To see the other types of publications on this topic, follow the link: Electrical engineering|Physics|Materials science.

Dissertations / Theses on the topic 'Electrical engineering|Physics|Materials science'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Electrical engineering|Physics|Materials science.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Zhou, Wang. "Beyond van der Pauw| Novel methods for four-point magnetotransport characterization." Thesis, Northwestern University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10160475.

Full text
Abstract:

In this thesis, the conventional four-point measurement technique and the van der Pauw (vdP) method are systematically investigated in the presence of non-ideal conditions, namely, non-uniform carrier density distribution and absence of ohmic contacts, which are nonetheless commonly encountered in semiconductor characterizations. Upon understanding the challenges in the conventional methods, novel characterization techniques are developed to address these challenges.

A longitudinal magnetoresistance asymmetry method was developed to study the carrier density non-uniformity in two-dimensional samples. By analyzing the asymmetric longitudinal magnetoresistance under positive and negative B-fields, an analytical model based on a linear density gradient across the sample was deduced to quantitatively describe the asymmetry. Based on the theoretical model, a practical method was described which enabled one to experimentally measure the density gradient within a single sample. The method requires only measurements of longitudinal resistances R xx and Ryy under both positive and negative B-fields, and equations have been provided to extract both the angle and the magnitude of density gradients from the measured resistances. The method was demonstrated in a GaAs quantum well wafer at cryogenic temperatures and n-GaAs bulk-doped wafer at room temperature. In both systems, the density gradient vectors extracted with our method matched well with the interpolated density gradient vectors estimated from actual density distribution maps as a base comparison set, suggesting that our method can be a universal extension of the vdP method to extract density gradients in various systems. The method also allows one to uncover the true local longitudinal resistivity ρxx at the center of the sample, which the conventional vdP method cannot describe in the presence of non-uniform densities. The ability to find ρxx makes it possible to study interesting physics in semiconductors such as interaction-induced quantum corrections to resistivity and valley filtering in multi-valley systems.

To extend the vdP method to cases where ohmic contacts are not available, a capacitive contact technique was introduced which sends current and senses voltage capacitively. A capacitive contact is formed between the buried conducting layer and the contact metal which is simply evaporated onto the sample. Systematic studies of four-point measurements with ohmic and/or capacitive contacts were conducted on a test sample and a Hall bar sample to demonstrate the effectiveness of the capacitive contact method. With a pre-defined capacitive scaling factor γ and a measurement frequency band (fL fH), it was shown that capacitive contacts could extract the same four-point resistance as ohmic contacts, establishing the validity of the capacitive contact technique.

Built on the idea of capacitive coupling with capacitive contacts, a contactless electrical characterization probe was proposed. On the probe head, there are two types of metal gates: depletion gates to define a test region and separate the contacts, and capacitive contacts to conduct four-point measurements. To characterize a piece or a region on a wafer hosting a buried conducting layer, one brings the probe onto the sample, conducts the electrical measurements with the capacitive contacts, and removes the probe. The sample remains untouched and can be reused. The contactless probe should provide a fast and nondestructive way of semiconductor characterization.

APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Da-Wei. "PARALLEL CRACKED ITO ON PET SUBSTRATE AND ITS APPLICATION IN FREQUENCY CONTROLLED PDLC WINDOW SHUTTER." Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1427640307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moheghi, Alireza. "LC/Polymer Composites, Scattering Properties and Application in Displays." Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1492639440067508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Itapu, Srikanth. "Microstructuring of Nickel Thin Films and Property Modification of Nickel Oxide Films by Pulsed Laser Irradiation." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1501701523725736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Herring, Patrick Kenichi. "Low Dimensional Carbon Electronics." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11475.

Full text
Abstract:
This thesis covers several different experiments that comprised my graduate career. The main focus of these experiments was the use of carbon as an electronic material and a steady evolution of fabrication recipes that allowed us to perform reliable and consistent measurements. The second chapter describes experiments with carbon nanotubes, where our goal was to produce devices capable of manipulating electronic spin states in order create quantum bits or "qubits." The third chapter covers the development of fabrication recipes with the goal of creating qubits within Si-Ge nanowire, and the bottom-gating approach that was developed. The fourth chapter begins graphene related research, describing one of the simplest uses of graphene as a simple transparent electrode on a SiN micromembrane. The remainder of the thesis describes experiments that develop graphene based optical and infrared detectors, study their characteristics and determine the physics that underlies their detection mechanism. Key in these experiments were the fabrication recipes that had been developed to create carbon nanotube and Si-Ge nanowire devices. Finally, we demonstrate how engineering of the device's thermal characteristics can lead to improved sensitivity and how graphene can be used in novel applications where conventional materials are not suitable.
Physics
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, You. "Correlated Oxides: Material Physics and Devices." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17464472.

Full text
Abstract:
In this work we study the metal-insulator transition in vanadium dioxide and samarium nickelate and the application of such transitions in electronic devices. Chapter 1 provides an introduction to the Mott metal-insulator transition mechanisms and an overview of the interplay between various degrees of freedom in correlated oxides. The phase transition in vanadium dioxide is presented as an example to emphasize the overarching electron-phonon and electron-electron interaction driven transition mechanisms. In Chapter 2, we describe the growth and structure-functionality relationship of thin film transition metal oxides. Chapter 3 goes on to examine the mechanism of voltage-triggered metal-insulator transition in vanadium dioxide two-terminal threshold switches through dynamic studies. Chapter 4 delves into the mechanism of conductance modulation in electrolyte-gated vanadium dioxide transistors, which reveals the importance of electrochemical effects versus electrostatic effects in these devices. Utilizing the idea of electrochemical doping, we designed and realized a strongly correlated insulating phase in samarium nickel oxide through electron doping with hydrogen and lithium interstitials in Chapter 5. Such techniques can be extended to other materials to achieve reversible and controllable carrier doping with high concentration to study the related physics.
Engineering and Applied Sciences - Applied Physics
APA, Harvard, Vancouver, ISO, and other styles
7

Incorvia, Jean Anne Currivan. "Nanoscale Magnetic Materials for Energy-Efficient Spin Based Transistors." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467318.

