Academic literature on the topic 'Electric susceptibility'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electric susceptibility.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electric susceptibility"

1

Khare, Avinash, and Trilochan Pradhan. "Magneto-electric susceptibility of the vacuum." Physics Letters B 231, no. 1-2 (November 1989): 178–80. http://dx.doi.org/10.1016/0370-2693(89)90135-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gunawan, Vincensius, Ngurah Ayu Ketut Umiati, and Agus Subagio. "The Electric Susceptibility of Bi-Layers Ferroelectrics." Journal of Physics and Its Applications 1, no. 2 (June 20, 2019): 53. http://dx.doi.org/10.14710/jpa.v1i2.4860.

Full text
Abstract:
In order to enhance insight of layered structure, we perform numerical calculation to obtain the dynamic electric susceptibility in bi-layers ferroelectrics. Since susceptibility is a parameter which gives response to the external field, then determination of this parameter is important. A lattice model is employed to slice bilayer structure into several lattices. Then, Landau-Khalatnikov equation of motion is used in each lattice to construct a matrix equation of equation of motion. The solution is obtained by applying entire-cell effective medium. We find that the homogeneity of dynamic polarization is different from homogeneity of the single individual layer due to the existence of interlayer interaction. As a result, the electric susceptibility is also altered. It is also noticed that there is a relation between the homogeneity of dynamic polarization and the value of electric susceptibility near resonant frequency. The higher the homogeneity, the bigger the values of susceptibility will be.
APA, Harvard, Vancouver, ISO, and other styles
3

ARDELEAN, I., P. PĂŞCUŢĂ, and V. IONCU. "MAGNETIC AND ELECTRIC BEHAVIOR OF IRON IONS IN THE 3B2O3·CAO GLASS MATRIX." Modern Physics Letters B 15, no. 30 (December 30, 2001): 1445–53. http://dx.doi.org/10.1142/s0217984901003378.

Full text
Abstract:
Magnetic susceptibility and electric resistivity measurements have been performed on x Fe 2 O 3 · (100-x)[3 B 2 O 3· CaO ] glasses with 0 <x≤ 50 mol%. Magnetic susceptibility data suggest that for x>5 mol% the iron ions participate in the negative superexchange interaction. From Curie constant values we have established that in these glasses both Fe 2+ and Fe 3+ ions are present, which explains their magnetic and electric behavior. The electrical resistivity and the conductivity activation energy decreases with the Fe 2 O 3 content. In order to analyze the electrical data, we have considered, in these glasses, a polaronic model for conduction.
APA, Harvard, Vancouver, ISO, and other styles
4

MOTA, F. DE BRITO, and A. FERREIRA DA SILVA. "ENHANCED DONOR ELECTRIC SUSCEPTIBILITY IN SEMICONDUCTOR SYSTEMS." Modern Physics Letters B 06, no. 30 (December 30, 1992): 1943–49. http://dx.doi.org/10.1142/s0217984992001654.

Full text
Abstract:
The electric susceptibility due to interacting donor-pair molecules are presented for a random distribution of uncompensated phosphorus-doped silicon at T=0 K. The results yield a critical exponent and susceptibility enhancement observed in optical measurements.
APA, Harvard, Vancouver, ISO, and other styles
5

