Academic literature on the topic 'Electric transformers. Voltage regulators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electric transformers. Voltage regulators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electric transformers. Voltage regulators"
Melnikova, O. S. "Impact of distribution of impurity particles on electric strength of transformer oil." Vestnik IGEU, no. 6 (2019): 41–49. http://dx.doi.org/10.17588/2072-2672.2019.6.041-049.
Full textFursanov, M. I., and A. A. Zalotoy. "Improvement of the Method of Calculation of Steady-State Modes of Urban Electric Networks Taking into Account Consumer Energy Sources." ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations 62, no. 6 (November 29, 2019): 514–27. http://dx.doi.org/10.21122/1029-7448-2019-62-6-514-527.
Full textKutin, V. M., M. V. Nikitchuk, V. M. Svitko, and O. O. Shpachuk. "AUTOMATION OF THE HEAT STATE ANALYSIS PROCESS HIGH-VOLTAGE CURRENT TRANSFORMERS." METHODS AND DEVICES OF QUALITY CONTROL, no. 2(43) (December 24, 2019): 96–110. http://dx.doi.org/10.31471/1993-9981-2019-2(43)-96-110.
Full textNakadomari, Akito, Ryuto Shigenobu, Takeyoshi Kato, Narayanan Krishnan, Ashraf Mohamed Hemeida, Hiroshi Takahashi, and Tomonobu Senjyu. "Unbalanced Voltage Compensation with Optimal Voltage Controlled Regulators and Load Ratio Control Transformer." Energies 14, no. 11 (May 21, 2021): 2997. http://dx.doi.org/10.3390/en14112997.
Full textVukolov, V. Yu, A. A. Petrov, S. N. Yurtaev, and R. Sh Bedretdinov. "Development of universal algorithm of voltage circuits detecting faults of microprocessor protection and automation devices." Vestnik IGEU, no. 3 (June 30, 2021): 33–41. http://dx.doi.org/10.17588/2072-2672.2021.3.033-041.
Full textSevero, Lucas Compassi, and Wilhelmus Adrianus Maria Van Noije. "A Generic Test Board for the Electrical Characterization of ULP and ULV Fully-Differential Integrated Analog Circuits." Journal of Integrated Circuits and Systems 14, no. 3 (December 27, 2019): 1–7. http://dx.doi.org/10.29292/jics.v14i3.90.
Full textAttia, Hussain. "Novel 9-Steps Automatic AC Voltage Regulator based on Two Step-down Transformers." International Journal of Electrical and Computer Engineering (IJECE) 7, no. 2 (April 1, 2017): 576. http://dx.doi.org/10.11591/ijece.v7i2.pp576-583.
Full textNoskov, M. Yu, M. M. Ginshparg, and N. S. Nesterov. "Results of tests on the indicator of external noise of electric locomotives in the standing time." Vestnik of the Railway Research Institute 76, no. 5 (October 28, 2017): 301–5. http://dx.doi.org/10.21780/2223-9731-2017-76-5-301-305.
Full textObaid, Waleed, Abdul-Kadir Hamid, and Chaouki Ghenai. "Hybrid solar/wind/diesel water pumping system in Dubai, United Arab Emirates." International Journal of Electrical and Computer Engineering (IJECE) 11, no. 3 (June 1, 2021): 2062. http://dx.doi.org/10.11591/ijece.v11i3.pp2062-2067.
Full textHanley, Patrick, Thomas Healy, and Nancy Shannon. "Con Edison's Success in Reducing Risk: Applying Real-World Lessons Learned to Broaden Spill Planning and Response Programs and Build Personnel Competencies." International Oil Spill Conference Proceedings 2014, no. 1 (May 1, 2014): 1910–21. http://dx.doi.org/10.7901/2169-3358-2014.1.1910.
Full textDissertations / Theses on the topic "Electric transformers. Voltage regulators"
Beckers, Peter C. "Design of a Self Regulated and Protected Electrification Transformer." Thesis, Link to the online version, 2007. http://hdl.handle.net/10019/335.
Full textVan, Jaarsveld Barend Jacobus. "Wide-band modelling of an air-core power transformer winding." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85823.