Full text
Abstract:
In this dissertation, I study the physical behavior of nanoscale magnetic materials and build spin-based transistors that encode information in magnetic domain walls. It can be argued that energy dissipation is the most serious problem in modern electronics, and one that has been resistant to a breakthrough. Wasted heat during computing both wastes energy and hinders further technology scaling. This is an opportunity for physicists and engineers to come up with creative solutions for more energy-efficient computing. I present the device we have designed, called domain wall logic (DW-Logic). Information is stored in the position of a magnetic domain wall in a ferromagnetic wire and read out using a magnetic tunnel junction. This hybrid design uses electrical current as the input and output, keeping the device compatible with charge- based transistors. I build an iterative model to predict both the micromagnetic and circuit behavior of DW- Logic, showing a single device can operate as a universal gate. The model shows we can build complex circuits including an 18-gate Full Adder, and allows us to predict the device switching energy compared to complementary metal-oxide semiconductor (CMOS) transistors. Comparing 15 nm feature nodes, I find DW-Logic made with perpendicular magnetic anisotropy materials, and utilizing both spin torque transfer and the Spin Hall effect, could operate with 1000× reduced switching energy compared to CMOS. I fabricate DW-Logic device prototypes and show in experiment they can act as AND and NAND gates. I demonstrate that one device can drive two subsequent devices, showing gain, which is a necessary requirement for fanout. I also build a clocked ring oscillator circuit to demonstrate successful bit propagation in a DW-Logic circuit and show that properly scaled devices can have improved operation. Through building the devices, I develop a novel fabrication method for patterning sub-25 nm magnetic wires with very low (~ 2 nm) average edge roughness. I apply the fabrication method to measuring the Spin Hall angle in epitaxially grown thin films and to studying the repeatability of domain wall motion in narrow wires. I also present a number of modeling results, including the effect of edge roughness on both magnetic tunnel junctions and domain walls.
Physics
APA, Harvard, Vancouver, ISO, and other styles
8

Muckley, Eric S. "Optimization of film morphology for the performance of organic thin film solar cells." Thesis, California State University, Long Beach, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=1523341.

Full text
Abstract:

The power conversion efficiency of organic thin film solar cells must be improved before they can become commercially competitive alternatives to silicon-based photovoltaics. Exciton diffusion and charge carrier migration in organic films are strongly influenced by film morphology, which can be controlled by the substrate temperature during film growth. Zinc-phthalocyaninelbuckminsterfullerene bilayer film devices are fabricated with substrate temperatures between 25°C and 224°C and their solar cell performance is investigated here. The device open-circuit voltage, efficiency, and fill factor all exhibit peaks when films are grown at temperatures between 160°C and 180°C, which is likely a result of both the increase in shunt resistance and reduction in undesirable back diode effects which occur between l00°C and 180°C. The device performance can also be attributed to changes in the film crystallite size, roughness, and abundance of pinholes, as well as the occurrence of crystalline phase transitions which occur in both zinc-phthalocyanine and buckminsterfullerene between 150°C and 200°C. The unusually high open-circuit voltage (1.2 V), low short-circuit current density (0.03 mA/cm2), and low device efficiency (0.04%) reported here are reminiscent of single layer phthalocyanine-based Schottky solar cells, which suggests that pinholes in bilayer film devices can effectively lead to the formation of Schottky diodes.

APA, Harvard, Vancouver, ISO, and other styles
9

Sivananthan, Abirami. "Integrated Linewidth Reduction of Rapidly Tunable Semiconductor Lasers." Thesis, University of California, Santa Barbara, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3602218.

Full text
Abstract:

Widely tunable lasers with fast tuning speeds have applications in dense wavelength division multiplexing (DWDM), optical sensing and optical packet switching. In DWDM, tunable lasers can greatly reduce inventory costs, increase manufacturing efficiency, and increase flexibility. For this application, tunable lasers must meet stringent requirements in terms of linewidth, SMSR, RIN, etc. As coherent detection moves to higher modulation formats to increase spectral efficiency, linewidths on the order of 100 kHz will be required. In FMCW LIDAR, the sensing range is directly coupled to the coherence length, i.e. linewidth, of the laser, and the resolution is determined by the tuning range of the laser. A laser with a 40 nm tuning range and 100 kHz linewidth can lead to a LIDAR system with 30 µm of resolution at a 1.5 km range. The above motivations demonstrate the need for a laser that is widely tunable, with tuning speeds in the nanosecond regime, a 100 kHz linewidth and small form factor. Many different approaches have been taken to achieve a low linewidth laser, generally with the trade-off of slower tuning speeds or larger size. Typically, the widely tunable mirrors used to create a highly agile laser are noisy. In our approach we use negative feedback along with an InGaAsP/InP photonic integrated circuit (PIC) to reduce the linewidth of a widely tunable SG-DBR laser. The SG-DBR laser has a 40 nm tuning range, ns tuning speeds and is 1.5 mm long. Typically the linewidth is in the MHz range due to carrier induced frequency fluctuations. We use an asymmetric Mach Zehnder integrated on the same PIC to monitor and convert the laser frequency fluctuations to amplitude fluctuations. This error signal is fed back through a stabilizing loop filter to the phase tuning section of the SG-DBR laser to reduce the laser linewidth. Through integration of all the optical components, the loop delay is minimized and loop bandwidths upwards of 600 MHz have been achieved. Using this technique, we demonstrate an SG-DBR laser with the linewidth suppressed from 19 MHz to 150 kHz, which is the lowest linewidth yet for an SG-DBR laser.

