Academic literature on the topic 'Electric vehicle charging station'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electric vehicle charging station.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electric vehicle charging station"
El-fedany, Ibrahim, Driss Kiouach, and Rachid Alaoui. "System architecture to select the charging station by optimizing the travel time considering the destination of electric vehicle drivers in smart cities." Bulletin of Electrical Engineering and Informatics 9, no. 1 (February 1, 2020): 273–83. http://dx.doi.org/10.11591/eei.v9i1.1564.
Full textYe, Bo, Zhang Zhou He, Guo Meng Huang, Xue Song He, and Hui Quan Li. "The Study and Design of Electric System for Photovoltaic Generation Mix Charging Station." Applied Mechanics and Materials 291-294 (February 2013): 2362–65. http://dx.doi.org/10.4028/www.scientific.net/amm.291-294.2362.
Full textKhobragade, Priya A. "Multiport Converter based EV Charging Station with PV and Battery." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (June 14, 2021): 2518–21. http://dx.doi.org/10.22214/ijraset.2021.34679.
Full textHuang, Yongyi, Atsushi Yona, Hiroshi Takahashi, Ashraf Mohamed Hemeida, Paras Mandal, Alexey Mikhaylov, Tomonobu Senjyu, and Mohammed Elsayed Lotfy. "Energy Management System Optimization of Drug Store Electric Vehicles Charging Station Operation." Sustainability 13, no. 11 (May 30, 2021): 6163. http://dx.doi.org/10.3390/su13116163.
Full textTan, Xian Qiu, Sheng Chun Yang, Yan Ping Fang, and Dong Xue. "Discussion on Operation Modes to the Electric Vehicle Charging Station." Advanced Materials Research 875-877 (February 2014): 1827–30. http://dx.doi.org/10.4028/www.scientific.net/amr.875-877.1827.
Full textZhao, Shu Qiang, and Zhi Wie Li. "The Optimization Model of Planning Electric Vehicle Charging Station." Applied Mechanics and Materials 672-674 (October 2014): 1183–88. http://dx.doi.org/10.4028/www.scientific.net/amm.672-674.1183.
Full textDiaz-Londono, Cesar, Luigi Colangelo, Fredy Ruiz, Diego Patino, Carlo Novara, and Gianfranco Chicco. "Optimal Strategy to Exploit the Flexibility of an Electric Vehicle Charging Station." Energies 12, no. 20 (October 10, 2019): 3834. http://dx.doi.org/10.3390/en12203834.
Full textB C, Sagar. "Solar Powered Electric Vehicle Charging Station." International Journal for Research in Applied Science and Engineering Technology 9, no. VIII (August 15, 2021): 937–41. http://dx.doi.org/10.22214/ijraset.2021.37016.
Full textLi, Zong Feng, Chun Lin Guo, Jun Chen, Zhe Ci Tang, Wen Chen, Ya Ling Wang, Xiang Zhen Li, and Qing Hai Ou. "A Two-Step Method of Optimal Planning for Electric Vehicle Charging Stations Location." Advanced Materials Research 953-954 (June 2014): 1338–41. http://dx.doi.org/10.4028/www.scientific.net/amr.953-954.1338.
Full textWang, Zhen Po, Peng Liu, Hai Bin Han, Chun Lu, and Tao Xin. "A Distribution Model of Electric Vehicle Charging Station." Applied Mechanics and Materials 44-47 (December 2010): 1543–48. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.1543.
Full textDissertations / Theses on the topic "Electric vehicle charging station"
Algvere, Caroline. "Designing Electric Vehicle Charging Station Information." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415168.
Full textEltoumi, Fouad. "Charging station for electric vehicle using hybrid sources." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCA009.
