Academic literature on the topic 'Electric Vehicle Propulsion System'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electric Vehicle Propulsion System.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electric Vehicle Propulsion System"
Ma, Yiyuan, Wei Zhang, Xingyu Zhang, Xiaobin Zhang, Yuelong Ma, and Zhanpeng Guo. "Primary parameters design method for distributed electric propulsion unmanned aerial vehicle." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 39, no. 1 (February 2021): 27–36. http://dx.doi.org/10.1051/jnwpu/20213910027.
Full textAkhdan Fadhil, Muhammad, Romie Oktovianus Bura, Gita Amperiawan, and Sovian Aritonang. "TECHNOLOGY OF PROPULSION SYSTEM FOR UNMANNED COMBAT AERIAL VEHICLE (UCAV) – A REVIEW." International Journal of Education and Social Science Research 05, no. 03 (2022): 88–107. http://dx.doi.org/10.37500/ijessr.2022.5306.
Full textKatic, Vladimir, Boris Dumnic, Zoltan Corba, and Dragan Milicevic. "Electrification of the vehicle propulsion system: An overview." Facta universitatis - series: Electronics and Energetics 27, no. 2 (2014): 299–316. http://dx.doi.org/10.2298/fuee1402299k.
Full textCossalter, Vittore, Alberto Doria, Marco Ferrari, Enrico Giolo, Nicola Bianchi, Claudio Martignoni, and Fabio Bovi. "Design of a hybrid propulsion system for a three wheeled bicycle." COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 34, no. 1 (January 5, 2015): 189–209. http://dx.doi.org/10.1108/compel-11-2013-0372.
Full textKost, Gabriel, and Andrzej Nierychlok. "Virtual Driver of Hybrid Wheeled Vehicle." Solid State Phenomena 180 (November 2011): 39–45. http://dx.doi.org/10.4028/www.scientific.net/ssp.180.39.
Full textRizzo, Gianfranco, Shayesteh Naghinajad, Francesco Tiano, and Matteo Marino. "A Survey on Through-the-Road Hybrid Electric Vehicles." Electronics 9, no. 5 (May 25, 2020): 879. http://dx.doi.org/10.3390/electronics9050879.
Full textTarulescu, Radu, Stelian Tarulescu, Cristian Leahu, and Marius Olaru. "Photovoltaic system for E-Smart electric vehicle." IOP Conference Series: Materials Science and Engineering 1220, no. 1 (January 1, 2022): 012009. http://dx.doi.org/10.1088/1757-899x/1220/1/012009.
Full textJones, W. D., and A. R. Fletcher. "Electric Drives on the LV100 Gas Turbine Engine." Journal of Engineering for Gas Turbines and Power 116, no. 2 (April 1, 1994): 411–17. http://dx.doi.org/10.1115/1.2906836.
Full textWang, S., JT Economou, and A. Tsourdos. "Indirect engine sizing via distributed hybrid-electric unmanned aerial vehicle state-of-charge-based parametrisation criteria." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 14 (April 29, 2019): 5360–68. http://dx.doi.org/10.1177/0954410019843722.
Full textQuandt, C. O. "Manufacturing the Electric Vehicle: A Window of Technological Opportunity for Southern California." Environment and Planning A: Economy and Space 27, no. 6 (June 1995): 835–62. http://dx.doi.org/10.1068/a270835.
Full textDissertations / Theses on the topic "Electric Vehicle Propulsion System"
Keshri, Ritesh Kumar. "Electric Vehicle Propulsion System." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423806.