APA, Harvard, Vancouver, ISO, and other styles
10

Ohtsuki, Tomoko 1960. "Rare-earth-doped glass waveguides for amplifiers and lasers." Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/282169.

Full text
Abstract:
Several different glass materials were investigated for waveguide amplifier and laser applications, and the potential to realize practical devices with these materials were examined using waveguides fabricated by ion exchange processes. Channel waveguides in an erbium doped phosphate laser glass were fabricated by a dry silver-film ion exchange technique, and the effects of high Er³⁺ concentration were investigated in terms of Er³⁺ ion interactions and energy transfer from Yb³⁺ to Er³⁺. Cooperative upconversion coefficients of the ⁴I₁₃/₂ level,7.7±0.7x 10⁻¹⁹ cm³/sec and 9.3±0.7x10⁻¹⁹ cm³/sec, were obtained experimentally for Er³⁺ concentration of 1x10²⁰ cm³ in the bulk and waveguide samples, respectively. These values are one order of magnitude smaller than the ones reported for silica glass. The increase in the cooperative upconversion coefficient with the increase in Er³⁺ concentration was found to be small. The effects of cooperative upconversion on the gain performance were analyzed for different Er³⁺ concentrations using a theoretical model which adopted experimentally obtained parameters. Given the small cooperative upconversion coefficients in this glass, Er³⁺ concentrations potentially as high as 3.7x10²⁰ cm⁻³ were shown to be feasible by the modeling. This would result in a 12 dB gain with a 4 cm long waveguide for 150 mW pump power at 1.48 μm. The transfer efficiency from Yb3+ to Er³⁺ was found to be 95% or higher for samples with Er³⁺ concentrations of 1.9x10²⁰ cm⁻³, and 24x10²⁰ cm⁻³, even when the ratio of the concentrations, Yb/Er, is only about 1.2 and 2. Planar channel waveguides of rare-earth doped fluoride glass were demonstrated with single mode excitation and propagation loss below 3 dB/cm. The waveguide core was fabricated by Ag⁺-Na⁺ molten salt ion exchange process in a borosilicate glass (BGG31), and a Nd³⁺-doped ZBLAN glass was used as a cladding. A 0.45 dB signal amplification at 1.064 μm was observed in the fabricated 1cm long waveguide, and a 0.9 dB amplification is expected at the emission peak (1.049 μm). Modeling results suggest that 2.5 dB/cm is possible by improving surface flatness of the ZBLAN glass.
APA, Harvard, Vancouver, ISO, and other styles
11

Harasaki, Akiko. "Improved vertical scanning interferometry." Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/289148.

Full text
Abstract:
Vertical scanning interferometers are routinely used for the measurement of optical fiber connectors. There are increasing needs for measurements of such items as machined surfaces, contact lenses, paint texture, cell structure, and integrated circuit devices, to name a few. These structures have too much depth, or are too rough, to measure with standard interferometry methods. Phase-measurement interferometry methods are limited to surfaces that do not have any discontinuities larger than one quarter of the operating wavelength. On the other hand, vertical scanning interferometers can be very effective, even though they have low height resolution compared to that of phase-measurement interferometers. Improving the height resolution of vertical scanning interferometers from the point of hardware improvement and signal processing has been one of the major research interests in the surface metrology area. This work provides a new algorithm, which called here "PSI on the Fly" technique, as a solution for improving height resolution of vertical scanning interferometers. This dissertation begins with a review of white-light interference microscopes. The height and lateral resolutions are derived based on scalar diffraction theory. Next, various well-established. algorithms for finding a topographic map of the small object surface are discussed. The work proceeds with a discussion of the phase change upon reflection and its influence on the coherence envelope. Then phase measurement interferometry methods are reviewed. The emphasis is in errors in phase measurement resulting from using a white light source instead of a monochromatic light source as in the usual case. The following chapter describes and examines an often-observed artifact of vertical-scanning interferometry when applied to step heights. The artifact is called "bat wings" because of its appearance. The physical cause of the "bat wings" artifact is discussed through a diffraction model. The next chapter proposes an improved vertical-scanning interferometry algorithm. The method, called here "PSI on the Fly" technique, has been developed by combining regular vertical-scanning interferometry and a monochromatic phase-shifting interferometry technique. The PSI on the Fly technique improves the surface height resolution of vertical scanning interferometry to that of a phase-shifting interferometry measurement. In addition to the resolution improvement, the algorithm also successfully removes the "bat wings" artifact.
APA, Harvard, Vancouver, ISO, and other styles
12

Enami, Yasufumi. "Electro-optic polymers and modulators." Diss., The University of Arizona, 2003. http://hdl.handle.net/10150/289882.

