Dissertations / Theses on the topic 'Electric- and magnetic-dipole transitions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Electric- and magnetic-dipole transitions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ernandes, Cyrine. "Manipuler l'émission et l'absorption de transitions dipolaires magnétiques par l'utilisation de nano-antennes optiques." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS091.
Full textDuring the last years, technological progresses in the field of nanophotonic have allowed the development of optical nanostructures to manipulate the emission of fluorescent nanoemitters . However, light-matter interactions are usually considered to be mediated by the optical electric field only, discarding the magnetic side of it. Indeed, most of the past studies have been only studying the modification of the excitation or emission properties of electric dipole transitions. Recently, it was demonstrated that magnetic dipole could also be found in lanthanide ions. It was also shown that by changing the magnetic local density of states near these ions, the emission fluorescent of the magnetic transitions could be enhanced or decreased with respect to their electric counterpart. In here, we demonstrate experimentally, in perfect agreement with numerical simulations, the manipulation of magnetic and electric dipolar transitions by means of plasmonic cavities. Using a near-field scanning optical microscope (NSOM), we bring in close proximity a nanoparticle doped with trivalent europium to plasmonic cavities of different sizes made of aluminum , allowing perfect control over the interactions between the emitter and the nanostructures. In this study, we show both an increase and decrease of electric and magnetic signal from the particle, and we also display the spatial distribution of both the electric and magnetic radiative local density of state at the surface of the cavities.Therefore, this work pave the way to the understanding of ‘magnetic light’ and matter interactions
Shen, Jianqi. "Quantum Coherence and Quantum-Vacuum Effects in Some Artificial Electromagnetic Media." Doctoral thesis, KTH, Elektroteknisk teori och konstruktion, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10074.
Full textQC 20100810
Paineau, Erwan-Nicolas. "Transitions de phases dans les argiles : influence de la minéralogie et de la morphologie : comportement sous écoulement et sous champs." Thesis, Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL005N/document.
Full textThe aim of this work is to study sol-gel and isotropic-nematic phases transitions in suspensions of dioctahedral smectites depending on the morphology and mineralogical nature of clays. Although all the systems studied exhibit a sol-gel at low volume fraction, the liquid-crystalline isotropic-nematic transition could be identified only in the case of smectites with tetrahedral charge deficit. The effect of charge location on the colloidal behavior was determined using small-angle X-ray scattering (SAXS) and rheological measurements. The nature of electrostatic interactions in these suspensions is purely repulsive and rejects the idea of the so-called “house of card” network. However, smectites with a charge deficit located in the tetrahedron are more repulsive and their viscoelastic properties are lower than octahedrally substituted clays. It was also shown that the particle size dependence of the volume fraction corresponding to the sol-gel transition c was related to a simple statistical hydrodynamic trapping of clay platelets. Finally, the application of external fields (electric and magnetic) has resulted in the alignment of the nematic phase while in the isotropic phase, the electric field induces a perfect antinematic order. To preserve the induced alignment, these suspensions were polymerized under the field to obtain perfectly aligned and patterned nanocomposites
Cherifi, Ryan. "Experimental design of a strong Magneto-Electric coupling system between a ferroelectric and a magnetic phase transition alloy : BaTiO3/FeRh, and theoretical study of the metamagnetic transition of FeRh." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066309.
Full textOne of the most practical concept used in physics and engineering is the concept of triggeror switch, consisting of a means to start a controlled chain of energy transformation.A switch can lead to reversible or irreversible consequences. Technological developmentusually seeks to make use of the former because it allows for repetitive logical tasks. Suchtriggers exist via the coupling between two or more types of energetic transformations.It is formally described by the interaction between two or more distinct fields and theirexpression on a system. Amongst the most studied coupling in material physics, we findelectro-mechanical couplings such as piezoelectricity or ferroelectricity, electro-caloric ormagneto-caloric couplings such as pyroelectricity and pyro-magnetism, magneto-electric,etc. The fundamental and experimental domestication and understanding of these couplingsis usually followed (and very often motivated) by the design of practical applicationin electronics engineering technology
Alexeev, Arseny. "Quantum rings in electromagnetic fields." Thesis, University of Exeter, 2013. http://hdl.handle.net/10871/8021.