Sullivan, Neil, Jaha Hamida, Khandker Muttalib, Subrahmanyam Pilla, and Edgar Genio. "Orientational Glasses: NMR and Electric Susceptibility Studies." Magnetochemistry 3, no. 4 (November 1, 2017): 33. http://dx.doi.org/10.3390/magnetochemistry3040033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Antoine, Rodolphe, Isabelle Compagnon, Driss Rayane, Michel Broyer, Philippe Dugourd, Gary Breaux, Frederick C. Hagemeister, David Pippen, Robert R. Hudgins, and Martin F. Jarrold. "Electric Susceptibility of Unsolvated Glycine-Based Peptides." Journal of the American Chemical Society 124, no. 23 (June 2002): 6737–41. http://dx.doi.org/10.1021/ja012656d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Panigrahi, N., T. Sahu, and P. K. Misra. "Theory of electric susceptibility of tetrahedral semiconductors." Journal of Physics C: Solid State Physics 18, no. 8 (March 20, 1985): L169—L173. http://dx.doi.org/10.1088/0022-3719/18/8/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Castles, Flynn, Julian A. J. Fells, Dmitry Isakov, Stephen M. Morris, Andrew A. R. Watt, and Patrick S. Grant. "Active Metamaterials with Negative Static Electric Susceptibility." Advanced Materials 32, no. 9 (January 27, 2020): 1904863. http://dx.doi.org/10.1002/adma.201904863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fuse, Takahiro, and Takashi Hotta. "Electric dipolar susceptibility of the Anderson-Holstein model." Journal of the Korean Physical Society 62, no. 12 (June 2013): 1874–78. http://dx.doi.org/10.3938/jkps.62.1874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fukushima, Kenji, Dmitri E. Kharzeev, and Harmen J. Warringa. "Electric-current susceptibility and the Chiral Magnetic Effect." Nuclear Physics A 836, no. 3-4 (May 2010): 311–36. http://dx.doi.org/10.1016/j.nuclphysa.2010.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Electric susceptibility"

1

Ritchie, Porter. "The Susceptibility of Electric Resistance Welded Line Pipe to Selective Seam Weld Corrosion." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586336007742949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lewin, William. "The Sound Of Silence : Applying Disruptive Innovation in the Electric Motorcycle Industry." Thesis, Uppsala universitet, Industriell teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445540.

Full text
Abstract:
The motorcycle industry is experiencing a paradigm shift. Alternatives to fossil fuels and changing customer preferences have slowly begun phasing out parts of the traditional motorcycle market. As a result of this, electric motorcycles are growing in popularity. A theory which discusses and theorizes regarding these types of industrial paradigm shifts is the theory of disruptive innovation. Disruptive innovation was introduced by scholar Clayton Christensen and has received a lot of attention since. The aim with this degree project was to contribute to our collective understanding of the innovation process by examining the electric motorcycle industry from the perspective of disruptive innovation. This was accomplished by compiling an industrial history of electric motorcycles which was analyzed using the concepts introduced by Christensen and further developed by his critics. This study used secondary information compiled in an industrial history using the narrative approach to historical analysis. The results showed that Christensen’s version of disruption was the most suited to explain the early attempts at electric motorcycles. The versions of disruption proposed by Christensen’s critics provided insight into how customer needs and the motorcycle market developed disruptive susceptibility over the years. The results of the study suggest that producers of electric motorcycles are adapting their products to the mainstream market instead of considering low-end markets with disruptive potential, which indicates that the actors are not expecting disruption as Christensen describes it.
APA, Harvard, Vancouver, ISO, and other styles
3

Bracanovic, Darko. "Ac susceptibility and resistivity studies of YBa←2Cu←3O←7←-←#delta# high-temperature superconductors." Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Saxena, Siddharth Shanker. "Magnetic and superconducting phases of heavy fermion compounds." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kaiser, Vojtech. "The Wien Effect in Electric and Magnetic Coulomb systems - from Electrolytes to Spin Ice." Thesis, Lyon, École normale supérieure, 2014. http://www.theses.fr/2014ENSL0942/document.