Full text
Abstract:
The devices using Electro-optic (EO) polymers has been demonstrated for high-speed modulators and switching because of its low dispersion, coating quality, inexpensive process. EO polymers itself has been progressing since their first invention some two decades ago, and simultaneously devices using the EO polymers have been demonstrated, corresponding to want from commercial communication system. Since the middle of ninety, active devices have been realized because to fabricate all polymeric waveguide structure in EO polymers has been realized with help of costly dry etching system. All polymeric waveguide still suffer from (1) low optical throughput due to coupling losses; (2) high intrinsic optical loss in EO polymers; and (3) optical-waveguiding instability due to photochemical reaction in EO polymers. Therefore, inexpensive process to solve these problems is needed when the fabricated devices is used in the commercial communication system. In this study, I mention theoretical backgrounds, properties, and then process for device fabrication to solve these precious all polymeric approaches.
APA, Harvard, Vancouver, ISO, and other styles
13

Reading, Arthur H. "Aqueous synthesis of zinc oxide films for GaN optoelectronic devices." Thesis, University of California, Santa Barbara, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3618808.

Full text
Abstract:

GaN-based LEDs have generally made use of ITO transparent contacts as current-spreading layers for uniform current injection. However, the high raw material and processing costs of ITO layers have generated interest in potentially cheaper alternatives. In this work, zinc oxide transparent layers were fabricated by a low-cost, low-temperature aqueous epitaxial growth method at 90°C for use as transparent contacts to GaN LEDs on c-plane sapphire, and on semipolar bulk GaN substrates. Low-voltage operation was achieved for c-plane devices, with voltages below 3.8V for 1mm2 broad-area LEDs at a current density of 30A/cm 2. Blue-green LEDs on 202¯1¯-plane GaN also showed low voltage operation below 3.5V at 30A/cm2. Ohmic contact resistivity of 1:8 × 10−2Ωcm2 was measured for films on (202¯1) p-GaN templates. Ga-doped films had electrical conductivities as high as 660S/cm after annealing at 300°C. Optical characterization revealed optical absorption coefficients in the 50–200cm −1 range for visible light, allowing thick films with sheet resistances below 10Ω/□ to be grown while minimizing absorption of the emitted light. Accurate and reproducible etch-free patterning of the ZnO films was achieved using templated growths with SiOx hard masks. A roughening method is described which was found to increase peak LED efficiencies by 13% on c-plane patterned sapphire (PSS) substrates. In addition, ZnO films were successfully employed as laser-cladding layers for blue (202¯1) lasers, with a threshold current density of 8.8kA/cm 2.

APA, Harvard, Vancouver, ISO, and other styles
14

Yakubu, Emmanuel S. "Modeling and Fabrication of an Active Matrix Display." Kent State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=kent1607443605214031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Niu, Nan. "GaN/InGaN Microcavities and Applications." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467361.

Full text
Abstract:
Semiconductor micro- and nano-cavities are excellent platforms for experimental studies of optical cavities, lasing dynamics, and cavity Quantum Electrodynamics (QED). Common materials for such experiments are narrow bandgap semiconductor materials with well-developed epitaxial growth technologies, such as GaAs and InP, among others. Gallium nitride (GaN) and its alloys are industrially viable materials with wide direct bandgaps, low surface re-combination velocities, and large exciton binding energies, offering the possibility of room temperature realization of light-matter interaction. Controlling light-matter interaction is at the heart of nanophotonic research which leads to ultra-low threshold lasing, photonic qubits, and optical strong coupling. Technologically, due to its blue emission, GaN photonic cavities with indium gallium nitride (InGaN) active mediums serve as efficient light sources for the fast growing photonic industry, optical computing and communication networks, display technology, as well as quantum information processing. The main challenges in fabricating high quality GaN cavity are due to its chemical inertness and low material quality as a result of strain-induced defects and threading dislocations. In this dissertation, I examine the designs, novel fabrication processes, and characterizations of high quality factor GaN microdisk and photonic crystal nanobeam cavities with different classes of InGaN active medium, namely quantum dots (QDs), quantum wells (QWs), and fragmented quantum wells (fQWs), for investigating light-matter interaction between cavity and these active media. This dissertation is carefully organized into four chapters. Chapter 1 outlines the background of the research, the materials and growth, and the necessary technique Photoelectrochemical (PEC) etching which is uniquely used to undercut and suspend GaN cavities. Chapter 2 outlines the fabrications, optical experiments, and tuning technique developed for GaN/InGaN microdisks. Microdisks are circular resonant cavities that support whispering gallery modes. Through the use of optimized dry etching and PEC, high quality factor microdisks with relatively small modal volume are fabricated with immediate demonstration of low threshold lasing. On the path to achieving light and matter interactions, irreversible tuning of the cavity mode of p-i-n doped GaN/InGaN microdisks is achieved through photo-excitation in a water environment. Such a technique paves the way for deterministically and spectrally matching the cavity mode to the emitter’s principle emission. Chapter 3 outlines the work done on the high quality GaN photonic crystal nanobeams with InGaN QDs and fQWs. The fragmented nature of the fQW layer has a surprisingly dramatic influence on the lasing threshold. A record low threshold is demonstrated that is an order of magnitude lower in threshold than identical nanobeams with homogeneous QW, and comparable to the best devices in other III-V material systems. As an active medium with greater carrier confinement than quantum wells, and higher carrier capture probability than quantum dots, the fQW active medium, in combination with the nanobeam cavity with ultra-small modal volume and high quality factor, provides an ideal means of probing the limits of light and matter interactions in the nanoscale. Moreover, GaN/InGaN nanopillars are fabricated to isolate a single InGaN QD for understanding its emission properties. Antibunching is observed, demonstrating the quantum nature of the QD emission. Gas tuning is attempted on GaN nanobeams with InGaN QDs to achieve QD-cavity mode coupling and to demonstrate cavity enhanced single photon emission. Last but not least, Chapter 4 concludes the dissertation with summary and future directions.
Engineering and Applied Sciences - Applied Physics
APA, Harvard, Vancouver, ISO, and other styles
16

Shi, Shuojia. "LIQUID CRYSTAL FOAMS GENERATED BY T-JUNCTION MICROFLUIDIC DEVICE AND THEIR ELECTRICAL MANIPULATION." Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1429438172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yeung, Yan Mui Kitty. "Engineering Plasmonic Waves in Two-Dimensional Electron Systems." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467363.

Full text
Abstract:
Plasmonic waves are waves of mobile charge carriers caused by their collective oscillations. They can be excited in solid-state conducting materials and behave distinctively in different numbers of dimensions. With fabrication technologies available for solid-state materials, one can functionalize the dimensional properties by engineering the boundaries and interfaces of the plasmonic wave medium. For instance, plasmonic waves in two-dimensional (2D) conductors, such as semiconductor heterojunction and graphene, exhibit strong subwavelength confinement – with a wavelength about a factor of 100 below the electromagnetic wavelength at the same frequency. Hence, 2D plasmonic devices can be constructed below the diffraction limit of light. To utilize this ultra-subwavelength confinement is the main motivation of this thesis. This thesis establishes the machinery behind the unique behaviors of 2D plasmons, and compares them to plasmons in higher dimensions, namely plasma oscillations in bulk materials and surface plasmons on conducting-insulating interfaces. The Coulomb restoring force and mobile charge carrier inertia causing the collective oscillations are formulated into a transmission-line model. This formulation is used to engineer ultra-subwavelength plasmonic circuits in gigahertz integrated electronics and terahertz metamaterials. As one of the demonstration platforms, we use GaAs/AlGaAs 2D electron gas. Amongst a variety of devices, the thesis focuses on an on-chip solid-state 2D plasmonic Mach-Zehnder interferometer operating at microwave frequencies. The gated 2D plasmonic waves achieve a velocity of ~c/300 (c: free-space speed of light). Due to this ultra-subwavelength confinement, the resolution of the 2D plasmonic interferometer is two orders of magnitude higher than that of its electromagnetic counterpart at a given frequency. Another material we use, which hosts mobile charge carriers in 2D, is graphene. We fabricate metamaterials in the form of graphene plasmonic crystals in a continuous graphene sheet with periodic structural perturbations. Plasmonic bands in the far-infrared are formed and excited via symmetry-based selection rules, in a manner akin to photonic crystals. The plasmonic bands can be engineered by manipulating the charge carrier concentration, the dimensions of the periodic lattice, the shape of the perturbation and the lattice symmetry. These demonstrations may generate new avenues for a wealth of subwavelength graphene plasmonic devices, such as band gap filters, modulators and switches.
Engineering and Applied Sciences - Applied Physics
APA, Harvard, Vancouver, ISO, and other styles
18

Shukri, Ziad A. (Ziad Aziz). "Bridgman growth of CuInSe2 monocrystals for photovoltaic cell research." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40443.

Full text
Abstract:
Ingots of the semiconducting compound CuInSe$ sb2$ have been grown by the Bridgman method using a single sealed quartz ampoule for both the compound synthesis, from starting elements of copper, indium and selenium, and the subsequent crystal growth. The resulting ingots, containing monocrystals of up to 2 centimeters in one dimension, were free of microcracks, voids and free of adhesion to the inner wall of the quartz ampoule. This was made possible by the unique use of a coating of boron nitride deposited on the inner wall of the ampoule prior to charging with the elements. The boron nitride acted as an effective getter in reducing the oxygen content in the starting copper, thus eliminating the adhesion between the ingot and the quartz. Reduction of the oxygen in the copper, by prior heat-treatment under high vacuum pumping, was found to be less effective than the boron nitride. The one-ampoule method used, resulted always in ingots having a uniform composition and conductivity type, which was p-type for stoichiometric starting proportions of the elements. In ingots with non-stoichiometric starting compositions, the resulting conductivity type, in the main part of the ingot, was also uniform, either p-type or n-type, with a composition close to stoichiometry. However, for non-stoichiometric melts, the last region to freeze contained binary compound phases of the elements with an excess over stoichiometry. In the main single phase chalcopyrite region, it was found that, generally speaking, n-type conductivity prevailed when the indium content was greater than about 25% and p-type when it was less than this proportion, as determined by EPMA. This was apparently irrespective of the copper or selenium content. The ingots were found to cleave, up to 1 cm$ sp2$ in area, in one of two principal cleavage planes, which are the $ {$112$ }$ and $ {$101$ }$. A third macroscopic cleavage plane, the $ {$110$ }$, was also observed in the ingots, although less frequently but wa
APA, Harvard, Vancouver, ISO, and other styles
19

Sim, Jai S. "Ultra-Thin Oxide Membranes: Synthesis and Carrier Transport." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:14226068.