Full textI veicoli elettrici sono considerati uno dei pilastri tra le soluzioni ecosostenibili per superare il problema dell’inquinamento globale dovuto ai gas serra. Questo lavoro di tesi tratta del miglioramento delle prestazioni complessive di un sistema di propulsione di un veicolo elettrico mediante l’aumento dell’autonomia e della caratteristica coppia-velocità. Il sistema di propulsione di un veicolo elettrico consiste in un sistema di alimentazione e di un sistema di trazione, coordinati da un sistema di monitoraggio e controllo. Lo studio analitico e l’implementazione della soluzione proposta per il sistema di propulsione sono stati svolti con riferimento ad un motore brushless a magneti permanenti con fem trapezoidale (PM BLDC), utilizzato comunemente in veicoli elettrici leggeri come gli scooter e le mini-car. Il sistema di propulsione è costituito dal motore PM BLDC e dall’invertitore di tensione, mentre il sistema di alimentazione è formato da sorgenti energia elettrica come le batterie, le celle a combustibile o i pannelli fotovoltaici. Le sorgenti di energia elettrica disponibili sul mercato consentono di raggiungere elevati valori di corrente ma con bassi valori di tensione. Al fine di ottenere i valori di tensioni richiesti dal bus in continua, esse sono collegate in serie tra loro o sono connesse mediante convertitori innalzatori di tensione. Ciò può avvenire o attraverso un tradizionale convertitore dc/dc innalzatore con in cascata un invertitore di tensione (DBI) o attraverso un invertitore di tipo Z-source (ZSI). La valutazione di convenienza delle due modalità di alimentazione è basata sul fattore di utilizzazione e sulle sollecitazioni in termini di corrente e tensione dei transistor di potenza. Oltre ai fattori menzionati in precedenza, sono stati dimensionati gli elementi passivi in funzione della quota parte di potenza fornita dalla cella a combustibile. In relazione ai parametri definiti, la migliore soluzione risulta essere l’alimentazione con DBI, mentre quella con ZSI appare conveniente quando la maggior parte della potenza assorbita dal carico sia fornita dalle batterie. Al fine di migliorare le prestazioni di coppia, il ripple di coppia dovuto alla non ideale commutazione del convertitore ad onda quadra (SqPC) è stato studiato analiticamente, stabilendo la correlazione tra le correnti durante la fase di commutazione e la coppia del motore. Il comportamento di coppia a basse ed ad alte velocità è stato esaminato in dettaglio utilizzando specifiche grandezze del motore. I risultati analitici sono stati utilizzati per spiegare la caduta della coppia sviluppata dal motore ad alte velocità; essi sono stati verificati sperimentalmente su un azionamento di propulsione disponibile in laboratorio. La non costanza della caratteristica coppia-velocità limita l’uso del motore nei pressi della velocità nominale. Per superare questo limite è stata altresi utilizzata un’alimentazione con corrente sinusoidale (SPC). Essa permette di fornire al motore una coppia costante. E’ stata quindi eseguita un’analisi dettagliata al fine di vedere quale sia il metodo di alimentazione più conveniente tra SqPC e SPC. È stata altresì descritta la strategia d’implementazione dell’alimentazione SPC, e i risultati analitici sono stati verificati sperimentalmente. E’ stato eseguito lo studio degli azionamenti con motori PM BLDC con l’approccio dei fasori spaziali. Mentre questo approccio è abbastanza comune nel caso di azionamenti con motori con forza contro-elettromotrice e correnti di sinusoidali, esso non è trattato in letteratura per gli azionamenti con motori PM BLDC, in quanto la forza contro-elettromotrice è trapezoidale e il profilo delle correnti di fase è un onda quadra. Il comportamento del motore PM BLDC è stato rivisitato sul piano stazionario e la commutazione della corrente tra le fasi è stata descritta con l’ausilio dei vettori delle grandezze di fase. Tutti i risultati ottenuti nel piano a-b-c sono stati verificati nel piano stazionario, mostrando la semplicità e le potenzialità dell’approccio vettoriale. Al fine di estendere l’autonomia del veicolo sono stati utilizzati dei pannelli fotovoltaici. Il Sistema Geografico di Informazioni Fotovoltaico sviluppato dal Joint Research Center Europe è stato utilizzato per stimare il valore d’irraggiamento solare disponibile a Padova. È stata stimata la potenza generata da un pannello fotovoltaico di superficie 0.487 m2, formato da 20 celle multi-cristalline, e in relazione ad essa, è stato progettato il convertitore dc-dc elevatore per interfacciare il pannello fotovoltaico al bus in continua di una mini-car disponibile in laboratorio. Un appropriato controllo è stato implementato in un processore DSP al fine di inseguire il punto di massima potenza. L’intero sistema è stato provato all’esterno del laboratorio, facendo le misure necessarie per le verifiche. Un modello analitico delle perdite del convertitore dc-dc elevatore è stato sviluppato per descrivere la variazione di guadagno, rendimento e perdite del convertitore al variare dell’irraggiamento solare. Il lavoro di tesi è stato sviluppato presso il Laboratorio di “Sistemi elettrici per l’automazione e la veicolistica” diretto dal Prof. Giuseppe Buja. Il laboratorio afferisce al Dipartimento di Ingegneria Industriale dell’Università di Padova
Lundin, Johan. "Flywheel in an all-electric propulsion system." Licentiate thesis, Uppsala universitet, Elektricitetslära, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-222030.