Full textHigher penetration of electric vehicles (EV) and plug-in hybrid electric vehicles requires efficient design of charging stations to supply appropriate charging rates. This would trigger stress on conventional grid, thus increasing the cost of charging. Therefore, in this scenario the use of on-site renewable sources such as photovoltaic (PV) energy alongside to the conventional grid can increase the performance of charging station. In this thesis, a PV source is used in conjunction with grid to supplement EV load. However, the PV is known for its intermittent nature that is highly dependent on geographical and weather conditions. So, to compensate the intermittency of PV, a battery storage system (BSS) is combined with the PV in a grid-tied system, providing a stable operation of hybrid PV based charging station.Generally, hybrid sources based charging station should be cost effective, efficient, and reliable to supplement the variable needs of EVs load in different scenarios. In this thesis, efficient hierarchical energy management strategy is proposed and applied to maximize on-site PV energy, to meet the variable load of EVs using quick response of BSS and putting less stress on grid. This strategy overall improves the performance and is reliable and cost-effective.An efficient bidirectional power conversion stage is introduced for BSS in the form of interleaved buck-boost converter to ensure the safe operation of BSS and reduce the losses during conversion stage. This topology has characteristics to improve the current ripples and therefore, increase the power quality drastically. Similarly, to extract the maximum power from PV system under intermittent weather conditions, MPPT is used alongside with interleaved boost converter to ensure the continuity of power from PV source. Similarly, for vehicles charger stage, to meet the dynamic power demands of EVs; while, keeping the balance between available generation amounts, interleave converter is proposed combined to sub-management strategy. Particularly, this conversion stage and management addresses the low utilization of grid sources for charging purpose when, peak load is present at grid side. This charging behaviour greatly decreases the stress on grid especially at peak hours and therefore, improves the performance of system in overall.To operate whole system under desirable conditions, an online energy management strategy is proposed. This real-time strategy works in hierarchical manner, initializing from maximized utilization of PV source, then using BSS to supplement power and utilizing grid during intermittent conditions or when there is low amount of PV. The management strategy ensure reliable operation of system, while maximizing the PV utilization, meeting the EVs demand and maximizing the life the BSS.In this thesis, a hybrid charging system based on PV, BSS and conventional grid is proposed to support the needs of EVs load. Efficient energy conversion stage has been proposed using interleave buck-boost converters to improve the quality of power and at the end, an online management strategy is developed to maximize the renewable energy utilization, inserting lesser stress on grid and improving the utilization of BSS to improve its life
Du, Yunke. "PEV Charging Demand Estimation and Selection of Level 3 Charging Station." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1367243693.
Full textAtterby, Alfred, Jakub Bluj, and Elias Sjögren. "Potential for electric vehicle smart charging station expansion at Fyrisskolan." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-352636.
Full textWu, Fei. "Electric Vehicle Charging Network Design and Control Strategies." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1479900508609434.
Full textÖsterberg, Viktor. "Electric Vehicle Charging Station Markets : An analysis of the competitive situation." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2018.
Full textIdag utgör elfordon endast en liten nischmarknad i transportmarknaden, men denna förväntas växa snabbt under de närmaste åren. För att kunna hantera marknadsetableringen av elfordon måste elfordonsladdningsinfrastrukturen byggas ut, vilket leder till en ökad efterfrågan på elfordonsladdningsstationer. Elfordonsladdningsmarknaden förespås således bli allt mer intressant för företag. Detta examensarbete genomförs på grund av detta växande intresse, då studiens syfte är att undersöka elfordonsladdstationsmarknaden och dess konkurrenssituation. Metoden som används i denna studie inbegriper en kort marknadsanalys och en konkurrensanalys. Marknadsanalysen innehåller identifiering av elfordonsladdningsmarknaderna, vad som driver och hindrar marknaderna, och en bedömning av hur framtiden ser ut för marknaderna. I konkurrensanalysen ingår identifiering, klassificering och analys av de olika konkurrenterna. De tio mest konkurrenskraftiga konkurrenterna analyseras med hjälp av dokumentinnehållsanalys, syftet med analysen är att förstå konkurrenternas målgrupper, hur de gör affärer och hur deras marknadsföringsmaterial är strukturerad. De tre mest lovande elfordonsladdningsmarknaderna, både nu och i framtiden, är marknaderna i Asien och Stillahavsområdet, Europa och Nordamerika. De flesta av de analyserade konkurrenterna är verksamma inom dessa tre marknader. Den regionala utvecklingen, och vad som driver och begränsar marknaderna har identifierats för de tre mest lovande marknaderna. Eftersom dessa marknader är relativt oexploaterade i samband med att de förväntas växa med väldigt hög takt det kommande decenniet parallellt med massanvändningen av elfordon är möjligheterna många för de företag som inriktar sig mot elbilsladdning.
Greene, Briun. "How to Develop the Electric Vehicle Charging Station Infrastructure in China." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437409084.
Full textHögberg, Tomas. "Self Service Customer Support of Electric Vehicle Charging Stations." Thesis, KTH, Kraft- och värmeteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277818.