Full text
Abstract:
Self-supported freestanding membranes are films that are devoid of any underlying supporting layers. The key advantage of such structures is that, due to the lack of substrate effects - both mechanical and chemical, the true native properties of the material can be probed. This is crucial since many of the studies done on materials that are used as freestanding membranes are done as films clamped to substrates or in the bulk form. This thesis focuses on the synthesis and fabrication as well as electrical studies of free standing ultrathin < 40nm oxide membranes. It also is one of the first demonstrations for electrically probing nanoscale freestanding oxide membranes. Fabrication of such membranes is non-trivial as oxide materials are often brittle and difficult to handle. Therefore, it requires an understanding of thin plate mechanics coupled with controllable thin film deposition process. Taking things a step further, to electrically probe these membranes required design of complex device architecture and extensive optimization of nano-fabrication processes. The challenges and optimized fabrication method of such membranes are demonstrated. Three materials are probed in this study, VO2, TiO2, and CeO2. VO2 for understanding structural considerations for electronic phase change and nature of ionic liquid gating, TiO2 and CeO2 for understanding surface conduction properties and surface chemistry. The VO2 study shows shift in metal-insulator transition (MIT) temperature arising from stress relaxation and opening of the hysteresis. The ionic liquid gating studies showed reversible modulation of channel resistance and allowed distinguishing bulk process from the surface effects. Comparing the ionic liquid gating experiments to hydrogen doping experiments illustrated that ionic liquid gating can be a surface limited electrostatic effect, if the critical voltage threshold is not exceeded TiO2 study shows creation of non-stoichiometric forms under ion milling. Utilizing focused ion beam milling, thin membranes of TixOy of 100-300 nm thickness have been created. TEM studies indicated polycrystallinity and presence of twins in the FIB-milled nanowalls. Compositional analysis in the transmission electron microscope also showed reduced content of oxygen, confirming non-stoichiometry. Temperature dependence of the electrical resistivity of the nanowall showed semiconducting behavior with an activation energy different from that of TiO2 single crystals and was attributed to formation of TinO2n-1 phases after FIB processing. The CeO2 study involved high temperature conductivity studies on substrate-free self-supported nano-crystalline ceria membranes up to 800 K. Increasing conductivity with oxygen partial pressure directly opposing the behavior of thin film devices ‘clamped’ by substrate has been observed. This illustrate that the relaxed nature of free standing membranes, and increased surface to volume ratio enables more sensitive electrical response to oxygen adsorption which could have implications for their use in oxygen storage devices, solid oxide fuel cells, and chemical sensors. The work in this thesis advances the understanding of materials in freestanding membrane form and advances fabrication techniques that have not been explored before, having implications for sensors, actuators, SOFC, memristors, and physics of quasi-2D materials.
APA, Harvard, Vancouver, ISO, and other styles
20

Thorat, Ruhi P. "Opto-Electronic Properties of Self-Contacted MoS2 Monolayer Devices." Ohio University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1512731597427663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Iyer, Venkatraman 1967. "Backside charging of CCDs." Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/288934.

Full text
Abstract:
Backside illuminated thinned CCDs have the highest response in the UV and blue spectral region. Their use in detectors is limited due to the instability of the CCD. A low temperature oxide nearly 30 Å thick is grown on the acid thinned backside to tie up dangling bonds. The oxide carries fixed positive charges that attract and trap photogenerated electrons. A permanent and stable backside charging procedure is necessary to create a negative bias that will drive electrons to the frontside collection wells. We have shown chemisorption charging to be a novel method to permanently charge CCDs. The catalytic nature of certain metals are exploited to chemisorb oxygen as negative atomic species at the metal/oxide interface. Charging is shown to occur by depositing a thin film 10 Å of platinum on the backside. No tunneling occurs because of the thick oxide. The Passivated Platinum Film (PPtF) which utilizes a hafnium oxide antireflection coating to passivate the platinum is an effective process, but it is sensitive to the environment and discharges quickly upon hydrogen exposure. A silver catalytic coating is shown to be far superior to other charging techniques. Silver irreversibly chemisorbs oxygen and hydrogen is not dissociatively adsorbed except at temperatures < 100°K. High quantum efficiencies have been recorded for the UV-blue ranges. A slight drop is seen at cold temperatures due to interaction of water with oxygen to form hydroxyl ions. No change in QE is seen upon exposure to hydrogen or during outgassing. Silver is also one of the most transparent metals and easily deposited by evaporation. We therefore have developed a charging process which is nearly ideal for CCD imaging.
APA, Harvard, Vancouver, ISO, and other styles
22

Remillard, Stephen Keith. "The effects of granularity on the microwave surface impedance of high kappa superconductors." W&M ScholarWorks, 1993. https://scholarworks.wm.edu/etd/1539623844.

Full text
Abstract:
The microwave surface impedance of granular high temperature superconductors is an important figure of merit for technological applications. Because the behavior of the granular materials deviates significantly from that of the ideal defect free superconductors, the loss mechanisms are not fully understood. This dissertation seeks to quantify the contribution of granularity to centimeter wave and millimeter wave losses. By understanding these losses, the superconductive coupling between neighboring grains can also be understood.;The weakly coupled grain model is used as a phenomenological description of the microwave surface impedance. The granular superconducting surface is modelled as an effective resistively shunted Josephson junction. The measured surface impedance is compared to the model by plotting the normalized surface resistance versus the normalized surface reactance.;The model offers a quantitative explanation of many features observed in the surface impedance data including a local maximum in the surface reactance versus static magnetic field. The model also predicts the weaker than quadratic BCS frequency dependence of the surface resistance. The surface impedance of granular superconductors is always observed to saturate in high static magnetic fields. From analysis with the weakly coupled grain model it is concluded that the saturation is due to superconducting microshorts with properties which are independent of magnetic field.;Finally, measurement of surface resistance with an open Fabry-Perot resonator is treated within as a mini-dissertation. The loss mechanisms in the open resonator geometry are considered. The ohmic losses are computed numerically from a vector theory, and Bethe diffraction theory is used to compute a lower limit for losses arising from mode mixing.
APA, Harvard, Vancouver, ISO, and other styles
23

Hou, Kun. "Synthesis and field emission properties of carbon nanostructures." W&M ScholarWorks, 2008. https://scholarworks.wm.edu/etd/1539623523.

