Academic literature on the topic 'Electric field-induced chemical reaction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electric field-induced chemical reaction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electric field-induced chemical reaction"

1

Huang, Xiaoyan, Chun Tang, Jieqiong Li, et al. "Electric field–induced selective catalysis of single-molecule reaction." Science Advances 5, no. 6 (2019): eaaw3072. http://dx.doi.org/10.1126/sciadv.aaw3072.

Full text
Abstract:
Oriented external electric fields (OEEFs) offer a unique chance to tune catalytic selectivity by orienting the alignment of the electric field along the axis of the activated bond for a specific chemical reaction; however, they remain a key experimental challenge. Here, we experimentally and theoretically investigated the OEEF-induced selective catalysis in a two-step cascade reaction of the Diels-Alder addition followed by an aromatization process. Characterized by the mechanically controllable break junction (MCBJ) technique in the nanogap and confirmed by nuclear magnetic resonance (NMR) in
APA, Harvard, Vancouver, ISO, and other styles
2

Lv, Jieyao, Ruiqin Sun, Qifan Yang, Pengfei Gan, Shiyong Yu, and Zhibing Tan. "Research on Electric Field—Induced Catalysis Using Single—Molecule Electrical Measurement." Molecules 28, no. 13 (2023): 4968. http://dx.doi.org/10.3390/molecules28134968.

Full text
Abstract:
The role of catalysis in controlling chemical reactions is crucial. As an important external stimulus regulatory tool, electric field (EF) catalysis enables further possibilities for chemical reaction regulation. To date, the regulation mechanism of electric fields and electrons on chemical reactions has been modeled. The electric field at the single-molecule electronic scale provides a powerful theoretical weapon to explore the dynamics of individual chemical reactions. The combination of electric fields and single-molecule electronic techniques not only uncovers new principles but also resul
APA, Harvard, Vancouver, ISO, and other styles
3

Kumar, S., P. Kumar, and R. Pratap. "Reliability Failure in Microelectronic Interconnects by Electric Current Induced Chemical Reaction." IOP Conference Series: Materials Science and Engineering 1206, no. 1 (2021): 012026. http://dx.doi.org/10.1088/1757-899x/1206/1/012026.

Full text
Abstract:
Abstract The electric field-induced chemical reaction in Cr thin film by a micro/nano-probe has been recently reported with detailed characterization. Although the phenomenon is employed for micro-nano fabrication, this can act as a reliability failure, where Cr is used as an adhesion layer or main interconnects in microelectronic circuits. Here, we present an investigation on the role of electric current density for such failure using a specifically designed sample. A 100 μm width and 100 nm thin Cr film is deposited perpendicular to the Pt film of similar dimensions. The anode probe (20 μm d
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Nan, and Laurence Weatherley. "Electric field-intensified chemical processes and reaction chemistry." Current Opinion in Chemical Engineering 39 (March 2023): 100895. http://dx.doi.org/10.1016/j.coche.2022.100895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kaplunenko, Volodymyr, and Mykola Kosinov. "Electric field - induced catalysis. Laws of field catalysis." InterConf, no. 26(129) (October 18, 2022): 332–51. http://dx.doi.org/10.51582/interconf.19-20.10.2022.037.

Full text
Abstract:
Abstract.The article explores a new type of catalysis - electric field catalysis. The laws of field catalysis are given. The characteristics of the electric field are determined, which set the values of the characteristics of the field catalysis. Field catalysis and field catalyst do not fit into the traditional definition of catalysis and catalyst, which may require a revision of the terminology of catalysis. The field is a more versatile catalyst compared to material catalysts, both in terms of its application to a wider range of chemical reactions, and in the ability to control the rate and
APA, Harvard, Vancouver, ISO, and other styles
6

Deng, Jinxiang, Mengjie Li, Yakun Tian, Zhijun Zhang, Lingling Wu, and Lin Hu. "Using Electric Field to Improve the Effect of Microbial-Induced Carbonate Precipitation." Sustainability 15, no. 7 (2023): 5901. http://dx.doi.org/10.3390/su15075901.