Full textSyftet med detta examensarbete är att utveckla en metodologi för hur Mavenoids teknologi kan användas till att förbättra kundsupporten för DEFAs elbilsladdare. Mavenoid är ett företag som hjälper andra företag att automatisera kundsupport, särskilt felsökning. Detta görs med Mavenoidmodeller, interaktiva självhjälpsverktyg som guidar slutanvändare utan teknisk kunskap genom felsökningsprocessen. Mavenoidmodeller ger värde både genom att slutanvändaren löser problemet på egen hand genom att använda modellen (deflection) och genom att samla relevant information om problemet innan ärendet eskaleras till teknisk support (triage). Den huvudsakliga metoden för att utveckla metodologin var att lära genom att göra, faktiskt implementera Mavenoidmodeller och göra de tillgängliga för slutanvändare på DEFA: s hemsida. Detta kompletterades med en litteraturöversikt, intervjuer och dataanalys av hur modellerna användes. Den föreslagna metodologin är att iterativt följa stegen besluta vilka modeller som ska byggas, prioritera inom dessa modeller, bygga modellerna, analysera data från dem och kontinuerligt förbättra modellerna. För att bestämma modeller, utvärdera DEFAs supportsituation noggrant för att bestämma var Mavenoid-modellerna skulle ha störst inverkan. Tvinga dig själv att göra kvantitativa antaganden för att uppskatta en återbetalningstid för varje möjlig modell. För varje modell ska du noggrant prioritera vad du ska inkludera och var fokus ska vara genom att använda uppskattningar av frekvens, värde och tid att modellera. Bygg modellerna för att maximera deflection och triage och minimera övergivna sessioner. Samla och analysera data från modellerna och använd denna information för att förbättra modellerna. För att prioritera mellan möjliga förbättringar, tvinga dig själv att göra kvantitativa antaganden om värde och tid att modellera och rangordna förbättringar efter återbetalningstid. Begränsa de förbättringar du gör antingen utifrån tillgänglig tid eller önskad återbetalningstid. Den potentiella affärsmöjligheten mellan Mavenoid och dess kunder är mer attraktiv ju fler supportärenden kunden har och ju större andel slutanvändare som använder Mavenoid. Affärsmöjligheten varierar kraftigt med antaganden som är mycket svåra att uppskatta i början av ett projekt att implementera Mavenoidmodeller. Detta indikerar att Mavenoidmodeller bör implementeras steg för steg och antaganden uppdateras när mer data finns tillgängligt. Implementering av Mavenoid-modeller kan vara både positivt och negativt sett till hållbar utveckling. De kan uppmuntra människor att reparera produkter istället för att byta ut dem, skala upp förnybar energiteknologi snabbare och ta bort tråkiga och repetitiva uppgifter från teknisk support. Å andra sidan kanske de inte uppskattas av alla slutanvändare, kan leda till ökad elförbrukning och potentiell arbetslöshet för de som jobbar inom teknisk support. Eftersom examensarbetet handlar om ett relativt outforskat ämne är resultaten relativt subjektiva. Denna föreslagna metodologi användes och visade sig fungera för att implementera Mavenoidmodeller för DEFAs elbilsladdare men den bör ses som en möjlig metodologi, inte den bekräftat bästa metodologin.
de, Freige Makram. "Design and simulation of a fast-charging station for plug-in hybrid electric vehicle (PHEV) batteries." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103758.
Full textDepuis le développement de l'intérêt porté aux technologies propres appliquées au domaine de l'automobile et du transport, les véhicules hybrides et électriques rechargeables (VHER) sont reconnus comme le meilleur compromis qui diminuerait les émissions de gaz a effet de serre. Malgré ce progrès pour l'environnement, la plupart des usagers de véhicules conventionnels refusent de s'adapter à cette nouvelle technologie a cause du long temps requis (4 à 8 heures) pour recharger les batteries des VHERs si les chargeurs de Niveau I et II existants sont utilisés. Pour cette raison, les stations de recharge rapide de Niveau III sont largement considérées. La présente thèse propose une station qui emploi comme sources d'énergie le réseau électrique ainsi que deux sources de stockage d'énergie : une roue d'inertie et un supercondensateur. Les convertisseurs qui permettent l'interface de ces sources avec le chargeur sont également conçus et dimensionnés en énergie. Afin d'optimiser le temps requis pour recharger la batterie du VHER ainsi que le temps requis pour recharger les sources de stockage, un algorithme est proposé avec son application à la technologie de recharge rapide. Deux différents scenarios sont mis en oeuvre pour illustrer l'efficacité de cet algorithme.
Gogoana, Radu. "Assessing the viability of level III electric vehicle rapid-charging stations." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59912.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 33).