Full text
Abstract:
Les gaz ou fluides de Coulomb sont composés de particules chargées couplées entre elles par interaction coulombienne à longue portée. De part la nature de ces interactions, la physique du gaz de Coulomb est très riche, comme par exemple dans des électrolytes plus ou moins complexes, mais aussi à travers l'émergence de monopôles magnétiques dans la glace de spin. Dans cette thèse nous nous intéressons au comportement hors d'équilibre des gaz de Coulomb et de la glace de spin. Au centre de cette étude se trouve le deuxième effet de Wien, qui est une croissance linéaire de la conductivité en fonction du champ électrique appliqué à un électrolyte faible. Ce phénomène est une conséquence directe de l'interaction coulombienne qui pousse les charges à se lier par paires ; le champ électrique va alors aider à dissocier ces paires et créer des charges mobiles qui amplifient la conductivité. Le deuxième effet de Wien est un processus hors-équilibre non-linéaire, remarquablement décrit par la théorie de Onsager. Nos simulations sur réseau permettent de découvrir le rôle de l'environnement ionique qui agit contre le deuxième effet de Wien, ainsi que de caractériser la mobilité du système et sa dépendance en fonction du champ externe. Les simulations nous ont aussi donné accès aux corrélations de charges qui décrivent le processus microscopique à la base de l'effet Wien. Enfin, nous regardons plus précisément le gaz émergent de monopôles dans la glace de spin, aussi appelé « magnétolyte », capable de décrire de manière remarquable les propriétés magnétiques de glace de spin. Nous décrivons la dynamique complète hors-équilibre de cette magnétolyte soumise à une forçage périodique ou une trempe dans un champ magnétique en incluant à la fois le deuxième effet de Wien et la réponse du réseau de spins qui est à la base de l'émergence des monopôles magnétiques. Tout au long, nous utilisons une simple extension des simulations de gaz de Coulomb sur réseau pour préciser nos prédictions. Il est très rare de trouver une théorie analytique du comportement hors-équilibre d'un système hautement frustré au-delà de la réponse linéaire
A Coulomb gas or fluid comprises charged particles that interact via the Coulomb interaction. Examples of a Coulombic systems include simple and complex electrolytes together with magnetic monopoles in spin ice. The long-range nature of the Coulomb interaction leads to a rich array of phenomena.This thesis is devoted to the study of the non-equilibrium behaviour of lattice based Coulomb gases and of the quasi-particle excitations in the materials known as spin ice which constitute a Coulomb gas of magnetic charges. At the centre of this study lies the second Wien effect which describes the linear increase in conductivity when an electric field is applied to a weak electrolyte. The conductivity increases due to the generation of additional mobile charges via a field-enhanced dissociation from Coulombically bound pairs.The seminal theory of Onsager gave a detailed analysis of the Wien effect. We use numerical simulations not only to confirm its validity in a lattice Coulomb gas for the first time but mainly to study its extensions due to the role of the ionic atmosphere and field-dependent mobility. The simulations also allow us to observe the microscopic correlations underlying the Wien effect.Finally, we look more closely at the emergent gas of monopoles in spin ice—the magnetolyte. The magnetic behaviour of spin ice reflects the properties of the Coulomb gas contained within. We verify the presence of the Wien effect in model spin ice and in the process predict the non-linear response when exposed to a periodic driving field, or to a field quench using Wien effect theory. We use a straightforward extension of the lattice Coulomb gas simulations to refine our predictions. It is a highly unusual result to find an analytic theory for the non-equilibrium behaviour of a highly frustrated system beyond linear response
APA, Harvard, Vancouver, ISO, and other styles
6

Fenn, Michael. "Electrical resistivity of thin metal films and multilayers." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Combes, Frédéric. "Thermodynamique de la réponse électrique dans les isolants de bande - Synchronisation et écho de spin dans une horloge atomique." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS540/document.

