Academic literature on the topic 'Electric vehicle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electric vehicle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electric vehicle"
Ahirrao, Abhishek, Shantanu Metkar, Abhishek Avhad, Dr Swapnil Awate, and Prof Vishal Shinde. "Hybrid Electric AWD Vehicle Kit." International Journal for Research in Applied Science and Engineering Technology 10, no. 11 (November 30, 2022): 1566–78. http://dx.doi.org/10.22214/ijraset.2022.47667.
Full textVasiljević, S., B. Aleksandrović, J. Glišović, and M. Maslać. "Regenerative braking on electric vehicles: working principles and benefits of application." IOP Conference Series: Materials Science and Engineering 1271, no. 1 (December 1, 2022): 012025. http://dx.doi.org/10.1088/1757-899x/1271/1/012025.
Full textAn, Youngkuk, Byeonggyu Yang, Jinil Park, Jonghwa Lee, and Kyoungseok Park. "Analysis of Energy Flow in a Mid-Sized Electric Passenger Vehicle in Urban Driving Conditions." World Electric Vehicle Journal 14, no. 8 (August 14, 2023): 218. http://dx.doi.org/10.3390/wevj14080218.
Full textWang, Cheng, Tongtong Ji, Feng Mao, Zhenpo Wang, and Zhiheng Li. "Prognostics and Health Management System for Electric Vehicles with a Hierarchy Fusion Framework: Concepts, Architectures, and Methods." Advances in Civil Engineering 2021 (January 15, 2021): 1–11. http://dx.doi.org/10.1155/2021/6685900.
Full textV, James Prasadh. "People Thinking General Facts About Electric Vehicles In India 2022." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (May 31, 2022): 3937–46. http://dx.doi.org/10.22214/ijraset.2022.43280.
Full textHu, Chunxuan, Tianran Li, and Chao Yuan. "Research on ordered charge and discharge of cluster electric vehicle based on index selection." MATEC Web of Conferences 272 (2019): 01023. http://dx.doi.org/10.1051/matecconf/201927201023.
Full textGhaedi, Amir, Mehrdad Mahmoudian, and Reza Sedaghati. "The Impact of the Speed and Temperature Variation on the Electric Vehicles Reliability." International Transactions on Electrical Energy Systems 2022 (July 25, 2022): 1–14. http://dx.doi.org/10.1155/2022/4876218.
Full textTripathi, P. M. "Electric Vehicle and its Types." International Journal for Research in Applied Science and Engineering Technology 9, no. VII (July 31, 2021): 3553–55. http://dx.doi.org/10.22214/ijraset.2021.37133.
Full textShroff, Surbhi R. "Review on Electric Vehicle." International Journal for Research in Applied Science and Engineering Technology 10, no. 1 (January 31, 2022): 1667–70. http://dx.doi.org/10.22214/ijraset.2022.40095.
Full textKorde, Bhavesh. "RETROFITTED HYBRID ELECTRIC BIKE." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 05 (May 9, 2024): 1–5. http://dx.doi.org/10.55041/ijsrem33136.
Full textDissertations / Theses on the topic "Electric vehicle"
Denison, Camilla M. (Camilla Marie). "Electric shock risks in an electric vehicle." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/12802.
Full textIncludes bibliographical references (p. 169-172) and index.
by Camilla M. Denison.
M.S.
Sundström, Christofer. "Model Based Vehicle Level Diagnosis for Hybrid Electric Vehicles." Doctoral thesis, Linköpings universitet, Fordonssystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105487.
Full textForster, I. "The hybrid electric vehicle." Thesis, Durham University, 1985. http://etheses.dur.ac.uk/9531/.
Full textKeshri, Ritesh Kumar. "Electric Vehicle Propulsion System." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423806.