Full textENGLISH ABSTRACT: The objective of this project is to develop an electromagnetic model that can be used to accurately calculate the voltage distribution in a transformer winding structure when excited with standard impulse excitation waves. This voltage distribution is required during the design stage of a power transformer to ensure that the insulation is capable of withstanding the occurring electric field stresses during these tests. This study focuses on the modelling of a single disk-type power transformer winding without the presence of an iron-core. Methods of calculating self- and mutual-inductances of transformer windings are presented and validated by means of finite element method software simulations. The same is done for the calculation methods used for calculating the capacitances in and around the winding structure. The calculated and FEM-simulated results are compared to measured values as a final stage of validation. The methods used to calculate the various model parameters seem to produce results that agrees well with measured values. The non-linear frequency dependant dissipative nature of transformer windings is also investigated and a methodology to take this into account is proposed and implemented. The complete modelling methodology proposed in this thesis, which includes the calculation of the model parameters, model synthesis and solver algorithm, are applied to an actual case study. The case study is performed on an air-core reactor manufactured using a disk-type power transformer winding. The reactor is excited with standard lightning impulse waves and the voltages along the winding are measured. The calculated and measured voltage wave forms are compared in both the frequency and time-domain. From the comparison it is found that the model accurately represents the actual transient voltage response of the testunit for the frequency range of interest during standard factory acceptance tests.
AFRIKAANSE OPSOMMING: Die doel van hierdie projek is om 'n elektromagnetiese model te ontwikkel wat gebruik kan word om die spanningsverspreiding in 'n transformatorwindingstruktuur te bereken as standaard weerligimpulstoetse toegedien word. Hierdie spanningsverspreiding word vereis tydens die ontwerpstadium van ‘n kragtransformator om te verseker dat die isolasie in staat is om die elektriese veldsterkte tydens hierdie toetse te weerstaan. Hierdie studie fokus op die modelering van 'n enkele skyftipe-kragtransformatorwinding sonder die teenwoordigheid van 'n ysterkern. Metodes van berekening van self- n wedersydse-induktansie van transformatorwindings word aangebied en getoets deur middel van Eindige-Element-Metode (EEM) simulasies. Dieselfde word gedoen vir die metodes wat gebruik word vir die berekening van die kapasitansies in en rondom die windingstruktuur. Die berekende en EEM-gesimuleerde resultate word vergelyk met die gemeete waardes as 'n finale vlak van bekragtiging. Die metodes wat gebruik word om die verskillende modelparameters te bereken vergelyk goed met gemete waardes. Die nie-lineêre frekwensie-afhanklike verliese van transformatorwindings word ook ondersoek en 'n metode om hierdie in ag te neem is voorgestel en geïmplementeer. Die volledige voorgestelde modeleringsmetodiek in hierdie tesis, wat die berekening van die modelparameters, modelsintese en oplosingsalgoritme insluit word toegepas op 'n werklike gevallestudie. Die gevallestudie is uitgevoer op 'n lugkern-reaktor wat 'n skyftipe-kragtransformatorwinding. Die reaktor word onderwerp aan die standaard weerligimpuls golwe en die spanning al langs die winding word gemeet. Die berekende en gemete spanning golf vorms word met mekaar vergelyk in beide die frekwensie- en tyd-vlak. Uit die vergelyking blyk dit dat die model die werklike oorgangspanningsweergawe van die toetseenheid akkuraat verteenwoordig vir die frekwensie reeks van belang tydens standaard fabriekaanvaardingstoetse.
Wolf, Marko. "Design and implementation of a modular converter with application to a solid state transformer." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2773.
Full textENGLISH ABSTRACT: The purpose of a solid state transformer (SST) is to use power electronic converters to mimic the operation of the conventional distribution transformer. These power electronic converters are proposed to overcome the disadvantages of the conventional distribution transformer. The advantages of a SST include near perfect voltage regulation and harmonic isolation between the primary and secondary windings of the transformer. This thesis discusses the design and development of the different converters in a solid state transformer (SST). A prototype modular back-to-back converter is developed for the input and isolation stage of the SST. The isolation stage consists of a high voltage DC-DC converter, which transfers power across the isolation barrier of the SST. This stage is evaluated in the laboratory with special attention being paid to the efficiency of the converter. The second aspect that this thesis addresses is the output stage of the SST, namely a three phase inverter. The discussion of the output stage focuses on the losses occurring in the inverter. The switching device losses are calculated by means of an adapted numerical method as opposed to using conventional analytical methods. The presented numerical method is compared to the existing analytical method and the findings are discussed. A double loop control strategy is implemented for the output stage inverter. The inner current loop utilizes a predictive control strategy. The control analysis of the double loop controller is discussed and evaluated in the laboratory. All the converters that are discussed in this thesis are evaluated in the laboratory and the relevant measurements are included.