Full text
Abstract:
Le travail présenté dans ce manuscrit porte sur deux sujets distincts. Le premier concerne la réponse d'un diélectrique cristallin à un champ électrique uniforme ; il s'ancre sur la théorie moderne de la polarisation développée par King-Smith, Vanderbilt et Resta. En nous restreignant d'abord au cas unidimensionnel, nous décrivons de manière perturbative à faible champ électrique le spectre de Wannier-Stark d'un modèle de bande. Nous utilisons ensuite ce développement dans une approche thermodynamique que nous modifions pour palier aux problèmes posés par le caractère non-borné du spectre de Wannier-Stark : nous introduisons en particulier un potentiel chimique local assurant la neutralité électrique locale au sein du cristal. Cette approche permet d'accéder à la polarisation et à la susceptibilité électrique des cristaux diélectriques. Finalement, nous étendons le travail effectué au cas bidimensionnel où de nouvelles caractéristiques associé aux isolants topologiques apparaissent.Le deuxième sujet porte sur la synchronisation de spin dans les gaz d'atomes froids. Nous étudions la compétition entre le mécanisme d'écho de spin et le phénomène d'auto-synchronisation lié à l'effet de rotation des spins identiques (emph{ISRE}). La méthode de l'écho de spin permet de compenser certains déphasage apparaissant dans une gaz d'atomes ultra-froid piégé, et accroît ainsi le temps de cohérence de l'ensemble. L'emph{ISRE} apparaît dans les gaz denses via les collisions entre atomes et conduit également à un accroissement du temps de cohérence. Nous montrons que ces deux mécanismes ne sont pas systématiquement compatibles. En particulier, leur compatibilité est lié à la relation entre les échelles de temps propres à chacun des phénomènes
The work exposed in this manuscript covers two distinct topics. The first is about the response of crystalline dielectrics to an external static electric field; it is based on King-Smith, Vanderbilt and Resta modern theory of polarisation. Restricting ourselves to the 1D case, we first describe the Wannier-Stark ladder of a band model with a low-field perturbative approach. We then use this development to derive the thermodynamical response of the band model. We have to modify the usual thermodynamics to account for the unboundedness of the Wannier-Stark spectrum, through the introduction of a local chemical potentiel which ensures local electric neutrality in the crystal. In a last step, we extend our approch to the 2D cas, where new characteristics related to the topic of topological insulators appear.The second topic tackles synchronization and spin-echo in cold atom gases. We study the competition between the spin-echo mechanism and the self-synchronization mechanism which emerges from the identical spin rotation effet (emph{ISRE}). The spin-echo thechnique was built to compensate for some the of dephasing that appears in trapped ultra-cold gases, leading to an increased coherence time for the ensemble. The emph{ISRE} appears in dense atomic clouds where collisions also lead to an increased coherence time. We show that these two mechanism are not always compatible, in particular, their compatibility is based on the relation between the time scales associated to both phenomena
APA, Harvard, Vancouver, ISO, and other styles
8

Leigh, Nigel Royston. "Specific heat measurements on chevrel phase materials exhibiting coexistence of superconductivity and magnetism." Thesis, Durham University, 2001. http://etheses.dur.ac.uk/3849/.

Full text
Abstract:
A probe for measuring the specific heat of superconductors at low temperatures and in high magnetic fields has been built and commissioned. The probe has been tested using the relaxation method on samples of copper and the accuracy of the data is 1.3 % between 5 K and 30 K, data taken using the long range pulse method has a resolution of 10 mK. Specific heat measurements have been performed on members of the series (Pb(_1)-(_x))Cu(_1.8x)Mo(_6)S(_8), (Sn(_1-x))Eu(_x)Mo(_6)S(_8) and (Pb(_1-x)M(_x))Mo(_6)S(_8) where M = Gd and Eu, from 3 K up to 30 K and in magnetic fields up to 15 T. Additional results from resistivity, susceptibility, magnetisation. X-ray diffraction, transmission electron microscopy and electron dispersive-ray measurements are also presented. These data have been compared to results from other authors and are analysed in terms of the BCS and GLAG theories of superconductivity and the magnetic properties of these materials. The mean field model has been used to calculate numerically the magnetic contribution to the specific heat (cm) of both ferromagnetic and antiferromagnetic systems as a function of temperature and applied field both above and below the ordering temperature. In addition an approximate analytic form for the magnetisation has been used to calculate Cm above the ordering temperature. Expressions have been derived for the saturation value of the peak in C(_m): C(^sat)(_m) = 1.1245n(_cell)RJI(J+1) and the temperature dependence of the peak with applied field ȡ(μ(_o)H(_ext))/ȡT(_peak)=6.540/g(_J)(J+1). They allow the simple calculation of the values of J and g(_J)(J + 1) from specific heat data. The magnetic contribution to the specific heat of the samples (Sn(_0.65)Eu(0.35)Mo(_6)S(_8)) and (Sn(0.50)Eu(_0.50)Mo(_6)S(_8)) have been modelled using these calculations and excellent agreement is found by considering the magnetic ions as free ions. The sample is accurately modelled by including an additional minority phase (Gd(_2)S(_3)). The approximate expressions have also been used to analyse data on high temperature superconductors producing values of J and g(_J)}{J + 1) consistent with a doublet ground state. The properties of Chevrel phase materials have been determined as a function of doping level. The critical temperature is degraded by doping but an increase in the critical current density is observed in the series (Pb(_1-x)Cu(_1-8x)Mo(_6)S(_8) for very low levels of doping. Increases of up to 28 % in the upper critical field, that are probably due to the compensation effect and an increase in the normal state resistivity, are also observed in the series (Sn(_1-x)Eu(_x)Mo(_6)S(_8)) at high levels of doping and in the series (Pb(_1-x)Gd(_x)Mo(_6)s(_8) for low levels of doping.
APA, Harvard, Vancouver, ISO, and other styles
9