Full textRen, Zhongling. "Optimization Methods for Hybrid Electric Vehicle Propulsion System." Thesis, KTH, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235932.
Full textHybridfordon är ett aktuellt ämne, på grund av den strikta regleringen gällande fordonsutsläpp. Den optimala designen av hybridfordon är nödvändig för att reducera kostnaden eller utsläppen. Motorsystemet hos ett elektriskt hybridfordon blir mer komplicerat än det hos ett konventionellt fordon, eftersom man måste ta hänsyn till försörjningen av elektrisk energi. Designprocessen involverar design av topologi, design av komponenter samt design av kontrollsystem. Idéen om att sammanfoga alla tre designfaser kallas systemnivådesign. På grund av komplexiteten är det tidsmässigt inte möjligt att evaluera samtliga möjliga designval. Därför behövs optimeringsalgoritmer för att snabba på processen. Olika typer av variabler berörs i de olika designfaserna och därför behövs olika algoritmer. I avhandlingen undersöks olika algoritmers robusthet för kontinuerliga och diskreta variabler samt deras prestanda mot en intern optimeringsplattform. Standardiserade testfall används för att validera algoritmerna vartefter algoritmerna görs mer effektiva och generella. Baserat på teoretiska och experimentella studier föreslås rekommendationer för val av algoritmer baserat på olika typer av variabler. Baserat på optimeringsplattformen introduceras flera olika optimeringskoordinationsarkitekturer för systemnivådesign, och samtidiga och samordnade koordinationsarkitekturer testas för ett specifikt industrifall i den andra delen av avhandlingen. Båda metoderna tycktes vara lovande enligt resultatet av testfallet, och de lyckades sänka konvergensperioden dramatiskt. Den använda fordonsmodellen var inte tillräckligt exakt för att bevisa vilken metod som är den överlägsna, men en mer exakt modell kan introduceras i framtiden för att underlätta en sådan slutsats.
Yourkowski, Joel. "Computer simulation of an unmanned aerial vehicle electric propulsion system." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA307294.
Full textDhand, Aditya. "Design of electric vehicle propulsion system incorporating flywheel energy storage." Thesis, City University London, 2015. http://openaccess.city.ac.uk/13699/.
Full textHarmon, Frederick G. "Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Full textBrezina, Aron Jon. "Measurement of Static and Dynamic Performance Characteristics of Electric Propulsion Systems." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1340066274.
Full textStevens, John Wesley. "A design of a low-cost propulsion system for an electric scooter." Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/17885.
Full textMercan, Aybüke. "Driveline Modelling for Full Electric Bus." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textGrudic, Elvedin. "Electric Propulsion System for the Shell Eco-marathon PureChoice Vehicle : Controlling the lights and alternative storage devices such as batteries and supercapacitors." Thesis, Norwegian University of Science and Technology, Department of Electrical Power Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9744.
Full textThis report is divided into six main chapters. It starts off with an introductory chapter explaining the different propulsion strategies that have been considered during the last semester, and the final propulsion system that has been decided upon. The final propulsion strategy has several demands when it comes to components that have to be implemented and what type of components they should be. The main purpose for me in this project was therefore to meet these demands. Main demands for me were to demonstrate different possibilities when it comes to controlling the lights in the PureChoice vehicle, and to make sure the vehicle had enough energy stored in alternative storage devices in order to have a fully functioning system when it comes to driving the vehicle and managing the safety system onboard. The report continues with five individual chapters explaining how these demands were solved and which components that have been considered and implemented in the final vehicle. All off the chapters start of with an introduction about the topic at hand. They then continue with an explanation about the different components used in the vehicle, and reasoning for why exactly these components were chosen. In order to determine how the components would function in the final propulsion system, laboratory tests were performed on all the involved parts, and these laboratory tests are described at the end of all the chapters. This report includes both theoretical calculations and practical solutions.
Books on the topic "Electric Vehicle Propulsion System"
Company, Automotive Research and Design. Hybrid and electric vehicle propulsion systems. 2nd ed. Sterling Heights, Mich: Automotive Research and Design Co., 2002.
Find full textAutomotive Research and Design Company. Hybrid and electric vehicle propulsion systems. 3rd ed. Sterling Heights, MI: Automotive Research and Design Co., 2005.
Find full textYourkowski, Joel. Computer simulation of an unmanned aerial vehicle electric propulsion system. Monterey, Calif: Naval Postgraduate School, 1996.