This is an analysis of the feasibility of electric vehicle rapid-charging stations at power levels above 300 kW. Electric vehicle rapid-charging (reaching above 80% state-of-charge in less than 15 minutes) has been demonstrated, but concerns have been raised about the high levels of electrical power required to recharge a high-capacity battery in a short period of time. This economic analysis is based on an existing project run by MIT's Electric Vehicle Team, of building a 200-mile range battery electric sedan capable of recharging in 10 minutes. The recharging process for this vehicle requires a power source capable of delivering 350 kW; while this is possible in controlled laboratory environments, this thesis explores the viability of rapid-charging stations on the grid-scale and their capability of servicing the same volume of vehicles as seen by today's gas stations. At this volume, building a rapid-charging station is not only viable, but has the potential to become a lucrative business opportunity.
by Radu Gogoana.
S.B.
Books on the topic "Electric vehicle charging station"
K, Kokula Krishna Hari, ed. A Multi-Function Conversion Technique for Electric Vehicle Charging Station. Chennai, India: Association of Scientists, Developers and Faculties, 2016.
Find full textRichard, Alice. Electric Vehicle Charging Stations at Airport Parking Facilities. Washington, D.C.: Transportation Research Board, 2014. http://dx.doi.org/10.17226/22390.
Full textKurani, Kenneth S. Consumer response to plug-in hybrid electric vehicles: Vehicle design priorities, driving and charging behavior, and energy impacts. Davis, California]: [California Energy Commission], 2012.
Find full textCommittee, New Jersey Legislature General Assembly Environment and Solid Waste. Committee meeting of Assembly Environment and Solid Waste Committee: Assembly bill nos. 409 and 2439 : discussion on the implementation of the phase II California Low Emission Vehicle program beginning in calendar year 2006. Trenton, N.J: Office of Legislative Services, Public Information Office, Hearing Unit, 2002.
Find full textZverovich, Vadim. Modern Applications of Graph Theory. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198856740.001.0001.
Full textIET code of practice on electric vehicle charging equipment installation. The Institution of Engineering and Technology, 2012.
Find full textS, Yau Timothy, Zaininger H. W, Bernard M. J, Heitner Kenneth, Singh M. K, Saricks C. L, Electric Power Research Institute, United States. Dept. of Energy, and United States. Dept. of Energy. Electric and Hybrid Propulsion Division, eds. Utility emissions associated with electric and hybrid vehicle (EHV) charging: Interim report. Washington, DC: U.S. Dept. of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, 1993.
Find full textMa, Zhongjing, and Suli Zou. Efficient Auction Games: Theories, Algorithms and Applications in Smart Grids & Electric Vehicle Charging. Springer, 2020.
Find full textBook chapters on the topic "Electric vehicle charging station"
Xu, Longlong, Wutao Lin, Xiaorong Wang, Zhenhui Xu, Wei Chen, and Tengjiao Wang. "ChargeMap: An Electric Vehicle Charging Station Planning System." In Web and Big Data, 337–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63564-4_31.
Full textAhmad, Aqueel, Yasser Rafat, Samir M. Shariff, and Rakan Chabaan. "Smart Microgrid-Integrated EV Wireless Charging Station." In Electric Vehicle Integration in a Smart Microgrid Environment, 267–78. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367423926-11.
Full textThukral, Manish Kumar. "Blockchain-Based Smart Contract Design for Crowdfunding of Electrical Vehicle Charging Station Setup." In Electric Vehicles, 187–98. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9251-5_11.
Full textLi, Kai, and Shuai Wang. "Electric Vehicle Charging Station Deployment for Minimizing Construction Cost." In Big Data Analytics and Knowledge Discovery, 471–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64283-3_35.
Full textZhang, Yu, Xiangtao Liu, Tianle Zhang, and Zhaoquan Gu. "Review of the Electric Vehicle Charging Station Location Problem." In Communications in Computer and Information Science, 435–45. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1304-6_35.
Full textOuertani, Mohamed Wajdi, Ghaith Manita, and Ouajdi Korbaa. "Improved Genetic Algorithm for Electric Vehicle Charging Station Placement." In Intelligent Decision Technologies, 37–57. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2765-1_4.
Full textGupta, Rudraksh S., Arjun Tyagi, V. V. Tyagi, Y. Anand, A. Sawhney, and S. Anand. "Renewable Energy-Driven Charging Station for Electric Vehicles." In Energy Systems and Nanotechnology, 57–78. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1256-5_5.
Full textLaverty, David, Kang Li, and Jing Deng. "Data Communications for Intelligent Electric Vehicle Charging Stations." In Communications in Computer and Information Science, 543–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45261-5_57.
Full textJordán, Jaume, Pasqual Martí, Javier Palanca, Vicente Julian, and Vicente Botti. "Interurban Electric Vehicle Charging Stations Through Genetic Algorithms." In Lecture Notes in Computer Science, 101–12. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86271-8_9.
