Contents
Academic literature on the topic 'Electrical and Computer Engineering. Signal processing. Wavelets (Mathematics)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrical and Computer Engineering. Signal processing. Wavelets (Mathematics).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electrical and Computer Engineering. Signal processing. Wavelets (Mathematics)"
Panigrahy, Parth Sarathi, and Paramita Chattopadhyay. "Cascaded signal processing approach for motor fault diagnosis." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 37, no. 6 (November 5, 2018): 2122–37. http://dx.doi.org/10.1108/compel-11-2017-0476.
Full textChandran, Kalyana Sundaram, and T. Kiruba Angeline. "Identification of Disease Symptoms Using Taste Disorders in Electroencephalogram Signal." Journal of Computational and Theoretical Nanoscience 17, no. 5 (May 1, 2020): 2051–56. http://dx.doi.org/10.1166/jctn.2020.8848.
Full textKAHAEI, M. H. "Detection of Bearing Faults Using Haar Wavelets." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E89-A, no. 3 (March 1, 2006): 757–63. http://dx.doi.org/10.1093/ietfec/e89-a.3.757.
Full textKOLUMBAN, G., and T. KREBESZ. "UWB Radio: Digital Communication with Chaotic and Impulse Wavelets." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E90-A, no. 10 (October 1, 2007): 2248–49. http://dx.doi.org/10.1093/ietfec/e90-a.10.2248.
Full textZhang, Kun, Ling Shi, Yue Hu, Peng Chen, and Yonggang Xu. "Variable spectral segmentation empirical wavelet transform for noisy signal processing." Digital Signal Processing 117 (October 2021): 103151. http://dx.doi.org/10.1016/j.dsp.2021.103151.
Full textADACHI, Atsuyuki, Shogo MURAMATSU, and Hisakazu KIKUCHI. "Constraints of Second-Order Vanishing Moments on Lattice Structures for Non-separable Orthogonal Symmetric Wavelets." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E92-A, no. 3 (2009): 788–97. http://dx.doi.org/10.1587/transfun.e92.a.788.
Full textSathish, K., Aritra Paul, Debapriya Roy, Ishmeet Kalra, and Simran Bajaj. "Brain Computer Interface for Communication and Control of Peripherals and Appliances." Journal of Computational and Theoretical Nanoscience 17, no. 4 (April 1, 2020): 1616–21. http://dx.doi.org/10.1166/jctn.2020.8411.
Full textKWON, Kil Hyun, and Dae Gwan LEE. "Oversampling Expansion in Wavelet Subspaces." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E94-A, no. 5 (2011): 1184–93. http://dx.doi.org/10.1587/transfun.e94.a.1184.
Full textCHEN, Y. L. "Progressive Image Inpainting Based on Wavelet Transform." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E88-A, no. 10 (October 1, 2005): 2826–34. http://dx.doi.org/10.1093/ietfec/e88-a.10.2826.
Full textFUKUMA, S. "Switching Wavelet Transform for ROI Image Coding." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E88-A, no. 7 (July 1, 2005): 1995–2006. http://dx.doi.org/10.1093/ietfec/e88-a.7.1995.
Full textDissertations / Theses on the topic "Electrical and Computer Engineering. Signal processing. Wavelets (Mathematics)"
Pacola, Edras Reily. "Uso da análise de discriminante linear em conjunto com a transformada wavelet discreta no reconhecimento de espículas." Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1828.