Diver, Andrew James. "The strongly correlated electron systems CeNi←2Ge←2 and Sr←2RuO←4." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Le, Poul Nicolas. "Charge transfer at the high-temperature superconductor/liquid electrolyte interface." Thesis, University of Exeter, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Electric susceptibility"

1

Crowell, William H. Electrostatic discharge susceptibility data. Rome, NY: Reliability Analysis Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Anatasovski, P. K. Theory of magnetic and electric susceptibilities for optical frequencies. New York: Nova Science Publishers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Purle, David. The susceptibility of direct sequence and frequency hopped spread spectrum to interference. Palo Alto, CA: Hewlett-Packard Laboratories, Technical Publications Department, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jesch, Ramon L. Susceptibility of emergency vehicle sirens to external radiated electromagnetic fields. Washington, D.C: U.S. Dept. of Justice, National Institute of Justice, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

H, Crowell William, and Reliability Analysis Center (U.S.), eds. Electrostatic discharge susceptibility data. Rome, NY (PO Box 4700, Rome 13440-8200): The Center, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vleck, J. H. Van. The Theory of Electric and Magnetic Susceptibilities. Oxford University Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Imes, W. Minimizing Electrical Susceptibility to Power. Springer, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Automatic radiated susceptibility test system for payload equipment. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Automatic radiated susceptibility test system for payload equipment. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sicard, Etienne, Sonia Ben Dhia, and Mohamed Ramdani. Electromagnetic Compatibility of Integrated Circuits: Techniques for low emission and susceptibility. Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electric susceptibility"

1

Krichevtsov, B. B., A. Yu Zyuzin, and H. J. Weber. "Optical Second Order Magneto-Electric Susceptibility in the Boracite Cu3B7O13Br." In Magnetoelectric Interaction Phenomena in Crystals, 125–38. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2707-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rillo, C., F. Lera, A. Badía, L. A. Angurel, J. Bartolomé, F. Palacio, R. Navarro, and A. J. van Duyneveldt. "Multipurpose Cryostat for Low Temperature Magnetic and Electric Measurements of Solids." In Magnetic Susceptibility of Superconductors and Other Spin Systems, 1–24. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2379-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kashyap, R. "Phase-Matched Second-Harmonic Generation in Fibre Waveguides by Electric-Field Modulation of the Third-Order Susceptibility." In Springer Proceedings in Physics, 267–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-93426-1_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gałązka, Miroslaw, P. Szklarz, G. Bator, and Piotr Zieliński. "Critical Behaviour in Ferroelectrics as Studied by Nonlinear Dielectric Effect. Invariants of the Electric Susceptibility in a Biasing Field." In Solid State Phenomena, 141–0. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-19-1.141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Byrne, H. J., and W. J. Blau. "Macromolecular Interactions and Their Influence on the Nonlinear Optical Susceptibility." In Electronic Properties of Polymers, 190–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84705-9_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kucharski, Z., H. Winkler, A. X. Trautwein, and C. Budrowski. "Mössbauer, EPR and Susceptibility Studies of Polypyrrole Doped with FeCl3." In Electronic Properties of Polymers, 315–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84705-9_58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sczygiol, Norbert, and Zbigniew Domański. "Estimation of Susceptibility to Hot Tearing in Solidifying Casting." In Lecture Notes in Electrical Engineering, 215–27. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4786-9_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dakhnovskii, Yu I., and K. A. Pronin. "Nonlinear Optical Susceptibility for Third Harmonic Generation in Combined Peierls Dielectrics." In Electron-Electron Correlation Effects in Low-Dimensional Conductors and Superconductors, 73–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76753-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Shenghui, Xiangkai Liu, Xiaoyun Yang, and Yu Xiao. "Test Research on Radiated Susceptibility of Automobile Electronic Control System." In Lecture Notes in Computer Science, 387–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21524-7_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Svechkarev, I. V., A. S. Panfilov, S. N. Dolja, H. Nakamura, and M. Shiga. "Pressure Effect on the Magnetic Susceptibility of the YbInCu4 and GdInCu4 Compounds." In Itinerant Electron Magnetism: Fluctuation Effects, 309–21. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5080-4_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electric susceptibility"