Full textLi, Min, Wuhong Wang, Hongfei Mu, Xiaobei Jiang, Prakash Ranjitkar, and Tao Chen. "Demand Forecasting-Based Layout Planning of Electric Vehicle Charging Station Locations." In Green Intelligent Transportation Systems, 1009–21. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3551-7_81.
Full textConference papers on the topic "Electric vehicle charging station"
Lam, Albert Y. S., Yiu-Wing Leung, and Xiaowen Chu. "Electric vehicle charging station placement." In 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm). IEEE, 2013. http://dx.doi.org/10.1109/smartgridcomm.2013.6688009.
Full textTonape, Abhishek, and Suryakant H.Pawar. "Pulse Current Charging Station for Electric Vehicle Charging." In 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). IEEE, 2020. http://dx.doi.org/10.1109/ic-etite47903.2020.358.
Full textTanveer, Md Sohail, Sunil Gupta, Rahul Rai, Neeraj Kumar Jha, and Mohit Bansal. "Solar based electric vehicle charging station." In 2019 2nd International Conference on Power Energy, Environment and Intelligent Control (PEEIC). IEEE, 2019. http://dx.doi.org/10.1109/peeic47157.2019.8976673.
Full textGaniger, Manjush, Maneesh Pandey, Rahul Wagh, and Rakesh Govindasamy. "Gas Turbine Based Electric Vehicle Charging Station." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-60176.
Full textArancibia, Arnaldo, and Kai Strunz. "Modeling of an electric vehicle charging station for fast DC charging." In 2012 IEEE International Electric Vehicle Conference (IEVC). IEEE, 2012. http://dx.doi.org/10.1109/ievc.2012.6183232.
Full textLobato, Salatiel de C., Jonathan H. D. G. Pinto, Renan N. de M. Carneiro, Guilherme F. Avelar, Jose A. Valentim, and Andre A. Ferreira. "Development of an electric vehicle charging station." In 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE) [VII Brazilian Electrical Systems Symposium (SBSE)]. IEEE, 2018. http://dx.doi.org/10.1109/sbse.2018.8395582.
Full textLi, Jinlong, Yi Tang, and Li Zhou. "Electric Vehicle Charging Station Location Problem Research." In Fifth International Conference on Transportation Engineering. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479384.336.
Full textDong, Yingshuai. "Electric vehicle charging station quantity forecasting model." In MATERIALS SCIENCE, ENERGY TECHNOLOGY AND POWER ENGINEERING II (MEP2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5041162.
Full textSaadat, Shahriar, Samantha Maingot, and Sahba Bahizad. "Electric Vehicle Charging Station Security Enhancement Measures." In 2020 5th IEEE Workshop on the Electronic Grid (eGRID). IEEE, 2020. http://dx.doi.org/10.1109/egrid48559.2020.9330666.
Full textPandey, Vartika, and Prem Prakash. "Dynamic management of electric vehicle charging station." In 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies. IEEE, 2021. http://dx.doi.org/10.1109/icepe50861.2021.9404527.
Full textReports on the topic "Electric vehicle charging station"
Lapsa, Melissa Voss, Norman Durfee, L. Curt Maxey, and Randall M. Overbey. Solar-Assisted Electric Vehicle Charging Station Interim Report. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1025858.
Full textSmith, Margaret. Level 1 Electric Vehicle Charging Stations at the Workplace. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1416120.
Full textBrown, Abby, Stephen Lommele, Alexis Schayowitz, and Emily Klotz. Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Second Quarter 2020. Office of Scientific and Technical Information (OSTI), January 2021. http://dx.doi.org/10.2172/1763972.
Full textBrown, Abby, Stephen Lommele, Alexis Schayowitz, and Emily Klotz. Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: First Quarter 2020. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1660251.
Full textBrown, Abby, Stephen Lommele, Alexis Schayowitz, and Emily Klotz. Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Third Quarter 2020. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1783774.
Full textBrown, Abby, Stephen Lommele, Alexis Schayowitz, and Emily Klotz. Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Fourth Quarter 2020. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1798711.
Full textBrown, Abby, Alexis Schayowitz, and Emily Klotz. Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: First Quarter 2021. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1820581.
Full textSchey, Steve, and Jim Francfort. Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Naval Air Station Whidbey Island: Task 3. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1235203.
Full textDurfee, Norman, Rick Goeltz, Tim J. LaClair, Melissa Voss Lapsa, L. Curt Maxey, and Randall M. Overbey. Deployment of Solar Assisted and Non-Solar Electric Vehicle Charging Stations in the State of Tennessee, Final Report. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1159487.
Full textBent, Russell W., Stefan Solntsev, and Feng Pan. Building charging stations for electric vehicles When and where? Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1092467.
Full text