AFRIKAANSE OPSOMMING: Die doel van ’n drywingselektroniese transformator (DET) is om drywingselektroniese omsetters te gebruik om die werking van die konvensionele distribusietransformator na te boots. Hierdie drywingselektroniese omsetters word voorgestel ten einde die nadele van die konvensionele distribusietransformator te bowe te kom. Die voordele van ’n DET sluit in: feitlik perfekte regulering van spanning en harmoniese isolasie tussen die primˆere en sekondˆere windings van die transformator. Hierdie tesis bespreek die ontwerp en ontwikkeling van die verskillende omsetters in ’n drywingselektroniese transformator (DET). ’n Prototipe modulˆere rug-aan-rug-omsetter word ontwikkel vir die intree- en isolasiefase van die DET. Die isolasiefase bestaan uit ’n hoogspanning- GS-GS omsetter, wat drywing oor die isolasiegrens van die DET heen oordra. Hierdie omsetter word in die laboratorium ge¨evalueer met besondere aandag aan die doeltreffendheid van die omsetter. Die tweede aspek waarna in hierdie tesis gekyk word, is die uittreefase van die DET, naamlik ’n driefaseomsetter. Die bespreking van die uittreefase fokus egter op die verliese wat in die omsetter voorkom. Die verliese van die skakelaars word bereken deur middel van ’n aangepaste numeriese metode teenoor die gebruik van konvensionele analitiese metodes. Die numeriese metode wat aangebied word, word vergelyk met die bestaande analitiese metode en die bevindings word bespreek. ’n Dubbellus-beheerstrategie word vir die uittreefase-omsetter ge¨ımplementeer. Die binneste stroomlus word ge¨ımplementeer deur van ’n voorspelbare beheerstrategie gebruik te maak. Die beheeranalise van die dubbellusbeheerder word bespreek en in die laboratorium ge¨evalueer. Al die omsetters wat in hierdie tesis bespreek word, word in die laboratorium ge¨evalueer en die relevante metings word ingesluit.
Bell, Simon Colin. "High-voltage partial-core resonant transformers." Thesis, University of Canterbury. Electrical and Computer Engineering, 2008. http://hdl.handle.net/10092/2161.
Full textRincon-Mora, Gabriel Alfonso. "Current efficient, low voltage, low drop-out regulators." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/13359.
Full textOlajubutu, Michael Olaolu. "Utilizing microprocessor based relays as predictive tools to mitigate voltage instability problems that stem from the fast voltage collapse and delayed voltage recovery phenomena." Auburn, Ala., 2007. http://repo.lib.auburn.edu/07M%20Theses/OLAJUBUTU_MICHAEL_35.pdf.
Full textBenwell, Andrew L. Kovaleski Scott D. "A high voltage piezoelectric transformer for active interrogation." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/6847.
Full textAl-Hinai, Amer. "Voltage collapse prediction for interconnected power systems." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1639.
Full textTitle from document title page. Document formatted into pages; contains xii, 94 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 66-67).
Hau, King-kuen. "AC mains voltage regulation by solid-state power conversion techniques /." [Hong Kong] : University of Hong Kong, 1990. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13009503.
Full textRobalino, Vanegas Diego M. "Loss of life of medium voltage oil-immersed current transformers under thermal accelerated ageing a dissertation presented to the faculty of the Graduate School, Tennessee Technological University /." Click to access online, 2009. http://proquest.umi.com/pqdweb?index=0&did=1934058311&SrchMode=1&sid=2&Fmt=6&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1264684717&clientId=28564.
Full textBooks on the topic "Electric transformers. Voltage regulators"
A calibration service for voltage transformers and high-voltage capacitors. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Find full textInstitute Of Electrical and Electronics Engineers. Distribution, power, and regulating transformers. New York: Institute of Electrical and Electronics Engineers, 1995.
Find full textS, Zaengl W., and Kuffel J, eds. High voltage engineering: Fundamentals. 2nd ed. Oxford: Butterworth-Heinemann, 2000.
Find full text1962-, Delli Priscoli Francesco, and Isidori Alberto, eds. Output regulation of uncertain nonlinear systems. Boston: Birkhäuser, 1997.
Find full textKussy, Frank W. Design fundamentals for low-voltage distribution and control. New York: M. Dekker, 1987.
Find full textRincón-Mora, Gabriel A. Analog IC design with low-dropout regulators. New York: McGraw-Hill, 2009.
Find full textLis, Robert. Problemy z oceną i sposoby poprawy stabilności napięciowej sieci przesyłowej: Problems of assessment and ways of improving voltage stability of an electrical power transmission grid. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2013.
Find full textKervill, Gregg. Practical guide to the low voltage directive. Oxford: Newnes, 1998.
Find full textGirgis, George K. Hungry Horse Unit 4 excitation system commissioning test. Denver, Colo: U.S. Bureau of Reclamation, 1992.
Find full textCentral Power Research Institute (India), ed. Investigation of impulse voltage characteristics of distribution transformers. New Delhi: Research Scheme on Power, Central Board of Irrigation and Power, 1994.
Find full textBook chapters on the topic "Electric transformers. Voltage regulators"
"Step-Voltage Regulators." In Electric Power Transformer Engineering, 181–202. CRC Press, 2007. http://dx.doi.org/10.1201/9781420008715-12.