Full text
Abstract:
This dissertation focuses on developing carbon nanostructures for application as the electron emissive material in novel back-gated triode field emission devices. The synthesis, characterization, and field emission properties of carbon nanostructures, including 1-D carbon nanofibers (CNF), 2-D carbon nanosheets (CNS), and chromium oxide coated carbon nanosheets (CrOx-CNS), are presented in this work.;First, we have fabricated aligned carbon nanofiber based back-gated triode field emission devices and confirmed the operation of these devices. 1-D carbon nanofibers were directly synthesized on blank TiW substrates using direct current plasma enhanced chemical vapor deposition. It was found that the morphology of carbon nanofibers could be tuned from spaghetti-like to aligned by adjusting the applied plasma power. Field emission properties of spaghetti-like and aligned carbon nanofibers on blank TiW substrates were studied using the cartridge holder assembly. Results demonstrated that spaghetti-like carbon nanofibers had better field emission performance than aligned carbon nanofibers, however, the electrostatic simulation of the triode device demonstrated that aligned carbon nanofibers should yield the best device performance.;Second, we have demonstrated that carbon nanosheets, a 2-D carbon nanostructure developed by our group, were a competitive electron emissive material for application as the cold cathode in vacuum microelectronic devices. Carbon nanosheets were synthesized on a variety of substrates, without the need for catalysts, by radio frequency plasma enhanced chemical vapor deposition. Materials characterization results revealed that carbon nanosheets consisting of vertically oriented ultra-thin graphitic sheets terminating with 1-3 graphene layers were hundreds of nanometers in length and height but less than 4 nm in thickness. By using the diode holder assembly, field emission properties of carbon nanosheets were studied from a broad perspective, including turn-on and threshold field, maximum total current, emission lifetime and stability, and emission uniformity. The results revealed that the threshold field of nanosheets ranged from 3.5 to 5.2 V/mum, which was in the same range as 1-D carbon nanotubes and 3-D diamond. Moreover, the lifetime of nanosheets showed milliampere current emission (1.5 mA in a dc mode and 13 mA in a slow pulse mode) for hundreds of hours without significant current degradation after the conditioning process. However, the emission uniformity of nanosheets was quite poor due to the existence of "hot runners" during PEEM and FEEM observations. Further, the effectiveness of carbon nanosheet based back-gated triode field emission device was briefly studied.;Third, we have demonstrated that the emission uniformity of nanosheets could be improved by incorporating a thin chromium oxide coating. The chromium oxide coated carbon nanosheets were fabricated by vacuum evaporating thin chromium films on carbon nanosheets and sequentially exposing them to the atmosphere. The stoichiometry of the oxide was estimated to be 0.37, very close to Cr2O3. PEEM and FEEM observations showed excellent emission uniformity of chromium oxide coated carbon nanosheets. The field emission properties of chromium oxide coated carbon nanosheets were dependent on the coating thickness. The enhanced field emission performance of chromium oxide coated carbon nanosheets was observed with an appropriate thickness (from 1.5 nm to 15 nm). An explanation for this thickness dependence is suggested.
APA, Harvard, Vancouver, ISO, and other styles
24

Burwell, Edwin Dudley IV. "A MICROPLASMA-BASED SPUTTERING SYSTEM FOR DIRECT-WRITE, MICROSCALEFABRICATION OF THIN-FILM METAL STRUCTURES." Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1449545772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ruskell, Todd Gary 1969. "Semiconductor modification and characterization with a scanning probe microscope." Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/282152.

Full text
Abstract:
The capabilities of a commercially available atomic force microscope system have been expanded to include sub-picoampere measurements of local surface conductivity. This multiple mode analysis tool is capable of providing local I/V curves, current maps at a constant voltage, or voltage maps at a constant current, simultaneously with the usual topographic data obtained for a given sample. The resulting electrical maps and local I/V curves from several samples are presented, and their interpretation discussed. Additionally, this system has been used for field-induced silicon oxide growth and, for the first time, silicon nitride growth. The mechanism for both SiO2 and Si3 growth is explored, revealing the possibility of precisely controlling the uniformity of the lithographed features.
APA, Harvard, Vancouver, ISO, and other styles
26

Ji, Zhonghang. "Exploring Two-Dimensional Graphene and Silicene in Digital and RF Applications." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1576345750912449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhang, Ningjiao. "Low Frequency Noise Characterization of AlGaN/GaN High Electron Mobility Transistors." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366369049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Shakya, Bijayandra. "Magneto-Optical Properties of One-Dimensional Photonic Crystals." Youngstown State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1329155177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pan, Jie. "UNDERSTANDING ELECTRICAL CONDUCTION IN LITHIUM ION BATTERIES THROUGH MULTI-SCALE MODELING." UKnowledge, 2016. http://uknowledge.uky.edu/cme_etds/62.