1

Reale, David V., John Mankowski, and James Dickens. "Susceptibility of Electro-Explosive Devices to high pulsed electric fields." In 2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2012. http://dx.doi.org/10.1109/ipmhvc.2012.6518716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wilson, C. R., and S. Grijalva. "An Analysis of the Susceptibility of Electric Aircraft to Lightning Strikes." In 2021 IEEE Transportation Electrification Conference & Expo (ITEC). IEEE, 2021. http://dx.doi.org/10.1109/itec51675.2021.9490143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aiello, Orazio, Paolo S. Crovetti, and Franco Fiori. "Susceptibility to EMI of a Battery Management System IC for electric vehicles." In 2015 IEEE International Symposium on Electromagnetic Compatibility - EMC 2015. IEEE, 2015. http://dx.doi.org/10.1109/isemc.2015.7256257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Giudice, Pietro, Gert Aarts, Chris Allton, Alessandro Amato, Simon Hands, and Jon-Ivar Skullerud. "Electric charge susceptibility in 2+1 flavour QCD on an anisotropic lattice." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Xiuhuan, Zhanguo Chen, Gang Jia, Bao Shi, Yuhong Zhang, Ce Ren, Jianxun Zhao, Kun Cao, and Shuang Wang. "The DC electric field induced second-order nonlinear susceptibility of silicon crystals." In Photonics Asia 2007, edited by Yiping Cui, Qihuang Gong, and Yuen-Ron Shen. SPIE, 2007. http://dx.doi.org/10.1117/12.757146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lutz, M., and J.-P. Lecury. "Electric Fast Transient IEC 801-4. Susceptibility Of Electronic Equipment And Systems At Higher Frequencies And Voltages." In International Symposium on Electromagnetic Compatibility. IEEE, 1992. http://dx.doi.org/10.1109/isemc.1992.626075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ge Guo, Weidong Zhang, Xiang Cui, and Rui Lin. "Analytical method of electromagnetic susceptibility of electronic equipments with enclosure in electric power system at system level." In 2008 China International Conference on Electricity Distribution (CICED 2008). IEEE, 2008. http://dx.doi.org/10.1109/ciced.2008.5211774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ford, Kenneth Lee, and Karan Shah. "A study on the use of metasurface synthesis using electric and magnetic susceptibility." In 2016 Loughborough Antennas & Propagation Conference (LAPC). IEEE, 2016. http://dx.doi.org/10.1109/lapc.2016.7807580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Picon, Thomas, Marco Klingler, Tristan Dubois, and Genevieve Duchamp. "Using a 2-Step Electromagnetic and Electric Simulation Approach for Vehicle Susceptibility Analysis." In 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). IEEE, 2018. http://dx.doi.org/10.1109/emceurope.2018.8485168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Baasch, B., H. Müller, T. V. Dobeneck, and C. Hilgenfeldt. "Reconstruction of Magnetic Susceptibility and Electric Conductivity from Marine Small-loop EMI Data." In 75th EAGE Conference and Exhibition incorporating SPE EUROPEC 2013. Netherlands: EAGE Publications BV, 2013. http://dx.doi.org/10.3997/2214-4609.20131060.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Electric susceptibility"

1

Hsu, Li-Shing, Lu-Wei Zhou, F. L. Machado, W. G. Clark, and R. S. Williams. Electrical Resistivity, Magnetic Susceptibility and Thermoelectric Power of PtGa2. Fort Belvoir, VA: Defense Technical Information Center, July 1990. http://dx.doi.org/10.21236/ada225035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hsu, L., L. W. Zhou, F. L. Machado, and R. S. Williams. Electrical Resistivity, Magnetic Susceptibility, Thermoelectric Power Heat Capacity of PtGa2. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada199103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography