Academic literature on the topic 'Electrical Circuits'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrical Circuits.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electrical Circuits"
Hidayatulloh, Mukhlis. "DEVELOPING ELECTRICAL CIRCUITS FLIPBOOK USING FLIPBUILDER." International Journal of Innovation Education and Research 7, no. 2 (February 28, 2019): 124–34. http://dx.doi.org/10.31686/ijier.vol7.iss2.1331.
Full textReljin, Branimir, Slavica Ristić, and Milesa Srećković. "Analysis of Some Physical Phenomena and Processes by Equivalent Electrical Circuits." International Journal of Electrical Engineering & Education 33, no. 4 (October 1996): 353–72. http://dx.doi.org/10.1177/002072099603300407.
Full textSKRYPNYK, S., and A. SHEINA. "Short circuits currents comparison of 6 (10) kV and 20 kV." Journal of Electrical and power engineering 14, no. 1 (February 27, 2020): 21–26. http://dx.doi.org/10.31474/2074-2630-2020-1-21-26.
Full textKaczorek, Tadeusz. "Singular fractional linear systems and electrical circuits." International Journal of Applied Mathematics and Computer Science 21, no. 2 (June 1, 2011): 379–84. http://dx.doi.org/10.2478/v10006-011-0028-8.
Full textMatveenko, Valerii, Maksim Iurlov, Dmitrii Oshmarin, Nataliya Sevodina, and Nataliia Iurlova. "Modelling of vibrational processes in systems with piezoelements and external electric circuits on the basis of their electrical analogue." Journal of Intelligent Material Systems and Structures 29, no. 16 (June 11, 2018): 3254–65. http://dx.doi.org/10.1177/1045389x18781025.
Full textLebedev, Ivan, Nikolay Savelov, and Sergey Basan. "A New Approach to the Formation of Test Mathematical Models of Complex Electrical Circuits." Известия высших учебных заведений. Электромеханика 64, no. 6 (2021): 5–11. http://dx.doi.org/10.17213/0136-3360-2021-6-5-11.
Full textCurti, Sebastian, Federico Davoine, and Antonella Dapino. "Function and Plasticity of Electrical Synapses in the Mammalian Brain: Role of Non-Junctional Mechanisms." Biology 11, no. 1 (January 5, 2022): 81. http://dx.doi.org/10.3390/biology11010081.
Full textKaczorek, Tadeusz. "Positive electrical circuits and their reachability." Archives of Electrical Engineering 60, no. 3 (September 1, 2011): 283–301. http://dx.doi.org/10.2478/v10171-011-0026-3.
Full textModes, Christina, Melanie Bawohl, Jochen Langer, Jessica Reitz, Anja Eisert, Mark Challingsworth, Virginia Garcia, and Sarah Groman. "Thick Film Pastes for Power Applications." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2013, CICMT (September 1, 2013): 000155–61. http://dx.doi.org/10.4071/cicmt-wp24.
Full textBERKOVICH, YEFIM, ARIEH SHENKMAN, and SAAD TAPUCHI. "GENERALIZED ANALYSIS OF ELECTRICAL CIRCUITS BY USING HYPERNION MATRICES." Journal of Circuits, Systems and Computers 18, no. 07 (November 2009): 1205–25. http://dx.doi.org/10.1142/s0218126609005629.
Full textDissertations / Theses on the topic "Electrical Circuits"
Senthinathan, Ramesh 1961. "ELECTRICAL CHARACTERISTICS OF INTEGRATED CIRCUIT PACKAGES." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276425.
Full textMadhyastha, Sadhana. "Design of circuit breakers for large area CMOS VLSI circuits." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59551.
Full textQazi, Masood. "Circuit design for embedded memory in low-power integrated circuits." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/75645.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 141-152).
This thesis explores the challenges for integrating embedded static random access memory (SRAM) and non-volatile memory-based on ferroelectric capacitor technology-into lowpower integrated circuits. First considered is the impact of process variation in deep-submicron technologies on SRAM, which must exhibit higher density and performance at increased levels of integration with every new semiconductor generation. Techniques to speed up the statistical analysis of physical memory designs by a factor of 100 to 10,000 relative to the conventional Monte Carlo Method are developed. The proposed methods build upon the Importance Sampling simulation algorithm and efficiently explore the sample space of transistor parameter fluctuation. Process variation in SRAM at low-voltage is further investigated experimentally with a 512kb 8T SRAM test chip in 45nm SOI CMOS technology. For active operation, an AC coupled sense amplifier and regenerative global bitline scheme are designed to operate at the limit of on current and off current separation on a single-ended SRAM bitline. The SRAM operates from 1.2 V down to 0.57 V with access times from 400ps to 3.4ns. For standby power, a data retention voltage sensor predicts the mismatch-limited minimum supply voltage without corrupting the contents of the memory. The leakage power of SRAM forces the chip designer to seek non-volatile memory in applications such as portable electronics that retain significant quantities of data over long durations. In this scenario, the energy cost of accessing data must be minimized. This thesis presents a ferroelectric random access memory (FRAM) prototype that addresses the challenges of sensing diminishingly small charge under conditions favorable to low access energy with a time-to-digital sensing scheme. The 1 Mb IT1C FRAM fabricated in 130 nm CMOS operates from 1.5 V to 1.0 V with corresponding access energy from 19.2 pJ to 9.8 pJ per bit. Finally, the computational state of sequential elements interspersed in CMOS logic, also restricts the ability to power gate. To enable simple and fast turn-on, ferroelectric capacitors are integrated into the design of a standard cell register, whose non-volatile operation is made compatible with the digital design flow. A test-case circuit containing ferroelectric registers exhibits non-volatile operation and consumes less than 1.3 pJ per bit of state information and less than 10 clock cycles to save or restore with no minimum standby power requirement in-between active periods.
by Masood Qazi.
Ph.D.
Kapur, Kishen Narain. "Mechanical and electrical characterization of IC leads during fatigue cycling." Diss., Online access via UMI:, 2009.
Find full textIncludes bibliographical references.
Ghazizadeh, Ali. "Optimum mounting of electronic circuit boards for components and circuits survivability." Thesis, University of Ottawa (Canada), 1994. http://hdl.handle.net/10393/6936.
Full textBakir, Muhannad S. "Sea of Leads electrical-optical polymer pillar chip I/O interconnections for gigascale integration." Diss., Available online, Georgia Institute of Technology, 2004:, 2003. http://etd.gatech.edu/theses/available/etd-04082004-180010/unrestricted/bakir%5Fmuhannad%5Fs%5F200312%5Fphd.pdf.
Full textYazghi, Najlae. "Interactive E-learning and Problem for Electrical Circuits." Honors in the Major Thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1015.
Full textBachelors
Engineering and Computer Science
Electrical Engineering
Tronko, V. D., M. O. Chuzha, В. Д. Тронько, and М. О. Чужа. "Measuring current in electrical circuits using a polarimeter." Thesis, National aviation university, 2021. https://er.nau.edu.ua/handle/NAU/50502.
Full textВ представленій роботі запропоновано оптичний пристрій для вимірювання струму. Він складається з поляриметра, індикатора та вхідного пристрою. В основу його роботи покладено функціональна залежність зміни параметрів поляризованого світла в поляриметрі від значень струму, що вимірюються. Запропонований вимірювач струму дає можливість зменшити габарити та масу конструкції, а також підвищити точність вимірювань.
Soong, Chia-Wei. "ELECTRICAL CHARACTERIZATION OF SiC JFET-BASED INTEGRATED CIRCUITS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1386674317.
Full textWong, Calvin J. H. "Neural circuits controlling electrical communication in gymnotiform fish /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1997. http://wwwlib.umi.com/cr/ucsd/fullcit?p9735272.
Full textBooks on the topic "Electrical Circuits"
Morgan, Sally. Electricity and electrical circuits. Chicago, Ill: Heinemann Library, 2008.
Find full textE, Alley R., ed. Electrical circuits: An introduction. Cambridge [England]: Cambridge University Press, 1992.
Find full textLynette, Rachel. Electrical experiments: Electricity and circuits. Chicago, Ill: Heinemann Library, 2008.
Find full textKeskin, Ali Ümit. Electrical Circuits in Biomedical Engineering. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55101-2.
Full textBook chapters on the topic "Electrical Circuits"
Dugdale, David. "Electrical circuits." In Essentials of electromagnetism, 210–30. London: Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-22780-8_9.
Full textEriksson, Kenneth, Donald Estep, and Claes Johnson. "Electrical Circuits*." In Applied Mathematics: Body and Soul, 729–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05798-8_24.
Full textIffländer, Reinhard. "Electrical Circuits." In Springer Series in Optical Sciences, 199–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-46585-0_8.
Full textWarnes, Lionel. "Electrical circuits." In Analogue and Digital Electronics, 1–49. London: Macmillan Education UK, 1998. http://dx.doi.org/10.1007/978-1-349-14037-4_1.
Full textKeighley, John, and Stephen Doyle. "Electrical circuits." In Physics GCSE, 132–46. London: Macmillan Education UK, 1998. http://dx.doi.org/10.1007/978-1-349-14325-2_12.
Full textGünther, Michael. "Electrical Circuits." In Encyclopedia of Applied and Computational Mathematics, 411–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_110.
Full textPolzin, Kurt A., Ashley K. Hallock, Kamesh Sankaran, and Justin M. Little. "Electrical Circuits." In Circuit Modeling of Inductively-Coupled Pulsed Accelerators, 17–36. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780429351976-3.
Full textKeighley, John. "Electrical Circuits." In Work Out Physics GCSE, 111–25. London: Macmillan Education UK, 1990. http://dx.doi.org/10.1007/978-1-349-11839-7_10.
Full textBermúdez, Alfredo, Dolores Gómez, and Pilar Salgado. "Linear electrical circuits." In UNITEXT, 33–49. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02949-8_3.
Full textN. Makarov, Sergey, Reinhold Ludwig, and Stephen J. Bitar. "Switching Circuits." In Practical Electrical Engineering, 641–88. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21173-2_13.
Full textConference papers on the topic "Electrical Circuits"
Budko, А. А., and L. A. Khvostchinskaya. "THE APPLICATION OF COMPLEX NUMBERS IN ELECTRICAL CIRCUIT CALCULATION." In SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute, 2021. http://dx.doi.org/10.46646/sakh-2021-1-108-110.
Full textSilva, Tarcísio M. P., Vagner Candido de Sousa, Marcel A. Clementino, and Carlos De Marqui. "Novel Equivalent Electrical Circuits for Linear and Nonlinear Electromechanically Coupled Systems." In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3914.
Full textKaczorek, Tadeusz. "Positive fractional linear electrical circuits." In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2013, edited by Ryszard S. Romaniuk. SPIE, 2013. http://dx.doi.org/10.1117/12.2034370.
Full textDorai, Arvind, Kumaraswamy Ponnambalam, and Arnold W. Heemink. "Yield optimization of electrical circuits." In 2009 3rd International Conference on Signals, Circuits and Systems (SCS 2009). IEEE, 2009. http://dx.doi.org/10.1109/icscs.2009.5412285.
Full textWoodard, Stanley E., Qamar A. Shams, Donald M. Oglesby, and Bryant D. Taylor. "Chemical detection using electrically open circuits having no electrical connections." In 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716370.
Full textSun, Jiashu, Saumitra K. Vajandar, Dongyan Xu, Yuejun Kang, Dongqing Li, Deyu Li, and Guoqing Hu. "Electrical Leakage Through Thin PDMS Microchannel Walls and its Applications." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68079.
Full textTzou, H. S., and J. H. Ding. "Equivalent Active Circuits of Distributed Control Systems." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1782.
Full textPaulu, Filip, and Jiri Hospodka. "GEEC: Graphic editor of electrical circuits." In 2017 International Conference on Applied Electronics (AE). IEEE, 2017. http://dx.doi.org/10.23919/ae.2017.8053604.
Full textBertini, G. J. "Diagnostic testing of stochastic circuits." In 2007 Electrical Insulation Conference and Electrical Manufacturing Expo (EIC/EME). IEEE, 2007. http://dx.doi.org/10.1109/eeic.2007.4562585.
Full textPetrov, Nikolay, Kremena Dimitrova, and Svilen Ratchev. "Determination of the Optimal Circuit-Engineering Solution of Electronic Circuits." In 2020 21st International Symposium on Electrical Apparatus & Technologies (SIELA). IEEE, 2020. http://dx.doi.org/10.1109/siela49118.2020.9167135.
Full textReports on the topic "Electrical Circuits"
Shoemaker, Jordan. Damage Detection and Electrical Performance Impact of Flat-Flexible Circuits. Office of Scientific and Technical Information (OSTI), May 2022. http://dx.doi.org/10.2172/1870617.
Full textWeinschenk, Craig, Daniel Madrzykowski, and Paul Courtney. Impact of Flashover Fire Conditions on Exposed Energized Electrical Cords and Cables. UL Firefighter Safety Research Institute, October 2019. http://dx.doi.org/10.54206/102376/hdmn5904.
Full textAkin, Meriem B., and Ana C. Arias. A Comprehensive Surface Mount Technology Solution for Integrated Circuits onto Flexible Screen Printed Electrical Interconnects. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada602487.
Full textRourk, C. J. Regulatory Analysis for the resolution of Generic Issue 142: Leakage through electrical isolators in instrumentation circuits. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10187197.
Full textKiv, Arnold E., Vladyslav V. Bilous, Dmytro M. Bodnenko, Dmytro V. Horbatovskyi, Oksana S. Lytvyn, and Volodymyr V. Proshkin. The development and use of mobile app AR Physics in physics teaching at the university. [б. в.], July 2021. http://dx.doi.org/10.31812/123456789/4629.
Full textHeimlich, Michael, Karu Esselle, and L. Matekovits. 2D Electrically Tuneable EBG Integrated Circuits. Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada605325.
Full textSedykh, P. A. Global Electric Circuit: Solar Wind, Magnetosphere, Ionosphere, Atmosphere. Balkan, Black sea and Caspian sea Regional Network for Space Weather Studies, October 2019. http://dx.doi.org/10.31401/sungeo.2019.01.09.
Full textBRAITHWAITE, JEFFREY W., NEIL R. SORENSEN, DAVID G. ROBINSON, KEN S. CHEN, and CAROLYN W. BOGDAN. A Modeling Approach for Predicting the Effect of Corrosion on Electrical-Circuit Reliability. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/809100.
Full textBernal Heredia, Willy, Dylan Cutler, and Jesse Dean. Case Study: Field Evaluation of a Low-Cost Circuit-Level Electrical Submetering System. Office of Scientific and Technical Information (OSTI), January 2021. http://dx.doi.org/10.2172/1762442.
Full textCutler, Dylan S., Willy G. Bernal Heredia, and Jesse D. Dean. Case Study: Laboratory and Field Evaluation of Circuit-Level Electrical Submetering with Wireless Current Transformers. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1530174.
Full text