Full textI veicoli elettrici sono considerati uno dei pilastri tra le soluzioni ecosostenibili per superare il problema dell’inquinamento globale dovuto ai gas serra. Questo lavoro di tesi tratta del miglioramento delle prestazioni complessive di un sistema di propulsione di un veicolo elettrico mediante l’aumento dell’autonomia e della caratteristica coppia-velocità. Il sistema di propulsione di un veicolo elettrico consiste in un sistema di alimentazione e di un sistema di trazione, coordinati da un sistema di monitoraggio e controllo. Lo studio analitico e l’implementazione della soluzione proposta per il sistema di propulsione sono stati svolti con riferimento ad un motore brushless a magneti permanenti con fem trapezoidale (PM BLDC), utilizzato comunemente in veicoli elettrici leggeri come gli scooter e le mini-car. Il sistema di propulsione è costituito dal motore PM BLDC e dall’invertitore di tensione, mentre il sistema di alimentazione è formato da sorgenti energia elettrica come le batterie, le celle a combustibile o i pannelli fotovoltaici. Le sorgenti di energia elettrica disponibili sul mercato consentono di raggiungere elevati valori di corrente ma con bassi valori di tensione. Al fine di ottenere i valori di tensioni richiesti dal bus in continua, esse sono collegate in serie tra loro o sono connesse mediante convertitori innalzatori di tensione. Ciò può avvenire o attraverso un tradizionale convertitore dc/dc innalzatore con in cascata un invertitore di tensione (DBI) o attraverso un invertitore di tipo Z-source (ZSI). La valutazione di convenienza delle due modalità di alimentazione è basata sul fattore di utilizzazione e sulle sollecitazioni in termini di corrente e tensione dei transistor di potenza. Oltre ai fattori menzionati in precedenza, sono stati dimensionati gli elementi passivi in funzione della quota parte di potenza fornita dalla cella a combustibile. In relazione ai parametri definiti, la migliore soluzione risulta essere l’alimentazione con DBI, mentre quella con ZSI appare conveniente quando la maggior parte della potenza assorbita dal carico sia fornita dalle batterie. Al fine di migliorare le prestazioni di coppia, il ripple di coppia dovuto alla non ideale commutazione del convertitore ad onda quadra (SqPC) è stato studiato analiticamente, stabilendo la correlazione tra le correnti durante la fase di commutazione e la coppia del motore. Il comportamento di coppia a basse ed ad alte velocità è stato esaminato in dettaglio utilizzando specifiche grandezze del motore. I risultati analitici sono stati utilizzati per spiegare la caduta della coppia sviluppata dal motore ad alte velocità; essi sono stati verificati sperimentalmente su un azionamento di propulsione disponibile in laboratorio. La non costanza della caratteristica coppia-velocità limita l’uso del motore nei pressi della velocità nominale. Per superare questo limite è stata altresi utilizzata un’alimentazione con corrente sinusoidale (SPC). Essa permette di fornire al motore una coppia costante. E’ stata quindi eseguita un’analisi dettagliata al fine di vedere quale sia il metodo di alimentazione più conveniente tra SqPC e SPC. È stata altresì descritta la strategia d’implementazione dell’alimentazione SPC, e i risultati analitici sono stati verificati sperimentalmente. E’ stato eseguito lo studio degli azionamenti con motori PM BLDC con l’approccio dei fasori spaziali. Mentre questo approccio è abbastanza comune nel caso di azionamenti con motori con forza contro-elettromotrice e correnti di sinusoidali, esso non è trattato in letteratura per gli azionamenti con motori PM BLDC, in quanto la forza contro-elettromotrice è trapezoidale e il profilo delle correnti di fase è un onda quadra. Il comportamento del motore PM BLDC è stato rivisitato sul piano stazionario e la commutazione della corrente tra le fasi è stata descritta con l’ausilio dei vettori delle grandezze di fase. Tutti i risultati ottenuti nel piano a-b-c sono stati verificati nel piano stazionario, mostrando la semplicità e le potenzialità dell’approccio vettoriale. Al fine di estendere l’autonomia del veicolo sono stati utilizzati dei pannelli fotovoltaici. Il Sistema Geografico di Informazioni Fotovoltaico sviluppato dal Joint Research Center Europe è stato utilizzato per stimare il valore d’irraggiamento solare disponibile a Padova. È stata stimata la potenza generata da un pannello fotovoltaico di superficie 0.487 m2, formato da 20 celle multi-cristalline, e in relazione ad essa, è stato progettato il convertitore dc-dc elevatore per interfacciare il pannello fotovoltaico al bus in continua di una mini-car disponibile in laboratorio. Un appropriato controllo è stato implementato in un processore DSP al fine di inseguire il punto di massima potenza. L’intero sistema è stato provato all’esterno del laboratorio, facendo le misure necessarie per le verifiche. Un modello analitico delle perdite del convertitore dc-dc elevatore è stato sviluppato per descrivere la variazione di guadagno, rendimento e perdite del convertitore al variare dell’irraggiamento solare. Il lavoro di tesi è stato sviluppato presso il Laboratorio di “Sistemi elettrici per l’automazione e la veicolistica” diretto dal Prof. Giuseppe Buja. Il laboratorio afferisce al Dipartimento di Ingegneria Industriale dell’Università di Padova
Li, Mengyu. "GIS-BASED MODELING OF ELECTRIC VEHICLES AND THE AUSTRALIAN ELECTRICTY GRID." Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21880.