Find full textE, Garner Charles, Goodfellow Keith D, and Jet Propulsion Laboratory (U.S.), eds. Electric propulsion system technology: Annual report, 1990. Pasadena, Calif: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1991.
Find full textJet Propulsion Laboratory (U.S.), ed. Electric propulsion system technology: Annual report, 1991. Pasadena, Calif: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1992.
Find full textUnited States. National Aeronautics and Space Administration., ed. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Find full textMin-Huei, Kim, and Lewis Research Center, eds. Advanced propulsion power distribution system for next generation electric/hybrid vehicle: Phase I, preliminary system studies : final report. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1995.
Find full textBose, Bimal K. Advanced propulsion power distribution system for next generation electric/hybrid vehicle: Phase I, preliminary system studies : final report. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1995.
Find full textAntonio, Sciarretta, ed. Vehicle propulsion systems: Introduction to modeling and optimization. 2nd ed. Berlin: Springer, 2007.
Find full textDoherty, Michael P. NEP early flight program: System performance and development considerations. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Find full textBook chapters on the topic "Electric Vehicle Propulsion System"
Guzzella, Lino, and Antonio Sciarretta. "Electric and Hybrid-Electric Propulsion Systems." In Vehicle Propulsion Systems, 67–162. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35913-2_4.
Full textKulkarni, Ambarish, Ajay Kapoor, Mehran Ektesabi, and Howard Lovatt. "Electric Vehicle Propulsion System Design." In Sustainable Automotive Technologies 2012, 199–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24145-1_26.
Full textGuzzella, Lino, and Antonio Sciarretta. "Non-electric Hybrid Propulsion Systems." In Vehicle Propulsion Systems, 163–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35913-2_5.
Full textZheng, Caihui, Hang Yin, Haifeng Hong, and Changqing Liu. "Vehicle Propulsion System of New MBTA Orange Line Trains." In Lecture Notes in Electrical Engineering, 891–900. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2862-0_86.
Full textBancă, Gheorghe, Florian Ivan, Gheorghe Frățilă, and Valentin Nișulescu. "Modeling the Performances of a Vehicle Provided with a Hybrid Electric Diesel Propulsion System (HEVD)." In CONAT 2016 International Congress of Automotive and Transport Engineering, 415–26. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45447-4_46.
Full textPriyadarshi, Neeraj, Farooque Azam, Amarjeet Kumar Sharma, Pradeep Chhawchharia, and P. R. Thakura. "An Interleaved ZCS Supplied Switched Power Converter for Fuel Cell-Based Electric Vehicle Propulsion System." In Advances in Smart Grid Automation and Industry 4.0, 355–62. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7675-1_35.
Full textDantsevich, I. M., L. A. Umanskaya, and S. A. Osmukha. "Reverse Engineering of a Prototype Electromagnetic Hybrid Propulsion System for an Underwater Vehicle." In Lecture Notes in Electrical Engineering, 58–69. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20631-3_7.
Full textLi, Shiyao, Hao Qiao, Yushen Yan, and Xinguo Li. "Autonomous Rescue Orbit Strategy and Trajectory Reconstruction for Propulsion System Failure of Launch Vehicle." In Lecture Notes in Electrical Engineering, 1441–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8155-7_120.
Full textLee, Bohwa, Poomin Park, and Chuntaek Kim. "Power Managements of a Hybrid Electric Propulsion System Powered by Solar Cells, Fuel Cells, and Batteries for UAVs." In Handbook of Unmanned Aerial Vehicles, 495–524. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-90-481-9707-1_115.
Full textYang, Shichun, Xinhua Liu, Shen Li, and Cheng Zhang. "Electric Vehicle." In Advanced Battery Management System for Electric Vehicles, 3–13. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3490-2_1.
Full textConference papers on the topic "Electric Vehicle Propulsion System"
Akhtar, Md Junaid, R. K. Behera, and S. K. Parida. "Propulsion system design of electric vehicle." In 2015 6th International Conference on Power Electronics Systems and Applications (PESA) - Advancement in Electric Transportation - Automotive, Vessel & Aircraft. IEEE, 2015. http://dx.doi.org/10.1109/pesa.2015.7398900.
Full textWan, Rong, Guohai Liu, Duo Zhang, and Wensheng Gong. "A Fault-Tolerant Electronic Differential System of Electric Vehicles." In 2013 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2013. http://dx.doi.org/10.1109/vppc.2013.6671654.