Full textPesquisadores têm concentrado esforços, nos últimos 20 anos, aplicando a transformada wavelet no processamento, filtragem, reconhecimento de padrões e na classificação de sinais biomédicos, especificamente em sinais de eletroencefalografia (EEG) contendo eventos característicos da epilepsia, as espículas. Várias famílias de wavelets-mães foram utilizadas, mas sem um consenso sobre qual wavelet-mãe é a mais adequada para essa finalidade. Os sinais utilizados apresentam uma gama muito grande de eventos e não possuem características padronizadas. A literatura relata sinais de EEG amostrados entre 100 a 600 Hz, com espículas variando de 20 a 200 ms. Nesse estudo foram utilizadas 98 wavelets. Os sinais de EEG foram amostrados de 200 a 1 kHz. Um neurologista marcou um conjunto de 494 espículas e um conjunto de 1500 eventos não-espícula. Esse estudo inicia avaliando a quantidade de decomposições wavelets necessárias para a detecção de espículas, seguido pela análise detalhada do uso combinado de wavelets-mães de uma mesma família e entre famílias. Na sequência é analisada a influência de descritores e o uso combinado na detecção de espículas. A análise dos resultados desses estudos indica que é mais adequado utilizar um conjunto de wavelets-mães, com vários níveis de decomposição e com vários descritores, ao invés de utilizar uma única wavelet-mãe ou um descritor específico para a detecção de espículas. A seleção desse conjunto de wavelets, de níveis de decomposição e de descritores permite obter níveis de detecção elevados conforme a carga computacional que se deseje ou a plataforma computacional disponível para a implementação. Como resultado, esse estudo atingiu níveis de desempenho entre 0,9936 a 0,9999, dependendo da carga computacional. Outras contribuições desse estudo referem-se à análise dos métodos de extensão de borda na detecção de espículas; e a análise da taxa de amostragem de sinais de EEG no desempenho do classificador de espículas, ambos com resultados significativos. São também apresentadas como contribuições: uma nova arquitetura de detecção de espículas, fazendo uso da análise de discriminante linear; e a apresentação de um novo descritor, energia centrada, baseado na resposta dos coeficientes das sub-bandas de decomposição da transformada wavelet, capaz de melhorar a discriminação de eventos espícula e não-espícula.
Researchers have concentrated efforts in the past 20 years, by applying the wavelet transform in processing, filtering, pattern recognition and classification of biomedical signals, in particular signals of electroencephalogram (EEG) containing events characteristic of epilepsy, the spike. Several families of mother-wavelets were used, but there are no consensus about which mother-wavelet is the most adequate for this purpose. The signals used have a wide range of events. The literature reports EEG signals sampled from 100 to 600 Hz with spikes ranging from 20 to 200 ms. In this study we used 98 wavelets. The EEG signals were sampled from 200 Hz up to 1 kHz. A neurologist has scored a set of 494 spikes and a set 1500 non-spike events. This study starts evaluating the amount of wavelet decompositions required for the detection of spikes, followed by detailed analysis of the combined use of mother-wavelets of the same family and among families. Following is analyzed the influence of descriptors and the combined use of them in spike detection. The results of these studies indicate that it is more appropriate to use a set of mother-wavelets, with many levels of decomposition and with various descriptors, instead of using a single mother-wavelet or a specific descriptor for the detection of spikes. The selection of this set of wavelets, decomposition level and descriptors allows to obtain high levels of detection according to the computational load desired or computing platform available for implementation. This study reached performance levels between 0.9936 to 0.9999, depending on the computational load. Other contributions of this study refer to the analysis of the border extension methods for spike detection; and the influences of the EEG signal sampling rate in the classifier performance, each one with significant results. Also shown are: a new spike detection architecture by making use of linear discriminant analysis; and the presentation of a new descriptor, the centred energy, based on the response of the coefficients of decomposition levels of the wavelet transform, able to improve the discrimination of spike and non-spike events.
Argus, Markus. "Machine learning for wavelets to enhance PET reconstruction." Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-182932.
Full textRenfrew, Mark E. "A Comparison of Signal Processing and Classification Methods for Brain-Computer Interface." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1246474708.
Full textPeterson, Michael Ray. "Evolutionary Methodology for Optimization of Image Transforms Subject to Quantization Noise." Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1214303970.
Full textLi, Bing Nan. "Wavelet neural networks : the fusion of HC and SC for computerized physiological signal interpretation." Thesis, University of Macau, 2009. http://umaclib3.umac.mo/record=b2145135.
Full textJalali, Sammuel. "Wireless Channel Equalization in Digital Communication Systems." Scholarship @ Claremont, 2012. http://scholarship.claremont.edu/cgu_etd/42.
Full textKintz, Andrew Lane. "Nullspace MUSIC and Improved Radio Frequency Emitter Geolocation from a Mobile Antenna Array." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1479896813925084.
Full textKrueger, Eddy. "Detecção de fadiga neuromuscular em pessoas com lesão medular completa utilizando transformada wavelet." Universidade Tecnológica Federal do Paraná, 2014. http://repositorio.utfpr.edu.br/jspui/handle/1/961.
Full textIntrodução: As pessoas com lesão medular (LM) podem ter seus músculos paralisados ativados por meio da estimulação elétrica funcional (FES) sobre vias neurais presentes próximas à pele. Estas estimulações elétricas são importantes para a recuperação do trofismo neuromuscular ou durante o controle de movimento por próteses neurais. No entanto, ao longo da aplicação da FES, a fadiga ocorre, diminuindo a eficiência da contração, principalmente devido à hipotrofia neuromuscular presente nessa população. A aquisição da vibração das fibras musculares como indicador de fadiga é registrada por meio da técnica de mecanomiografia (MMG), que não sofre interferências elétricas decorrentes da aplicação da FES. Objetivo: Caracterizar a vibração do músculo reto femoral durante protocolo de fadiga neuromuscular eletricamente evocada em pessoas com lesão medular completa. Método: 24 membros (direito e esquerdo) de 15 participantes (idade: 27±5 anos) do sexo masculino (A e B na American Spinal Injury Impairment Scale) foram selecionados. Um estimulador elétrico operando como fonte de tensão, desenvolvido especialmente para pesquisa, foi configurado com: freqüência de pulso em 1 kHz (20% de ciclo de trabalho) e trem de pulsos (modulação) em 70 Hz (20% período ativo). O sinal triaxial [X (transversal), Y (longitudinal) e Z (perpendicular)] da MMG foi processado com filtro Butterworth de terceira ordem e banda passante entre 5 e 50 Hz. Previamente ao protocolo, a tensão de saída do estimulador foi incrementada (~3 V/s evitando-se a adaptação/habituação dos motoneurônios) até alcançar a extensão máxima eletricamente estimulada (EMEE) da articulação do joelho. Uma célula de carga foi usada para registrar a resposta de força, onde após a sua colocação, a intensidade da FES necessária para alcançar a EMEE foi aplicada e registrada pela célula de carga como 100% da força (F100%). Durante o protocolo de fadiga neuromuscular, a intensidade do estímulo foi incrementada durante o controle para manter a força em F100%. Quatro instantes (I - IV) foram selecionados entre F100% e a incapacidade da FES manter a resposta de força acima de 30% (F30%). O sinal foi processado nos domínios temporal (energia), espectral (frequência mediana) e wavelet (temporal-espectral com doze bandas de frequência entre 5 e 53 Hz). Os dados extraídos foram normalizados pelo instante inicial (I) gerando unidades arbitrárias (u.a.), e testados com estatística não paramétrica. Resultados: A frequência mediana não apresentou significância estatística. Em relação aos eixos de deslocamento da MMG, o eixo transversal mostrou o maior número de resultados estatisticamente significantivos. A energia da vibração das fibras musculares (domínio temporal) indicou diminuição entre os instantes I (músculo fresco) e II (pré-fadiga), como também entre os instantes I e IV (fadigado) com redução significativa. O domínio wavelet teve como foco o eixo transversal, especialmente as bandas de frequência de 13, 16, 20, 25 e 35 Hz, por terem indicado redução significativa durante a fadiga neuromuscular; principalmente, a banda de 25 Hz, que indicou redução significativa entre o instante I (valor da mediana dos dados de 0,53 u.a.) e os demais instantes [II (0,30 u.a), III (0,28 u.a.) e IV (0,24 u.a.)]. Conclusão: A fadiga neuromuscular é caracterizada pela redução da energia do sinal no eixo de deslocamento transversal (X) da vibração do músculo reto femoral, em pessoas com lesão medular completa, tanto no domínio temporal quanto principalmente no domínio wavelet, sendo a banda de frequência de 25 Hz a mais relevante, porque sua energia diminui com a ocorrência da fadiga neuromuscular. Estes achados abrem a possibilidade de aplicação em sistemas de malha fechada durante procedimentos de reabilitação física utilizando FES ou no controle de próteses neurais.
Introduction: People with spinal cord injury (SCI) may have the paralyzed muscles activated through functional electrical stimulation (FES) on neural pathways present below the skin. These electrical stimulations are important to restore the neuromuscular trophism or during the movement control using neural prostheses. However, prolonged FES application causes fatigue, which decreases the contraction strength, mainly due the neuromuscular hypotrophy in this population. The acquisition of myofibers’ vibration is recognized by mechanomyography (MMG) system and does not suffer electrical interference from the FES system. Objective: To characterize the rectus femoris muscle vibration during electrically evoked neuromuscular fatigue protocol in complete spinal cord injury subjects. Methods: As sample, 24 limbs (right and left) from 15 male participants (age: 27±5 y.o.) and ranked as A and B according to American Spinal Injury Impairment Scale) were selected. An electrical stimulator operating as voltage source, specially developed for research, was configured as: pulse frequency set to 1 kHz (20% duty cycle) and burst (modulating) frequency set to 70 Hz (20% active period). The triaxial [X (transverse), Y (longitudinal) and Z (perpendicular)] MMG signal of rectus femoris muscle was processed with a third-order 5-50 Hz bandpass Butterworth filter. A load cell was used to register the force. The stimulator output voltage was increased (~3 V/s to avoid motoneuron adaptation/habituation) until the maximal electrically-evoked extension (MEEE) of the knee joint. After the load cell placement, the stimuli magnitude required to reach MEEE was applied and registered by the load cell as muscular F100% response. Stimuli intensity was increased during the control to keep the force in F100%. Four instants (I - IV) were selected from F100% up to the inability to keep the FES response force above 30% (F30%). The signal was processed in temporal (energy), spectral (median frequency) and wavelet (temporal-spectral with twelve band frequencies between 5 and 53 Hz) domains. All data were normalized by initial instant, creating arbitrary units (a.u.), and non-parametric tests were applied. Results: The median frequency did not show statistical significance. Regarding the MMG axes, the transverse axis showed most statistical differences. The MMG energy (temporal domain) indicates the decrease between the instants I (unfatigued) and II (pre-fatigue), as well as instants I and IV (fatigued). The wavelet domain focused on the transverse axis, especially on 13, 16, 20, 25 and 35 Hz frequency bands, for having shown significant reduction proven during neuromuscular fatigue. In focus on 25 Hz band frequency that showed a constant decrease between instants I (median value from data de 0.53 a.u.) with subsequent instants [II (0.30 a.u.), III (0.28 a.u.) and IV (0.24 a.u.). Conclusion: Neuromuscular fatigue is characterized by energy decrease in MMG X-axis (transverse) signal of vibration on the rectus femoris muscle for complete spinal cord injured subjects, in the temporal domain but mainly in the wavelet domain. The 25 Hz is the most important band frequency because its energy decreases with neuromuscular fatigue. These findings open the possibility of application in closed-loop systems during physical rehabilitation procedures using FES or in the control of neural prostheses.
Vaz, Canute. "Estimation and equalization of communications channels using wavelet transforms." 2010. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000052157.
Full textRagozzino, Matthew. "Multiresolution variance-based image fusion." Thesis, 2014. http://hdl.handle.net/1805/3799.
Full textMultiresolution image fusion is an emerging area of research for use in military and commercial applications. While many methods for image fusion have been developed, improvements can still be made. In many cases, image fusion methods are tailored to specific applications and are limited as a result. In order to make improvements to general image fusion, novel methods have been developed based on the wavelet transform and empirical variance. One particular novelty is the use of directional filtering in conjunction with wavelet transforms. Instead of treating the vertical, horizontal, and diagonal sub-bands of a wavelet transform the same, each sub-band is handled independently by applying custom filter windows. Results of the new methods exhibit better performance across a wide range of images highlighting different situations.
Books on the topic "Electrical and Computer Engineering. Signal processing. Wavelets (Mathematics)"
Teolis, Anthony. Computational Signal Processing with Wavelets. Boston, MA: Birkhäuser Boston, 1996.
Find full textPetrosian, Arthur A. Wavelets in Signal and Image Analysis: From Theory to Practice. Dordrecht: Springer Netherlands, 2001.
Find full textHans, Knutsson, ed. Signal processing for computer vision. Dordrecht: Kluwer Academic Publishers, 1995.
Find full textAkansu, Ali N. Subband and Wavelet Transforms: Design and Applications. Boston, MA: Springer US, 1995.
Find full textFekri, Faramarz. Finite-field wavelets and their applications in cryptography and coding. Boston: Pearson/Prentice Hall, 2011.
Find full textCasimer, DeCusatis, and Das Pankaj K. 1937-, eds. Wavelets and subbands: Fundamentals and applications : with 234 figures. Boston: Birkhaüser, 2002.
Find full textMathematical foundations for signal processing, communications, and networks. Boca Raton, FL: CRC Press, 2011.
Find full text1973-, La Cour-Harbo A., ed. Ripples in mathematics: The discrete wavelet transform. Berlin: Springer, 2001.
Find full textG, Chen, and Chui C. K, eds. Discrete H [infinity] optimization: With applications in signal processing and control systems. 2nd ed. Berlin: Springer, 1997.
Find full text