Full textDeshpande, Anup S. "Computer Joystick Control and Vehicle Tracking System in Electric Vehicles." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1282569869.
Full textHarvey, Daniel R. "Willans Line Modeling for Powertrain Analysis and Energy Consumption of Electric Vehicles." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104087.
Full textMaster of Science
Developing robust and accurate methods for analyzing electric vehicle energy consumption and powertrain efficiency is of great interest. For the purposes of this paper, powertrain refers to a motor / inverter pair which is coupled to a simple gear reduction for torque multiplication. Many vehicles are designed with motors of varying power and torque capabilities which can present challenges when attempting to effectively compare electric vehicles from different manufacturers. The proposed modeling method presented in this work utilizes public test data to derive detailed vehicle and powertrain information. Vehicle energy consumption is also modeled and compared to net EPA test data. Eight electric vehicles are modeled with each vehicle representing a specific segment of the current electric vehicle market. A bi-directional Willans line is applied to model the propel and brake phases of each electric vehicle over the US certification drive cycles. The bi-directional approach effectively isolates the vehicle powertrain from non-intrinsic losses. From the derived powertrain parameters and modeled energy consumption, the proposed method is deemed accurate and highly useful for translating public test data to detailed vehicle information. Lastly, a sensitivity analysis is presented with the proposed method deemed reasonably resilient to changes in input parameters. The modeling method is most sensitive to changes of powertrain marginal efficiency and vehicle accessory load but constraining these inputs to reasonable ranges for electric vehicles proves sufficient.
Larsson, Martin. "Electric Motors for Vehicle Propulsion." Thesis, Linköpings universitet, Fordonssystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-103907.
Full textCohn, Russell S. (Russell Sanford). "Electric vehicle life cycle analysis." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/36472.
Full textKuppusamy, Saravanan. "Essays on Electric Vehicle Adoption." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1413820129.
Full textBooks on the topic "Electric vehicle"
Engineers, Society of Automotive, and SAE International Congress & Exposition (1990 : Detroit, Mich.), eds. Electric vehicle technology. Warrendale, PA: Society of Automotive Engineers, 1990.
Find full textF, Buydos John, and Library of Congress. Science and Technology Division. Reference Section, eds. Electric vehicles. Washington, D.C. (10 First St., S.E., Washington 20540): Science Reference Section, Science and Technology Division, Library of Congress, 1992.
Find full textLarminie, James, and John Lowry. Electric Vehicle Technology Explained. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118361146.
Full textBeeton, David, and Gereon Meyer, eds. Electric Vehicle Business Models. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12244-1.
Full textBirmingham), Autotech 1991 (1991. Vehicle electric power supply. London: Institution of Mechanical Engineers, 1991.
Find full textEngineers, Society of Automotive, and SAE Powertrain & Fluid Systems Conference & Exhibition (2004 : Tampa, Fla.), eds. Hybrid electric vehicle technology. Warrendale, PA: Society of Automotive Engineers, 2004.
Find full textTerpstra, Philip. Electric vehicle structures & components. Tucson, Ariz., U.S.A: Spirit Publications, 1992.
Find full textYang, Jan Y., Yunyi Gu, and Zi Ling Tan. Chinese Electric Vehicle Trailblazers. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25145-0.
Full textEngineers, Society of Automotive, and Passenger Car Meeting and Exposition (1991 : Nashville, Tenn.), eds. Electric vehicle R & D. Warrendale, PA: Society of Automotive Engineers, 1991.
Find full textBook chapters on the topic "Electric vehicle"
Yang, Shichun, Xinhua Liu, Shen Li, and Cheng Zhang. "Electric Vehicle." In Advanced Battery Management System for Electric Vehicles, 3–13. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3490-2_1.
Full textNg, Tian Seng. "Electric Vehicle." In Robotic Vehicles: Systems and Technology, 95–106. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6687-9_13.
Full textMishra, Sahil, Sanjaya Kumar Panda, and Bhabani Kumari Choudhury. "Electric Vehicle." In Cognitive Computing Using Green Technologies, 253–58. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2021. | Series: Green energy and technology : Concepts and applications: CRC Press, 2021. http://dx.doi.org/10.1201/9781003121619-15-18.
Full textKhokhar, Bhuvnesh, K. P. Singh Parmar, Tripta Thakur, and D. P. Kothari. "Electric Vehicle." In Load Frequency Control of Microgrids, 50–69. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003477136-4.
Full textGuzzella, Lino, and Antonio Sciarretta. "Electric and Hybrid-Electric Propulsion Systems." In Vehicle Propulsion Systems, 67–162. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35913-2_4.
Full textKriescher, Michael, Sebastian Scheibe, and Tilo Maag. "Development of the Safe Light Regional Vehicle (SLRV): A Lightweight Vehicle Concept with a Fuel Cell Drivetrain." In Small Electric Vehicles, 179–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65843-4_14.
Full textDenton, Tom. "Electric vehicle technology." In Electric and Hybrid Vehicles, 63–98. 2nd edition. | Abingdon, Oxon ; New York, NY : Routledge, [2020]: Routledge, 2020. http://dx.doi.org/10.1201/9780429296109-4.
Full textHarvey, Hal, Robbie Orvis, and Jeffrey Rissman. "Electric Vehicle Policies." In Designing Climate Solutions, 154–72. Washington, DC: Island Press/Center for Resource Economics, 2018. http://dx.doi.org/10.5822/978-1-61091-957-9_9.
Full textSanguinetti, Angela, Kiernan Salmon, Mike Nicholas, Gil Tal, and Matt Favetti. "Electric Vehicle Explorer." In Lecture Notes in Computer Science, 104–18. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58637-3_8.
Full textDenton, Tom, and Hayley Pells. "Electric vehicle technology." In Electric and Hybrid Vehicles, 61–103. 3rd ed. London: Routledge, 2023. http://dx.doi.org/10.1201/9781003431732-4.
Full textConference papers on the topic "Electric vehicle"
Ulagammai, M. "Supercapacitor Based Electric Vehicle." In 2024 IEEE 4th International Conference on Sustainable Energy and Future Electric Transportation (SEFET), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/sefet61574.2024.10717911.
Full textMata Hernández, Gloria, and Abrahan Cruz Hernández. "ELECTRIC VEHICLE EDUCATIONAL PROTOTYPE." In 17th annual International Conference of Education, Research and Innovation, 10182–86. IATED, 2024. https://doi.org/10.21125/iceri.2024.2572.
Full textVigil, Cole Mackenzie, Omar Kaayal, and Alexander Szepelak. "Quantifying the Deceleration of Various Electric Vehicles Utilizing Regenerative Braking." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0623.
Full textKim, Shinhoon, Nasser L. Azad, and John McPhee. "High-Fidelity Modelling of an Electric Vehicle." In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9743.
Full textAmbuskar, Mandar Maruti. "Electric Vehicle Charging Interruptions." In Symposium on International Automotive Technology. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-26-0137.