Full textBouba, Oumarou. "Théories quantique et semi-classique des intégrales radiales de transitions dipolaires et multipolaires des états excités : Applications au calcul des forces d'oscillateur et des probabilités de transition dans l'approximation à une configuration." Orléans, 1986. http://www.theses.fr/1986ORLE0010.
Full textAmzal, Nora. "Measurement of electric and magnetic dipole moments in octupole nuclei." Thesis, University of Liverpool, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398582.
Full textMainos, Constantinos. "Etude des transitions mutiphotoniques dans des molécules diatomiques." Paris 13, 1986. http://www.theses.fr/1986PA132001.
Full textGrozier, James R. "The cryogenic neutron electric dipole moment experiment : magnetic challenges and solutions." Thesis, University of Sussex, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444372.
Full textNouri, Nima. "MAGNETIC FIELD NON-UNIFORMITY CHALLENGES IN NEUTRON ELECTRIC DIPOLE MOMENT EXPERIMENTS." UKnowledge, 2016. http://uknowledge.uky.edu/physastron_etds/38.
Full textChoi, Tin Chau. "An ultra-wideband magnetic-electric dipole antenna and a shielded slot antenna." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ38622.pdf.
Full textZolj, Adnan. "Electrically Small Dipole Antenna Probe for Quasi-static Electric Field Measurements." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/202.
Full textHe, Weiping. "Characterizing near-field circuit board radiation using crossed electric and magnetic dipole sources." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2010. http://scholarsmine.mst.edu/thesis/pdf/He_09007dcc807256ca.pdf.
Full textVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed Dec. 23, 2009). Includes bibliographical references (p. 60).
Dadisman, James Ryan. "MAGNETIC FIELD DESIGN TO REDUCE SYSTEMATIC EFFECTS IN NEUTRON ELECTRIC DIPOLE MOMENT MEASUREMENTS." UKnowledge, 2018. https://uknowledge.uky.edu/physastron_etds/53.
Full textBowlan, John. "Electric dipole moments, cluster metallicity, and the magnetism of rare earth clusters." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34751.
Full textAleksandrova, Alina. "Magnetic Field Monitoring in the SNS Neutron EDM Experiment." UKnowledge, 2019. https://uknowledge.uky.edu/physastron_etds/68.
Full textMalkowski, Susan Kate. "MAGNETIC SHIELDING STUDIES FOR THE NEUTRON ELECTRIC DIPOLE MOMENT EXPERIMENT AT THE SPALLATION NEUTRON SOURCE." UKnowledge, 2011. http://uknowledge.uky.edu/physastron_etds/1.
Full textFlaux, Pierrick. "Measurement of the neutron electric dipole moment at the Paul Scherrer Institute : production of magnetic fields." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC222/document.
Full textThis work presents the design of the coils system developed for the n2EDM experiment at the Paul Sherrer Institute (PSI). The goal of this experiment is to reveal new sources of CP violation through the measurement of the neutron electric dipole moment. The current upper limit of the nEDM measurement, $2.9 \cross 10^{-26}$ e.cm (90\% C.L.) was achieved by the RAL-Sussex-ILL collaboration in 2006.The n2EDM experiment aims at improving by one order of magnitude the statistical sensitivity while keeping under control the systematics effects. It requires to produce a very uniform field, its non-uniformities being responsible of the neutron's depolarization and of severals systematic effects.In the first chapter, the theoretical motivation are discussed.The second chapter describes the measurement principle of the n2EDM experiment, as well as the importance of the magnetic field uniformity. This chapter ends by an overview of the apparatus.The third chapter introduces the COMSOL software and discuss the design and the performances of the B0 coil, in charge of the production of the main magnetic field.In the fourth chapter, the correcting coils used to suppress the non-uniformities of the magnetic field and the ones which produce specific gradients are presented.Finally, the fifth and last chapter talks about the study of localised magnetic dipoles and their influence on the experiment
Bergmann, Ryan M. "Characterization of low-frequency electric potential oscillations near the edge of a plasma confined by a levitated magnetic dipole." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/53240.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 95-96).
A vertically adjustable electrostatic probe array was made to observe the previously seen low-frequency angular oscillations in LDX and identify if they are related to computationally expected convective cells. The array rests one meter from the centerline and measures edge fluctuations at field lines near the separatrix. It spans ninety degrees and has 24 probes mounted on it for total probe tip separation of 6.8cm. Bispectral analysis of the fluctuations show that that an inverse cascade of energy is present at times in LDX. The cascade transfers energy from small spatial scale structures to large scale structures. The wavenumber spectrum is xc k-1.4 to cx k-25 at high wavenumbers, which encompasses the inverse energy cascade regime of c k-5/3. The plasma also has a linear dispersion relation which gives a phase velocity of 2-16 k. This phase velocity is inversely correlated with neutral gas pressure in the vessel. The velocity also has a local maximum at 5 pTorr which is the pressure that produces maximum plasma density. The radial E x B drift velocities are observed to have a mean near zero, which indicates a closed structure like a convective cell. The instantaneous radial drift velocities are on the order of the ion sound speed, which is 35 km/s.
by Ryan M. Bergmann.
S.M.and S.B.
Gök, Şafak. "Electrical and magnetic investigations on transition metal implanted GaAs." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=983511020.
Full textSeo, Jiwon. "Electronic and magnetic properties of transition metal oxide heterostructures." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611390.
Full textBingham, Stephen John. "Magnetic circular dichroism and electron paramagnetic resonance of transition ions." Thesis, University of East Anglia, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357179.
Full textAlcaraz, de la Osa Rodrigo. "Nanostructured systems with arbitrary electric and magnetic properties: Development and Application of an Extension of the Discrete Dipole Approximation (E-DDA)." Doctoral thesis, Universidad de Cantabria, 2013. http://hdl.handle.net/10803/117776.
Full textLa aproximación de dipolo discreto (o DDA por sus iniciales en inglés) ha sido empleada con éxito en multitud de aplicaciones dentro del ámbito de la difusión de luz. Básicamente consiste en discretizar el blanco difusor en elementos polarizables. Los elementos adquieren momentos dipolares en respuesta a los campos locales. Los dipolos por supuesto interaccionan entre ellos por medio de sus campos eléctricos y magnéticos, por eso a la DDA también se la conoce como aproximación de dipolo acoplado. A día de hoy, el método se afianza como una de las mejores soluciones para calcular la radiación difundida por partículas de forma arbitraria. Hasta ahora, sin embargo, las principales implementaciones existentes sólo incluyen materiales en los que la permeabilidad magnética relativa puede aproximarse por la unidad, lo cual es acertado para todos los materiales en el dominio de las frecuencias del rango óptico. No obstante, últimamente están apareciendo materiales con propiedades ópticas inusuales, como por ejemplo el caso de que algunas de sus constantes ópticas efectivas sean negativas (sus partes reales), o bien que presenten anisotropía tanto para el campo eléctrico como para el magnético (materiales bianisótropos). El caso doble negativo correspondería a lo que se ha venido en llamar “materiales zurdos”, o materiales con índice negativo, con propiedades sorprendentes como la refracción negativa. El tratamiento de estos materiales con un método tan bien contrastado como es el DDA presenta bastantes ventajas, aparte de que en muchos casos puede ser el único método disponible. Esta Tesis Doctoral ha explorado sistemas nanoestructurados con propiedades eléctricas y magnéticas anisótropas por medio de una Extensión de la Aproximación de Dipolo Discreto (E-DDA). Durante el desarrollo de esta tesis, se ha implementado un código computacional (código E-DDA), capaz de producir resultados comparativos con otros códigos DDA existentes, obteniendo un acuerdo excelente. Después de validarse, el método se ha aplicado a un amplio rango de materiales y situaciones, haciendo mención especial a su aplicación a materiales magneto-ópticos (con un tensor de permisividad eléctrica antisimétrico) y materiales compuestos. En resumen, el estado del código desarrollado es suficientemente maduro como para poder aplicarse a muchas configuraciones diferentes, haciendo de él una herramienta computacional útil, flexible y estable para calcular la difusión y absorción de luz por partículas irregulares, incluyendo materiales anisótropos tanto eléctricos como magnéticos en el caso más general.
Delange, Pascal. "Many-electron effects in transition metal and rare earth compounds : Electronic structure, magnetic properties and point defects from first principles." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX040/document.
Full textThe topic of this thesis is the first-principles theory of the electronic structure of materials with strong electronic correlations. Tremendous progress has been made in this field thanks to modern implementations of Density Functional Theory (DFT). However, the DFT framework has some limits. First, it is designed to predict ground state but not excited state properties of materials, even though the latter may be just as important for many applications. Second, the approximate functionals used in actual calculations have more limited validity than conceptually exact DFT: in particular, they are not able to describe those materials where many-electron effects are most important.Since the 1990's, different many-body theories have been used to improve or complement DFT calculations of materials. One of the most significant non-perturbative methods is Dynamical Mean-Field Theory (DMFT), where a lattice model is self-consistently mapped onto an impurity model, producing good results if correlations are mostly local. We briefly review these methods in the first part of this thesis. Recent developments on DMFT and its extensions were aimed at better describing non-local effects, understanding out-of-equilibrium properties or describing real materials rather than model systems, among others. Here, we focus on the latter aspect.In order to describe real materials with DMFT, one typically needs to start with an electronic structure calculation that treats all the electrons of the system on the same footing, and apply a many-body correction on a well-chosen subspace of orbitals near the Fermi level. Defining such a low-energy subspace consistently requires to integrate out the motion of the electrons outside this subspace. Taking this into account correctly is crucial: it is, for instance, the screening by electrons outside the subspace strongly reduces the Coulomb interaction between electrons within the subspace. Yet it is a complex task, not least because DFT and DMFT are working on different observables. In the second part of this thesis, we discuss low-energy models in the context of the recently proposed Screened Exchange + DMFT scheme. In particular, we study the importance of non-local exchange and dynamically-screened Coulomb interactions. We illustrate this by discussing semi-core states in the d10 metals Zn and Cd.In the third and last part, we use the methods described above to study the electronic structure of three fundamentally and technologically important correlated materials. First, we discuss the physics of point defects in the paramagnetic phase of bcc Fe, more precisely the simplest of them: the monovacancy. Surprisingly for such a simple point defect, its formation energy had not yet been reported consistently from calculations and experiments. We show that this is due to subtle but nevertheless important correlation effects around the vacancy in the high-temperature paramagnetic phase, which is significantly more strongly correlated than the ferromagnetic phase where DFT calculations had been done.Second, we study the metal-insulator phase transition in the metastable VO2 B phase. We show that this transition is similar to that between the conventional rutile and M2 VO2 phases, involving both bonding physics in the dimer and an atom-selective Mott transition on the remaining V atoms. Motivated by recent calculations on SrVO3, we study the possible effect of oxygen vacancies on the electronic structure of VO2.Finally, we propose a scheme beyond DFT for calculating the crystal field splittings in rare earth intermetallics or oxides. While the magnitude of this splitting for the localized 4f shell of lanthanides does not typically exceed a few hundred Kelvin, it is crucial for their hard-magnetic properties. Using a modified Hubbard I approximation as DMFT solver, we avoid a nominally small but important self-interaction error, stressing again the importance of carefully tailored low-energy models
Campanini, Donato. "Nanocalorimetry of electronic phase transitions in systems with unconventional superconductivity and magnetic ordering." Licentiate thesis, Stockholms universitet, Fysikum, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-116202.
Full textRouzhaji, Tuerhong. "Effect of environment on the electronic and magnetic properties of transition metals and rare-earth complexes." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAE006/document.
Full textThis thesis presents the results of low-temperature scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) studies on transition-metal phthalocyanines molecules on the noble metal surfaces. The STM/STS measurements have been performed for MnPc and CuPc molecules adsorbed on Ag(111) and Au(111) surfaces at the experimental working temperature of 4.5 K. These two types of molecules exhibit substantially different adsorption configurations, the electronic and magnetic behaviors and the molecule vibrational structures. The STM/STS studies have focused mainly on the magnetic properties of these molecules by means of Kondo effect, and special attention has been paid to MnPc molecule due to its more interesting magnetic behavior arising from the central Mn atom. Particularly we investigated the spectral evolution of electronic and magnetic structures of MnPc starting from a single molecule up to the ordered bilayer structures on Ag(111) surface. In addition, the STM/STS investigations showed an evidence of magnetic coupling between the magnetic moments of the Co atom and MnPc molecule and its strong dependence on the adsorption site of Co atom. These STM/STS investigations on this system allowed us to understand the effect of molecule-substrate, molecule-molecule and molecule-atom interactions on the electronic and magnetic properties of MnPc molecules
Tilford, Claire. "Experimental investigations of the electronic interactions within multinuclear first row transition metal complexes." Thesis, University of East Anglia, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302144.
Full textLi, Peng. "Novel quantum magnetic states in low dimensions." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B36883062.
Full textLi, Peng, and 李鵬. "Novel quantum magnetic states in low dimensions." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B36883062.
Full textKitada, Atsushi. "Magnetic and Electrical Properties of Transition Metal Oxides Obtained using Structurally Related Precursors." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/157604.
Full textPeleckis, Germanas. "Studies on diluted oxide magnetic semiconductors for spin electronic applications." Access electronically, 2006. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20070821.145447/index.html.
Full textXu, Yang. "Performance Analysis of Point Source Model with Coincident Phase Centers in FDTD." Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-theses/214.
Full textMartin, Claudia. "Density functional study of the electronic and magnetic properties of selected transition metal complexes." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2014. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-134958.
Full textSANLI, AYDIN. "Transition Dipole Moment and Lifetime Study of Sodium Dimer and Lithium Dimer Electronic States via Autler-Townes and Resolved Fluorescence Spectroscopy." Diss., Temple University Libraries, 2017. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/444569.
Full textPh.D.
This dissertation consists of three major studies. The first study, described in Chapter 3, focuses on the experimental work we carried out; experimental study of the electronic transition dipole moment matrix elements (TDMM) for the and electronic transitions of the sodium dimer molecule. Here we obtained the electronic transition dipole moments through Autler-Townes and resolved fluorescence spectroscopy and compared them to the theory. The second study, described in Chapter 4, is on sodium dimer ion-pair states. In this work, we calculated the radiative lifetimes and electronic transition dipole moments between Na2 ion-pair states ( , , , ) and state. This study was published in 2015. The last study, described in Chapter 5, is the total lifetime (bound-bound plus bound-free) and transition dipole moment calculations of the ion-pair electronic states, , of the lithium dimer molecule.
Temple University--Theses
Baskar, Dinesh. "High temperature magnetic properties of transition metal oxides with perovskite structure /." Thesis, Connect to this title online; UW restricted, 2008. http://hdl.handle.net/1773/9812.
Full textTabookht, Zahra. "Theoretical study of magnetic and conducting properties of transition metal nanowires." Doctoral thesis, Universitat Rovira i Virgili, 2011. http://hdl.handle.net/10803/52798.
Full textIn the present thesis, magnetic and conducting properties of systems, one-dimensional chains of the family of so-called nanowires, have been studied computationally. These linear chains are supported by organic ligands surrounding the metal backbone where the number of binding sites determines the nuclearity of the chain. For these molecules, also called extended metal atom chains, magnetic coupling parameters have been calculated with the CASPT2 method. The use of standard Heisenberg Hamiltonian for systems M3(dpa)4Cl2 when two unpaired electrons are localized on each magnetic center has been examined by calculating the value of λ from DFT calculations. The different electrical conductivities observed in MMX chains [Ni2(dta)4I]∞ and [Pt2(dta)4I]∞ (dta = CH3CS2) and the charge ordering state have been analyzed with DFT periodic calculations and also through the comparison of extracted electronic structure parameters from ab initio calculations combined with the effective Hamiltonian theory.
Tanveer, Muhammad [Verfasser]. "First-principles electronic theory of non-collinear magnetic order in transition-metal nanowires / Muhammad Tanveer." Kassel : Universitätsbibliothek Kassel, 2015. http://d-nb.info/1072321874/34.
Full textSaureu, Artesona Sergi. "From mononuclear to dinuclear : magnetic properties of transition metals complexes." Doctoral thesis, Universitat Rovira i Virgili, 2016. http://hdl.handle.net/10803/386451.
Full textEn las últimas décadas, el mundo de la tecnologia y el desarrollo de nuevos aparatos electrónicos se han convertido en vitales para nuestra sociedad. Considerando la creciente demanda para la interpretación de resultados experimentales, la mejora de los métodos teóricos y el crecimiento de los recursos computacionales nos han permitido un mejor entendimiento de los comportamientos magnéticos en los sistemas con metales de transición. El objetivo de esta tesis es contribuir a este campo de investigación con el estudio de materiales magnéticos usando herramientas computacionales (DFT, TD-DFT, CASSCF, CASPT2, DDCI, etc.), y en algunos casos, combinando con resultados experimentales. La primera parte (Capítulo 3 y 4) incluye el estudio de los estados electrónicos de los complejos de spin-crossover de Fe(II) y Fe(III) combinando la teoria funcional de la densidad (DFT y TD-DFT) con métodos multiconfiguracionales (CASSCF, CASPT2). Además, usando la misma combinación, hemos descrito el fenómeno LIESST en complejos de Fe(III). La segunda parte (Cap. 5 y 6) expone el estudio de las propiedades magnéticas asociadas al acoplamiento magnético utilizando metodos variacionales (DDCI, DDCI-2), en un complejo de Fe(IV) y un complejo bimetálico [MnCr]-oxalato, y como los cambios estructurales afectan a ese acoplamiento. Por otra parte, hemos hecho un riguroso analisis de la estructura electrónica del complejo de Fe(IV) para aportar la información para la descripción mas adecuada del sistema.
Over the last decades the world of technology and the development of new devices have become vital for our society. Considering the growing demand for interpretation of experimental observations, the improvement of theoretical methods and the increasing of the computational resources has allowed us to deepen the understanding of magnetic beahvior of metal transitions architectures. The aim of this thesis is to contribute to this research field with the study of magnetic materials by using computational tools (DFT, TD-DFT, CASSCF, CASPT2, DDCI, etc.), and in some cases combining it with experimental results. The first part (Chapters 3 and 4) includes the study of the electronic states of Fe(II) and Fe(III) spin-crossover complexes combining the density functional theory (DFT and TD-DFT) with multiconfigurational methodologies (CASSCF, CASPT2). In addition, we have described the LIESST phenomenon in Fe(III) using the same combination. The second part (Chapters 5 and 6) exposes the study of the magnetic properties related to the magnetic coupling using variational methods (DDCI, DDCI-2) of a Fe(IV) complex and bimetallic [MnCr] oxalate-based complexes and how changes can influence to the coupling. Moreover, a rigorous analysis of the electronic structure of the Fe(IV) system has been performed to provide more information about the most adequate description of the system in terms of intuitive chemical concepts.
Leppert, Linn [Verfasser], and Stephan [Akademischer Betreuer] Kümmel. "Structural and electronic properties of transition metal nanoalloys and magnetic compounds / Linn Leppert. Betreuer: Stephan Kümmel." Bayreuth : Universität Bayreuth, 2013. http://d-nb.info/1059352869/34.
Full textKasperkiewicz, Karolina. "Structure, magnetic and electronic properties of new 1111-type and 42622-type transition metal-based oxyarsenides." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/9667.
Full textMishra, Snigdharaj K. "Mean-field and density-functional studies of charge ordering and magnetic transitions in lanthanum manganites /." free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9841176.
Full textDenawi, Hassan. "Electronic and magnetic properties of polymer chains exploiting the reactivity of zwitterionic quinone with transition metal atoms." Electronic Thesis or Diss., Aix-Marseille, 2019. http://theses.univ-amu.fr.lama.univ-amu.fr/191010_DENAWI_493r256nufumz934umq262qn_TH.pdf.
Full textUsing the VASP code (Vienna Ab initio Simulation Package) several first principle calculations have been performed to study metal-organic monolayers as free-standing layers and on metallic substrates. The first principles calculations are based on spin-polarized density functional theory (DFT) with the spin polarized gradient approximation with Hubbard term U (SGGA+U) with explicit treatment of the strong electron correlation in the incompletely filled d-shell of the transition metal ions. We study polymers of transition metals (TM) with zwitterionic quinone (ZQ) molecules as one dimensional (1D) chains, two-dimensional (2D) arrangements, or adsorbed on metallic substrates. From the ab-initio calculations we predict the Fe-ZQ zwitterionic quinoidal polymer chains to be one-dimensional spin cross-over compounds. The calculations determine the atomic positions, the magnetic couplings and the electronic structure. We investigate the electronic and magnetic structure of a recently synthesized two-dimensional (2D) arrangement of polymer chains based on Fe atoms and zwitterionic quinone on different metallic substrates (Au(110), Ag(111), Cu(110) and Cu(111)). The adsorption of the Fe atoms and zwitterionic quinone on the surfaces was studied via SGGA+U and the free-standing isolated polymer chain, the 2D arrangement and the adsorbed polymers have been calculated. Furthermore, all the series of 3d TM-ZQ chains has been studied, as well as many 4d and 5d TM. Promising properties show also alternating chains of FeV-ZQ
Heyrendt, Laurent. "Études des actions des forces magnétiques volumiques créées par un champ magnétique intense sur des fluides à seuil - possibilités de transition solide-gel." Phd thesis, Université de Lorraine, 2012. http://tel.archives-ouvertes.fr/tel-00799586.
Full textWoollacott, Claire. "Electronic and plasmonic properties of real and artificial Dirac materials." Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/18227.
Full textRead, Daniel Edward. "Electrical and magnetic properties of n-Cd(_1-x)Mn(_x) Te close to the metal-insulator transition." Thesis, Durham University, 2001. http://etheses.dur.ac.uk/3783/.
Full textWoodruff, Daniel. "Organometallic and metal-amide precursors for transition metal and lanthanide cluster complexes with interesting electronic an magnetic properties." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/organometallic-and-metalamide-precursors-for-transition-metal-and-lanthanide-cluster-complexes-with-interesting-electronic-an-magnetic-properties(d35cea40-6e84-4d19-ba6a-7a7fe1e4a135).html.
Full textWei, Haoming, Jose Luis Barzola-Quiquia, Chang Yang, Christian Patzig, Thomas Höche, Pablo Esquinazi, Marius Grundmann, and Michael Lorenz. "Charge transfer-induced magnetic exchange bias and electron localization in (111)- and (001)-oriented LaNiO3/LaMnO3 superlattices." American Institute of Physics, 2017. https://ul.qucosa.de/id/qucosa%3A23554.
Full textRichard, Laura Amanda. "A study of the crystallographic, magnetic and electronic properties of selected ZrM2-H systems." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:276c59fe-cf45-42d2-a5a0-8c534c8b46bd.
Full textKlironomos, Alexios. "Structural transitions of the vortex lattice in anisotropic superconductors and fingering instability of electron droplets in an inhomogeneous magnetic field." [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0000723.
Full textRamanathan, Sivakumar. "Optical and electrical properties of compound and transition metal doped compound semiconductor nanowires." VCU Scholars Compass, 2009. http://scholarscompass.vcu.edu/etd/1667.
Full text