Full textCorrea, Fernanda C., Jony J. Eckert, Ludmila C. A. Silva, Fabio M. Santiciolli, Eduardo S. Costa, and Franco Giuseppe Dedini. "Study of Different Electric Vehicle Propulsion System Configurations." In 2015 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2015. http://dx.doi.org/10.1109/vppc.2015.7353024.
Full textMomen, Faizul, Khwaja Rahman, Yochan Son, and Peter Savagian. "Electrical propulsion system design of Chevrolet Bolt battery electric vehicle." In 2016 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2016. http://dx.doi.org/10.1109/ecce.2016.7855076.
Full textPatten, John, Nathan Christensen, Gary Nola, and Steven Srivastava. "Electric vehicle battery — Wind storage system." In 2011 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2011. http://dx.doi.org/10.1109/vppc.2011.6043111.
Full textCorrea, Fernanda C., Jony J. Eckert, Fabio M. Santiciolli, Ludmila C. A. Silva, Eduardo S. Costa, and Franco Giuseppe Dedini. "Electric Vehicle Battery-Ultracapacitor Energy System Optimization." In 2017 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2017. http://dx.doi.org/10.1109/vppc.2017.8330866.
Full textTakahashi, Yoshihiko. "Control System of Series Hybrid Electric Vehicle with Plant Oil Electric Generator." In 2014 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2014. http://dx.doi.org/10.1109/vppc.2014.7007037.
Full textChen, X., X. Chen, and K. Li. "Robust control of electric power-assisted steering system." In 2005 IEEE Vehicle Power and Propulsion Conference. IEEE, 2005. http://dx.doi.org/10.1109/vppc.2005.1554539.
Full textYongchang Du, Jinwen Gao, Liangyao Yu, Jian Song, Feng Zhao, and Wenzhang Zhan. "HEV system based on electric variable transmission." In 2009 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2009. http://dx.doi.org/10.1109/vppc.2009.5289797.
Full textChu, Liang, Liang Yao, Jian Chen, Libo Chao, Jianhua Guo, Yongsheng Zhang, and Minghui Liu. "Integrative braking control system for electric vehicles." In 2011 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2011. http://dx.doi.org/10.1109/vppc.2011.6042995.
Full textReports on the topic "Electric Vehicle Propulsion System"
Jiang, Yuxiang. Unsettled Technology Areas in Electric Propulsion Systems. SAE International, May 2021. http://dx.doi.org/10.4271/epr2021012.
Full textBennion, K. Electric Drive Dynamic Thermal System Model for Advanced Vehicle Propulsion Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-09-360. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1260887.
Full textZhang, Yangjun. Unsettled Topics Concerning Flying Cars for Urban Air Mobility. SAE International, May 2021. http://dx.doi.org/10.4271/epr2021011.
Full textKramer, W. E., R. D. MacDowall, and A. F. Burke. Performance testing of the AC propulsion ELX electric vehicle. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/10192336.
Full textSaito, Yohei, Yoshio Kano, and Masato Abe. Steer-by-Wire System for Micro Electric Vehicle. Warrendale, PA: SAE International, October 2005. http://dx.doi.org/10.4271/2005-32-0004.
Full textRamamurthy, Shyam S., and Juan Carolos Balda. Final Report - Part 1: Aspects of Switched Reluctance Motor Drive Application for Electric Vehicle Propulsion. Fort Belvoir, VA: Defense Technical Information Center, May 2001. http://dx.doi.org/10.21236/ada398311.
Full textDeLuca, W., ed. Performance and life evaluation of nickel/iron battery technology for dual shaft electric propulsion vehicle. Office of Scientific and Technical Information (OSTI), May 1990. http://dx.doi.org/10.2172/6391297.
Full textNoble, Robert J., Rashied Amini, Patricia M. Beauchamp, Gary L. Bennett, John R. Brophy, Bonnie J. Buratti, Joan Ervin, et al. New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion. Office of Scientific and Technical Information (OSTI), May 2010. http://dx.doi.org/10.2172/979959.
Full textLamb, C., and E. Broglio. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report for 1984. Office of Scientific and Technical Information (OSTI), August 1985. http://dx.doi.org/10.2172/5277287.
Full textKalns, I. Advanced dual-shaft electric propulsion system technology development program: Annual report IV. Office of Scientific and Technical Information (OSTI), October 1988. http://dx.doi.org/10.2172/6164744.
Full text