Full text
Abstract:
The precipitation of calcium carbonate induced by Sporosarcina pasteurii (S. pasteurii) has garnered considerable attention as a novel rock and soil reinforcement technique. The content and structure of calcium carbonate produced through this reaction play a crucial role in determining the rocks’ and soil’s reinforcement effects in the later stages. Different potential gradients were introduced during the bacterial culture process to enhance the performance of the cementation and mineralization reactions of the bacterial solution to investigate the effects of electrification on the physical an
APA, Harvard, Vancouver, ISO, and other styles
7

Barmina, I., R. Valdmanis, M. Zake, H. Kalis, M. Marinaki, and U. Strautins. "Magnetic Field Control of Combustion Dynamics." Latvian Journal of Physics and Technical Sciences 53, no. 4 (2016): 36–47. http://dx.doi.org/10.1515/lpts-2016-0027.

Full text
Abstract:
AbstractExperimental studies and mathematical modelling of the effects of magnetic field on combustion dynamics at thermo-chemical conversion of biomass are carried out with the aim of providing control of the processes developing in the reaction zone of swirling flame. The joint research of the magnetic field effect on the combustion dynamics includes the estimation of this effect on the formation of the swirling flame dynamics, flame temperature and composition, providing analysis of the magnetic field effects on the flame characteristics. The results of experiments have shown that the magne
APA, Harvard, Vancouver, ISO, and other styles
8

Shamshuddin, M. D., Thirupathi Thumma, and S. R. Mishra. "Thermo-Solutal Chemically Reacting Micropolar Fluid Past a Permeable Stretching Porous Sheet." Defect and Diffusion Forum 392 (April 2019): 42–59. http://dx.doi.org/10.4028/www.scientific.net/ddf.392.42.

Full text
Abstract:
The boundary layer flow, heat and mass transfer over a permeable stretching sheet due to a chemically reacting micropolar fluid with slip and convective boundary conditions have been analyzed. Transverse magnetic field clubbed with electric field is also considered for the sake of brevity. Governing nonlinear coupled PDEs are transformed to nonlinear ODEs with the use of suitable similarity transformation. However, analytical solutions to these transformed equations are not useful therefore; numerical solution is carried out using Runge-Kutta fourth order with shooting technique. The character
APA, Harvard, Vancouver, ISO, and other styles
9

Gryn'ova, Ganna, and Michelle L. Coote. "Directionality and the Role of Polarization in Electric Field Effects on Radical Stability." Australian Journal of Chemistry 70, no. 4 (2017): 367. http://dx.doi.org/10.1071/ch16579.

Full text
Abstract:
Accurate quantum-chemical calculations are used to analyze the effects of charges on the kinetics and thermodynamics of radical reactions, with specific attention given to the origin and directionality of the effects. Conventionally, large effects of the charges are expected to occur in systems with pronounced charge-separated resonance contributors. The nature (stabilization or destabilization) and magnitude of these effects thus depend on the orientation of the interacting multipoles. However, we show that a significant component of the stabilizing effects of the external electric field is l
APA, Harvard, Vancouver, ISO, and other styles
10

Bunker, Ian, Ridwan Tobi Ayinla, and Kun Wang. "Single-Molecule Chemical Reactions Unveiled in Molecular Junctions." Processes 10, no. 12 (2022): 2574. http://dx.doi.org/10.3390/pr10122574.

Full text
Abstract:
Understanding chemical processes at the single-molecule scale represents the ultimate limit of analytical chemistry. Single-molecule detection techniques allow one to reveal the detailed dynamics and kinetics of a chemical reaction with unprecedented accuracy. It has also enabled the discoveries of new reaction pathways or intermediates/transition states that are inaccessible in conventional ensemble experiments, which is critical to elucidating their intrinsic mechanisms. Thanks to the rapid development of single-molecule junction (SMJ) techniques, detecting chemical reactions via monitoring
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!