Full textColopy, Craig A. "Step-Voltage Regulators." In Electric Power Transformer Engineering, 8–1. CRC Press, 2017. http://dx.doi.org/10.1201/b12110-8.
Full text"Constant-Voltage Transformers." In Electric Power Transformer Engineering, 203–26. CRC Press, 2007. http://dx.doi.org/10.1201/9781420008715-13.
Full textMaitra, Arindam, Anish Gaikwad, Arshad Mansoor, Douglas Dorr, and Ralph Ferraro. "Constant-Voltage Transformers." In Electric Power Transformer Engineering, 9–1. CRC Press, 2017. http://dx.doi.org/10.1201/b12110-9.
Full text"- Constant-Voltage Transformers." In The Electric Power Engineering Handbook - Five Volume Set, 780–803. CRC Press, 2018. http://dx.doi.org/10.1201/9781315222363-42.
Full text"- Step-Voltage Regulators." In The Electric Power Engineering Handbook - Five Volume Set, 754–79. CRC Press, 2018. http://dx.doi.org/10.1201/9781315222363-41.
Full textYatchev, Ivan, and Radoslav Miltchev. "CAD System-Boundary Integral Equation Method for 3D Electric Field Analysis of Voltage Transformers." In Transformers, 381–97. CRC Press, 2017. http://dx.doi.org/10.1201/b12275-16.
Full text"Conversion of Electrical Energy in the Processes of Its Generation and Transmission." In Technologies for Electrical Power Conversion, Efficiency, and Distribution, 208–30. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-61520-647-6.ch008.
Full textPierrus, J. "Ohm’s law and electric circuits." In Solved Problems in Classical Electromagnetism. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198821915.003.0006.
Full textVinogradov, Alexander, Vadim Bolshev, Alina Vinogradova, Maxim Borodin, Alexey Bukreev, and Igor Golikov. "Mobile Measuring Complex for Conducting an Electric Network Survey." In Advances in Environmental Engineering and Green Technologies, 243–67. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-9420-8.ch010.
Full textConference papers on the topic "Electric transformers. Voltage regulators"
Lima, F. V., S. F. Pinto, and J. F. Silva. "Power electronics voltage regulators for distribution transformers." In 2013 IV International Conference on Power Engineering, Energy and Electrical Drives (POWERENG). IEEE, 2013. http://dx.doi.org/10.1109/powereng.2013.6635812.
Full textPrasad, Hanuman, Vipin Kumar Singh, and Tanmoy Maity. "Transformer less voltage regulator." In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE). IEEE, 2014. http://dx.doi.org/10.1109/icgccee.2014.6922384.
Full textSidorov, Andrey V., and Gennady S. Zinoviev. "Power electronic transformer based on AC voltage regulator." In 2015 16th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). IEEE, 2015. http://dx.doi.org/10.1109/edm.2015.7184588.
Full textUdovichenko, Aleksey V. "AC voltage regulators with high frequency transformer review." In 2016 17th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). IEEE, 2016. http://dx.doi.org/10.1109/edm.2016.7538803.
Full textMandache, Lucian, and Kamal Al-Haddad. "High Precision Modeling of Saturable Transformers used as Voltage Regulators." In 2006 IEEE International Symposium on Industrial Electronics. IEEE, 2006. http://dx.doi.org/10.1109/isie.2006.296038.
Full textWu, Xuan, Vinod Simha, D. J. Meisner, and Ronald J. Wellman. "Three Single-Phase Voltage Regulators Neutral Grounding Design and Analysis." In 2017 IEEE Rural Electric Power Conference (REPC). IEEE, 2017. http://dx.doi.org/10.1109/repc.2017.24.
Full textHinkel, P., M. Ostermann, D. Raoofsheibani, and W. H. Wellssow. "Modelling of automatic voltage regulators of transformers and HVDC-droop-control in MATPOWER." In 2017 IEEE Manchester PowerTech. IEEE, 2017. http://dx.doi.org/10.1109/ptc.2017.7980803.
Full textSun, Hexu, Xiaoguang Liu, Yan Dong, and Yi Zheng. "Design of circular current in the green voltage regulator based on transformer coupling." In 2009 International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2009. http://dx.doi.org/10.1109/icems.2009.5382893.
Full textHouari, M., I. Kocar, F. Therrien, and J. S. Lacroix. "Treatment of transformers and voltage regulators in branch current state estimation for distribution networks." In 2013 IEEE Power & Energy Society General Meeting. IEEE, 2013. http://dx.doi.org/10.1109/pesmg.2013.6673021.
Full textShoureshi, Rahmat A., and Virdi Permana. "Optical sensor for monitoring of high voltage electric transformers." In Optics & Photonics 2005, edited by Khan M. Iftekharuddin and Abdul A. S. Awwal. SPIE, 2005. http://dx.doi.org/10.1117/12.624106.
Full text