do not reduce plaque around orthodontic brackets." Evidence-Based Dentistry 5, no. 4 (December 2004): 96. http://dx.doi.org/10.1038/sj.ebd.6400299.
Full textKheraif, Abdulaziz Abdullah Al. "Surface Roughness of Polyvinyl Siloxane Impression Materials Following Chemical Disinfection, Autoclave and Microwave Sterilization." Journal of Contemporary Dental Practice 14, no. 3 (2013): 483–87. http://dx.doi.org/10.5005/jp-journals-10024-1349.
Full textCarvalhal, Cintia Iara Oda, José Antônio Nunes de Mello, Lourenço Correr Sobrinho, Américo Bertolazzo Correr, and Mário Alexandre Coelho Sinhoreti. "Dimensional Change of Elastomeric Materials after Immersion in Disinfectant Solutions for Different Times." Journal of Contemporary Dental Practice 12, no. 4 (2011): 252–58. http://dx.doi.org/10.5005/jp-journals-10024-1043.
Full textDaou, Elie E. "The elastomers for complete denture impression: A review of the literature." Saudi Dental Journal 22, no. 4 (October 2010): 153–60. http://dx.doi.org/10.1016/j.sdentj.2010.07.005.
Full textDissertations / Theses on the topic "Elastomers in dentistry"
Carlo, Hugo Lemes. "Influencia do conteudo volumetrico das particulas de cargas nas propriedades mecanicas de diferentes materiais de moldagem." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/288141.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-08-11T16:18:48Z (GMT). No. of bitstreams: 1 Carlo_HugoLemes_D.pdf: 4484901 bytes, checksum: b6c246e6e05cdf7633210adfa7b73c84 (MD5) Previous issue date: 2008
Resumo: Baseado no entendimento incompleto de como o conteúdo de partículas de carga influencia nas propriedades mecânicas dos materiais de moldagem este estudo avaliou quantitativa e qualitativamente o conteúdo de partículas de carga inorgânicas presente em cinco marcas comerciais de alginatos (Jeltrate; Jeltrate Plus, Jeltrate Chromatic Ortho, Hydrogum e Ezact Krom) e nove marcas comerciais de siliconas de adição e/ou condensação nas consistências massa e/ou fluida (Clonage, Elite HD+ Light Body, Express Light Body, Flexitime, Optosil P Confort/Xantopren VL Plus, Oranwash L, Reprosil A+, Silon 2 APS e Virtual Extra Light Body). Foram realizados testes para determinar recuperação elástica e deformação sob compressão dos alginatos e dos elastômeros e estabelecer, dessa forma, uma correlação entre os resultados para partículas de carga e os testes mecânicos. O conteúdo volumétrico das partículas de carga foi determinado pesando-se as amostras submersas em água antes e após a queima das mesmas durante 3h a 450°C (alginatos) e a 600°C (siliconas). Quantidades determinadas de materiais não polimerizados foram lavadas em acetona e clorofórmio e recobertas com ouro para avaliação da morfologia e tamanho das partículas em M.E.V. A composição foi determinada por EDX. A recuperação elástica e a deformação sob compressão foram determinadas de acordo as especificações ? 1563 (alginatos) e 4823 (elastômeros) da ISO. O alginatos Jeltrate e Jeltrate Plus apresentaram os maiores valores médios para quantidade volumétrica de partículas de carga (%) enquanto o material Hydrogum apresentou os menores valores. A silicone de adição Flexitime Easy Putty apresentou os maiores valores de quantidade volumétrica de partículas, enquanto que a silicone de condensação Xantopren VL Plus apresentou os menores. As partículas de carga dos alginatos apresentaram-se, de forma geral, como objetos esféricos e com perfurações. O material Hydrogum apresentou forma de bastões cilíndricos e perfurados. As siliconas apresentaram morfologias variadas ¿ partículas trituradas, esféricas, esferóides, bastões cilíndricos perfurados e bastões misturados a partículas usinadas. O alginato Ezact Krom apresentou os maiores valores médios de tamanho de partícula, enquanto que o alginato Hydrogum as menores. A silicone de condensação Clonage massa apresentou os maiores valores médios de tamanho de partícula, enquanto a silicone de adição Elite HD os menores. A análise da composição das partículas apresentou o silício como o elemento em maior quantidade. Com relação aos resultados de recuperação elástica, o alginato Ezact Krom e as siliconas Reprosil A+ massa e Flexitime fluida apresentaram os maiores valores de recuperação elástica, enquanto o alginato Jeltrate Plus e as siliconas Optosil P Confort e Clonage fluida apresentaram os menores. Os resultados de deformação sob compressão foram maiores para o alginato Jeltrate Plus e para as siliconas Silon 2 APS massa e fluida. Os menores resultados foram apresentados pelo alginato Ezact Krom e as siliconas Reprosil A+ massa e Xantopren VL Plus. Todos os materiais estão em conformidade com a norma ISO ?1563, mas nem todos estão em relação à norma ?4823
Abstract: Based on the incomplete understanding on how filler features influence the properties of elastomeric impression materials, the purpose of this study was to determine the inorganic filler fraction and size of five commercially available alginates (Jeltrate; Jeltrate Plus, Jeltrate Chromatic Ortho, Hydrogum e Ezact Krom) and nine addition/condensation silicones using the putty/light consistence (Clonage, Elite HD+ Light Body, Express Light Body, Flexitime, Optosil P Confort/Xantopren VL Plus, Oranwash L, Reprosil A+, Silon 2 APS e Virtual Extra Light Body). A SEM/EDX analysis was done to qualitatively characterize the materials. Soon afterwards elastic recovery and strain in compression of the alginates and some the silicones was carried. The inorganic particles volumetric fractions were accessed by weighing a previously determined mass of each material in water before and after burning samples for 3 hours at 450ºC (alginates) and 600ºC (silicones). Unsettled materials were soaked in acetone and chloroform and sputter-coated with gold for SEM evaluation of fillers¿ morphology and size. The filler composition was determined by EDX. Elastic recovery and strain in compression tests were conducted according to ISO specification number 1563 and 4823. Jeltrate and Jeltrate Plus presented the highest mean values of percentage content of inorganic particles in volume, while Jeltrate Chromatic Ortho presented the lowest values. Flexitime Easy Putty was the silicone with the highest mean value, while Xantopren VL Plus had the lowest value. The alginate fillers presented a circular appearance with helical form and various perforations. Hydrogum fillers looked like cylindrical, perforated sticks. SEM pictures of the silicone inorganic particles showed numerous morphologies ¿ lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. Ezact Krom was the alginate with the highest values for diameter size, while Hydrogum had the lowest. Clonage Putty showed the highest values, while Elite HD+ Light Body presented the lowest values. The component in higher concentration in the materials is silicon. The alginate Ezact Krom, and the addition cure silicones Reprosil A+ putty and Flexitime Correct Flow had the highest mean values of elastic recovery, while the alginate Jeltrate Plus and the condensation cured silicones Optosil P Confort and Clonage Putty presented the lowest values. Strain in compression test showed the alginate Jeltrate Plus and the condensation cured silicones Silon 2APS Putty and Fluid as the materials with the highest values. The alginate Ezact Krom and the silicones Reprosil A+ Putty and Xantopren VL Plus had lowest values. All materials are in conformity with the requirements of ISO specification number 1563, but not all materials are in conformity with the requirements of ISO specification number 4823
Doutorado
Materiais Dentarios
Doutor em Materiais Dentários
Sadek, Hani. "DYNAMIC MECHANICAL ANALYSIS OF DIFFERENT BRANDS OF ORTHODONTIC ELASTOMERIC CHAINS." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1302639437.
Full textStroede, Claire L. "Dynamic Force Delivery and Viscoelastic Properties of Pigmented Elastomeric Chains from One Manufacturer." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1302627429.
Full textSteiger, Pamela. "In vitro comparison of force decay between three orthodontic sliding retraction methods." Thesis, NSUWorks, 2014. https://nsuworks.nova.edu/hpd_cdm_stuetd/20.
Full textBooks on the topic "Elastomers in dentistry"
Nonmetallic Biomaterials For Tooth Repair And Replacement. Woodhead Publishing, 2013.
Find full textBook chapters on the topic "Elastomers in dentistry"
Cevik, Pinar. "Maxillofacial Silicone Elastomers in Dentistry." In Reactive and Functional Polymers Volume One, 293–300. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43403-8_12.
Full textArdelean, Lavinia, Cristina Maria Bortun, Angela Codruta Podariu, and Laura Cristina Rusu. "Thermoplastic Resins used in Dentistry." In Thermoplastic Elastomers - Synthesis and Applications. InTech, 2015. http://dx.doi.org/10.5772/60931.
Full textQadeer, BDS, MSD, Sarah, and Lertrit Sarinnaphakorn, DDS. "Comparing the Force and Timing Limitations of Traditional Non-Digital Occlusal Indicators to the T-Scan Computerized Occlusal Analysis Technology." In Advances in Medical Technologies and Clinical Practice, 55–99. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-9254-9.ch002.
Full text