Full textYoshizawa, Shoichi, Yoichiro Tanaka, Masahiro Ohyamaguchi, Kenji Maruyama, Satoshi Kitazaki, Kouichi Kurodo, Shinpei Sato, Tetsu Obata, Yuumi Hirokawa, and Masayasu Iwasaki. "Development of Display Information and Telematics Systems for a Reliable and Attractive Electric Vehicle." In 1st International Electric Vehicle Technology Conference. 10-2 Gobancho, Chiyoda-ku, Tokyo, Japan: Society of Automotive Engineers of Japan, 2011. http://dx.doi.org/10.4271/2011-39-7215.
Full textBrandl, Stephan, and Bernhard Graf. "SOUND ENGINEERING FOR ELECTRIC AND HYBRID VEHICLES: Procedures to create appropriate sound for electric and hybrid vehicles." In 1st International Electric Vehicle Technology Conference. 10-2 Gobancho, Chiyoda-ku, Tokyo, Japan: Society of Automotive Engineers of Japan, 2011. http://dx.doi.org/10.4271/2011-39-7228.
Full textVenkat, Vijaya Simhan, K. Nageswara Rao, and A. K. Parvathy. "Smart vehicle controller design for electric vehicles." In SMART GRID & ELECTRIC VEHICLE, 060001. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0208765.
Full textYuan, Yiqing, Guoqiang Wu, Xiangyan He, Yanda Song, and Xuewen Zhang. "Electric Vehicle Drivetrain Development in China." In ASME/ISCIE 2012 International Symposium on Flexible Automation. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/isfa2012-7212.
Full textIshida, Takaharu. "Feasible Study for the Availability of Electric Vehicles for the Stable Operation in Power System Network." In 1st International Electric Vehicle Technology Conference. 10-2 Gobancho, Chiyoda-ku, Tokyo, Japan: Society of Automotive Engineers of Japan, 2011. http://dx.doi.org/10.4271/2011-39-7248.
Full textReports on the topic "Electric vehicle"
Kontou, Eleftheria, Yen-Chu Wu, and Jiewen Luo. Electric Vehicle Infrastructure Plan in Illinois. Illinois Center for Transportation, December 2022. http://dx.doi.org/10.36501/0197-9191/22-023.
Full textCALSTART BURBANK CA. Electric and Hybrid Electric Vehicle Technologies. Fort Belvoir, VA: Defense Technical Information Center, June 1998. http://dx.doi.org/10.21236/ada350561.
Full textSheldon, Tamara, and Rubal Dua. Are Automakers Overcharging Consumers for Electric Vehicle Batteries? King Abdullah Petroleum Studies and Research Center, October 2024. http://dx.doi.org/10.30573/ks--2024-dp45.
Full textMathew, Jijo K., Deborah Horton, and Darcy M. Bullock. Utilization of Dedicated Electric Vehicle Plug-In Charging Stations in a College Campus Environment. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317436.
Full textCALSTART BURBANK CA. Electric and Hybrid Vehicle Technologies. Fort Belvoir, VA: Defense Technical Information Center, March 1998. http://dx.doi.org/10.21236/ada342766.
Full textSluder, S., R. Larsen, and M. Duoba. 1997 hybrid electric vehicle specifications. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/409875.
Full textZhou, Yan, Marianne Mintz, Thomas Stephens, Spencer Aeschliman, and Charles Macal. Electric Vehicle Adoption in Illinois. Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/1658594.
Full textAvis, William. Electric Vehicle Uptake and Health. Institute of Development Studies (IDS), June 2021. http://dx.doi.org/10.19088/k4d.2022.032.
Full textMaloney, Patrick, James O'Brien, Thomas Carroll, Richard Pratt, Lori Ross O'Neil, and Gregory Dindlebeck. Electric Vehicle Infrastructure Consequence Assessment. Office of Scientific and Technical Information (OSTI), February 2023. http://dx.doi.org/10.2172/1989051.
Full textPowell, Bonnie, and Caley Johnson. Impact of Electric Vehicle Charging Station Reliability, Resilience, and Location on Electric Vehicle Adoption. Office of Scientific and Technical Information (OSTI), August 2024. http://dx.doi.org/10.2172/2432350.
Full text