Full text
Abstract:
Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si electrodes with high current efficiency and durability through a fundamental understanding of the ionic and electronic conduction in Si and its SEI. Multi-scale physical and chemical processes occur in the electrode during charging and discharging. This thesis, thus, focuses on multi-scale modeling, including developing new methods, to help understand these coupled physical and chemical processes. For example, we developed a new method based on ab initio molecular dynamics to study the effects of stress/strain on Li ion transport in amorphous lithiated Si electrodes. This method not only quantitatively shows the effect of stress on ionic transport in amorphous materials, but also uncovers the underlying atomistic mechanisms. However, the origin of ionic conduction in the inorganic components in SEI is different from that in the amorphous Si electrode. To tackle this problem, we developed a model by separating the problem into two scales: 1) atomistic scale: defect physics and transport in individual SEI components with consideration of the environment, e.g., LiF in equilibrium with Si electrode; 2) mesoscopic scale: defect distribution near the heterogeneous interface based on a space charge model. In addition, to help design better artificial SEI, we further demonstrated a theoretical design of multicomponent SEIs by utilizing the synergetic effect found in the natural SEI. We show that the electrical conduction can be optimized by varying the grain size and volume fraction of two phases in the artificial multicomponent SEI.
APA, Harvard, Vancouver, ISO, and other styles
30

Roberts, Anthony M. "Implementing a Piezoelectric Transformer for a Ferroelectric Phase Shifter Circuit." Cleveland State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=csu1337025849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Novita, Deassy I. "Evidence for Intermediate Phase in Solid Electrolyte Glasses." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1234751813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ghosh, Souvik. "ATMOSPHERIC-PRESSURE in situ PLASMA REDUCTION AND PATTERNING OF METAL-ION CONTAINING POLYMERS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1490872201148598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Recht, Daniel. "Energetic Beam Processing of Silicon to Engineer Optoelectronically Active Defects." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10305.

Full text
Abstract:
This thesis explores ways to use ion implantation and nanosecond pulsed laser melting, both energetic beam techniques, to engineer defects in silicon. These defects are chosen to facilitate the use of silicon in optoelectronic applications for which its indirect bandgap is not ideal. Chapter 2 develops a kinetic model for the use of point defects as luminescence centers for light-emitting diodes and demonstrates an experimental procedure capable of high-throughput screening of the electroluminescent properties of such defects. Chapter 3 discusses the dramatic change in optical absorption observed in silicon highly supersaturated (i.e., hyperdoped) with the chalcogens sulfur, selenium, and tellurium and reports the first measurements of the optical absorption of such materials for photon energies greater than the bandgap of silicon. Chapter 3 examines the use of silicon hyperdoped with chalcogens in light detectors and concludes that while these devices display strong internal gain that is coupled to a particular type of surface defect, hyperdoping with chalcogens does not lead directly to measurable sub-bandgap photoconductivity. Chapter 4 considers the potential for Silicon to serve as the active material in an intermediate-band solar cell and reports experimental progress on two proposed approaches for hyperdoping silicon for this application. The main results of this chapter are the use of native-oxide etching to control the surface evaporation rate of sulfur from silicon and the first synthesis of monocrystalline silicon hyperdoped with gold.
Engineering and Applied Sciences
APA, Harvard, Vancouver, ISO, and other styles
34

Junaghadwala, Sakina Mohsin. "Metal Modified Ge-Se Glass Films and Their Potential for Nanodipole Junctionless Photovoltaics." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1320061322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Prabhakar, Tejas. "Study of Earth Abundant TCO and Absorber Materials for Photovoltaic Applications." University of Toledo / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1382269621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ning, Ding. "Analytical and Numerical Models of Multilayered Photonic Devices." University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1207712683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Parsa, Nitin. "MILLIMETER-WAVE FARADAY ROTATION FROM FERROMAGNETIC NANOWIRES AND MAGNETOELASTIC MATERIALS." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1561468969375731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Borra, Venkata Shesha Vamsi. "Whiskers: The Role of Electric Fields in the Formation Mechanism and Methods for Whisker Growth Mitigation." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1513381893591481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Liu, Xilan. "Polymer Photodetectors: Device Structure, Interlayer and Physics." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1384334220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Speer, Kevin M. "The Silicon Carbide Vacuum Field-Effect Transistor (VacFET)." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1301445427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wagner, Michael Christopher. "An Investigation of the Optical and Physical Properties of Lead Magnesium Niobate-Lead Titanate Ceramic." University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1608306745644145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jiang, Nanke. "Reactive Sputtering Deposition and Characterization of Zinc Nitride and Oxy-Nitride Films for Electronic and Photovoltaic Applications." University of Toledo / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1365165773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Shoron, Omor Faruk. "Extreme Electron Density Perovskite Oxide Heterostructures for Field Effect Transistors." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429714269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Way, Austin J. "Fabrication of a-Si and a-InGaN Photovoltaics by Plasma Sputtering." Ohio University Honors Tutorial College / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors1398270155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bhallamudi, Vidya Praveen. "Spins in heterogeneous landscapes: Consequences for transport and imaging." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306871981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zamani, Hamidreza. "3C-SiC Multimode Microdisk Resonators and Self-Sustained Oscillators with Optical Transduction." Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1429088651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Almansour, Amjad Saleh Ali. "USE OF SINGLE TOW CERAMIC MATRIX MINICOMPOSITES TO DETERMINE FUNDAMENTAL ROOM AND ELEVATED TEMPERATURE PROPERTIES." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron148640184494135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Middendorf, John Raymond. "Novel Devices and Components for THz Systems." Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1400252710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ongkodjojo, Ong Andojo. "Electrohydrodynamic Microfabricated Ionic Wind Pumps for Electronics Cooling Applications." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1354638816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Yang, Yuan. "Influence of Chemical Doping on Microstructures and Superconducting Properties of MgB2 Wires and Bulk Samples." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1469187563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography