Academic literature on the topic 'Electrical loads'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrical loads.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electrical loads"
Saidkhodjaev, A. G., B. Kh Ametova, and M. M. Mamutov. "Intellectualization of determination of electrical loads in city electric networks." E3S Web of Conferences 139 (2019): 01072. http://dx.doi.org/10.1051/e3sconf/201913901072.
Full textMicu, Marian Bogdan, Maricel Adam, and Mihai Andruscă. "Nonintrusive Electrical Loads Pattern Determination." Bulletin of the Polytechnic Institute of Iași. Electrical Engineering, Power Engineering, Electronics Section 67, no. 1 (March 1, 2021): 65–74. http://dx.doi.org/10.2478/bipie-2021-0005.
Full textGe, Yuxue, Bifeng Song, Yang Pei, Yves Mollet, and Johan Gyselinck. "A fuzzy logic based method for fault tolerant hierarchical load management of more electric aircraft." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 10 (November 13, 2018): 3846–56. http://dx.doi.org/10.1177/0954410018807598.
Full textYosefin, Yosefin. "Short Term Load Forecasting Menggunakan Metode Koefisien." KILAT 9, no. 1 (April 25, 2020): 28–35. http://dx.doi.org/10.33322/kilat.v9i1.761.
Full textWiens, Marcus, Sebastian Frahm, Philipp Thomas, and Shoaib Kahn. "Holistic simulation of wind turbines with fully aero-elastic and electrical model." Forschung im Ingenieurwesen 85, no. 2 (April 30, 2021): 417–24. http://dx.doi.org/10.1007/s10010-021-00479-6.
Full textSOLUYANOV, Yury I., Alexander I. FEDOTOV, Yury Ya GALITSKY, Natalya V. CHERNOVA, and Azat R. AKHMETSHIN. "Updating the Standard Specific Electric Loads of Apartment Buildings in the Republic of Tatarstan." Elektrichestvo 6, no. 6 (2021): 62–71. http://dx.doi.org/10.24160/0013-5380-2021-6-62-71.
Full textSalilih, Elias M., and Yilma T. Birhane. "Modeling and Analysis of Photo-Voltaic Solar Panel under Constant Electric Load." Journal of Renewable Energy 2019 (August 1, 2019): 1–10. http://dx.doi.org/10.1155/2019/9639480.
Full textKovernikova, L., and V. C. Luong. "Nonlinear load modeling for analysis of non-sinusoidal conditions in electrical networks based on measurements of harmonic parameters." Energy Systems Research, no. 3(15) (November 30, 2021): 5–20. http://dx.doi.org/10.38028/esr.2021.03.0001.
Full textSaidkhodjaev, A. G., A. M. Najimova, and A. K. Bijanov. "Method for determining the maximum load of consumers in city power supply systems." E3S Web of Conferences 139 (2019): 01078. http://dx.doi.org/10.1051/e3sconf/201913901078.
Full textShabanov, Vitalii, Albina Rakhimberdina, and Ilya Yanikiev. "ON THE ISSUE OF DETERMINING THE ELECTRICAL LOADS OF TRANSFORMER SUBSTATIONS." Electrical and data processing facilities and systems 18, no. 1 (2022): 114–22. http://dx.doi.org/10.17122/1999-5458-2022-18-1-114-122.
Full textDissertations / Theses on the topic "Electrical loads"
Louie, Kwok-Wai. "Aggregation of voltage and frequency dependent electrical loads." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0020/NQ46375.pdf.
Full textIbrahim, Sherine Taher Mahmoud. "Simulation of air-conditioning loads in electrical power systems." Thesis, University of Bath, 1997. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362265.
Full textGutierrez, Manuel S. M. Massachusetts Institute of Technology. "An energy buffer for constant power loads." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111914.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 111-113).
Constant power loads (CPLs) are a class of loads steadily increasing in use. They are present whenever a load is regulated to maintain constant output power, such as with LED drivers in high quality lighting that is impervious to input fluctuations. Because CPLs exhibit a negative incremental input impedance, they pose stability concerns in DC and AC systems. This thesis presents a power converter for a constant power LED bulb that presents a favorable input impedance to the grid. The use of an energy buffer allows the converter to draw variable power in order to resemble a resistive load, while the output consumes constant power. A switched-mode power supply consisting of a cascaded boost and buck converter accomplishes this by storing energy in the boost stage output capacitor. Experimental results demonstrate that the converter exhibits a resistive input impedance at frequencies over 0.5 Hz while maintaining constant power to the LED load.
by Manuel Gutierrez.
S.M.
Chang, Hua. "Smart electronic loads for harmonic compensation in future electrical distribution systems." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/63569.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Olsson, John C. (John Carl) 1979. "High-voltage wideband switching amplifier for capacitive loads." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/60757.
Full textAlso issued in leaves.
Includes bibliographical references (p. 110-111).
Why is it that arbitrarily driving imaginary loads has always required lots of power? In this thesis, a highly efficient switching amplifier class is developed that is capable of delivering energy to, as well as taking energy from, a capacitive load in a finely controllable, dissipationless manner. Several control schemes were investigated, and a simple version of the amplifier was then built and tested using both synchronous and asynchronous controllers. The amplifier proved to be capable of driving high voltage, high frequency signals across a capacitive transducer with extremely low total power consumption and very low distortion.
by John C. Olsson.
M.Eng.
Leong, Ben Wing Lup. "Dynamics of RC trees with distributed constant-power loads." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/42765.
Full textIncludes bibliographical references (leaf 145).
by Ben Wing Lup Leong.
M.Eng.
Boström, Cecilia. "Electrical Systems for Wave Energy Conversion." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-140116.
Full textFelaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 727
Ortega-Calderon, Jose Enrique. "Modelling and analysis of electric arc loads using harmonic domain techniques." Thesis, University of Glasgow, 2008. http://theses.gla.ac.uk/445/.
Full textKristensson, Jonathan. "Load Classification with Machine Learning : Classifying Loads in a Distribution Grid." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-395280.
Full textGlamheden, Mikael. "Stabilization of Constant Power Loads Using Model Predictive Control." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284685.
Full textDetta examensarbete avhandlar stabilisering av konstanta effektlaster (CPL)matade med dc-effekt via ett ingångfilter, med hjälp av modellprediktiv reglering(MPC). Drivsystem i tåg använder vanligen elektriska motorer varsmoment regleras hårt utav effektomriktare. Dessa system beter sig ofta somen CPL. När en CPL sammankopplas med ett ingångfilter kan det leda till ettstabilitetsproblem känt som the negative impedance instability problem (ung.negativ-impedans-instabilitetsproblemet). Dagens främsta regulatorer angriperdetta problem genom att använda klassiska regulatorer baserade på optimeringi frekvensdomän, till exempel H1. I detta examensarbete föreslås iställeten linjär parametervarierande modellprediktiv regulator (LPV-MPC). Dennaavancerade reglermetod löser stabilitetsproblemet och kan samtidigt hanterasignalbegränsningar explicit. Signalbegränsningar är något som ofta finnsi tillämpningar som involverar kraftomriktare. Regulatorn utvärderas i MATLAB/Simulink samt i en mjukvarusimuleringsmiljö. Regulatorn har dessutomförverkligats i en hårvarusimuleringsmiljö och testats i ett labb för kraftelektronik.Teoretiska resultat visar på förbättrad prestanda i jämförelse med konventionellaH1-regulatorer, vad gäller dämpning och användning av styrsignal,i vissa arbetsfall när styrsignalen är begränsad. Resultaten kan användassom ett riktmärke som visar på gränser för teoretisk prestanda vid design avandra regulatorer.
Books on the topic "Electrical loads"
Piette, Mary Ann. Learning from experiences with thermal storage:managing electrical loads in buildings. Sittard, Netherlands: Centre for the Analysis and Dissemination of Demonstrated Energy Technologies, CADDET Analysis Support Unit, 1990.
Find full textAppelbaum, Joseph. Restrictive loads powered by separate or by common electrical sources. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Find full textPractical calculations for electricians: Step-by-step calculations & formulas for : branch circuits, conductors, boxes & raceways, voltage drop, AC motors, dwelling loads, commercial loads : based on the 2005 National Electrical Code. Carson City, Nev: Nevada Tech Publishers, 2006.
Find full textAlanen, Raili. Analysis of electrical energy consumption and neural network estimation and forecasting of loads in a paper mill. Espoo [Finland]: Technical Research Centre of Finland, 2000.
Find full textWillis, H. Lee. Spatial electric load forecasting. 2nd ed. New York: Marcel Dekker, 2002.
Find full textSoliman, S. A. Electrical load forecasting: Modeling and model construction. Amsterdam: Butterworth-Heinemann, 2010.
Find full textM, Alkandari Ahmad, ed. Electrical load forecasting: Modeling and model construction. Amsterdam: Butterworth-Heinemann, 2010.
Find full textPenin, A. Analysis of Electrical Circuits with Variable Load Regime Parameters. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35366-7.
Full textBook chapters on the topic "Electrical loads"
Altgilbers, Larry L., Igor Grishnaev, Ivor R. Smith, Yuriy Tkach, Mark D. J. Brown, Bucur M. Novac, and Iaroslav Tkach. "Electrical Loads." In Magnetocumulative Generators, 175–231. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1232-4_5.
Full textPatrick, Dale R., Stephen W. Fardo, and Brian W. Fardo. "Fundamentals of Electrical Loads." In Electrical Power Systems Technology, 309–21. 4th ed. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003207429-15.
Full textMelkebeek, Jan A. "Induction Machines with Pulsating Loads." In Electrical Machines and Drives, 569–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72730-1_25.
Full textAli Taher, Murad Ahmed, and Ali Abdo Mohammed Al-Kubati. "Conceptual Design System for Monitoring Electrical Loads." In Informatics Engineering and Information Science, 321–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25483-3_26.
Full textTania, H. M., Jagadish Kumar Patra, Vinson John, D. Elangovan, and G. Arunkumar. "Four Level Boost Converter for Linear Loads." In Lecture Notes in Electrical Engineering, 369–76. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1540-3_39.
Full textBarooah, Prabir. "Virtual Energy Storage from Air Conditioning Loads." In Lecture Notes in Electrical Engineering, 421–32. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9119-5_35.
Full textRaimúndez, Cesáreo, and José Luis Camaño. "Transporting Hanging Loads Using a Scale Quad-Rotor." In Lecture Notes in Electrical Engineering, 471–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10380-8_45.
Full textM’Sirdi, N. K., A. Naamane, A. Boukara, and M. Benabdellatif. "Electrical Loads of a Smart House and Consumption Analyses." In Lecture Notes in Electrical Engineering, 771–81. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1405-6_89.
Full textZhang, Hui. "Aerodynamic Loads Analysis for a Maneuvering Aircraft in Transonic Flow." In Lecture Notes in Electrical Engineering, 176–200. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_15.
Full textRamachandran, T., Sanjiv Kumar, and Savita. "Automatic Control of Electrical Loads Based on the Atmospheric Conditions." In Lecture Notes in Electrical Engineering, 879–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5341-7_66.
Full textConference papers on the topic "Electrical loads"
Aichinger, Richard, Nelson Bingel, Gary E. Bowles, Habib J. Dagher, James W. Davidson, Fouad Fouad, Magdi Ishac, et al. "3.0 Loads." In Electrical Transmission in a New Age Conference. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40642(253)8.
Full textSrinivasa Rao, Y., and Mukul Chandorkar. "Electrical load emulator for unbalanced loads and with power regeneration." In 2012 IEEE 21st International Symposium on Industrial Electronics (ISIE). IEEE, 2012. http://dx.doi.org/10.1109/isie.2012.6237105.
Full textKirpichnikova, I. M., A. YU Uskov, and A. I. Tsimbol. "Improved Method of Electrical Loads Switching." In 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). IEEE, 2020. http://dx.doi.org/10.1109/icieam48468.2020.9112087.
Full textShvedov, Galaktion V., Ivan A. Morsin, Alyona S. Demidenko, Svetlana A. Kudelina, and Grigorij A. Parfenov. "Estimated Loads of Household Electrical appliances." In 2022 4th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). IEEE, 2022. http://dx.doi.org/10.1109/reepe53907.2022.9731386.
Full textMatanov, Nikolay, and Ivan Angelov. "Electrical loads and profiles of public buildings." In 2017 15th International Conference on Electrical Machines, Drives and Power Systems (ELMA). IEEE, 2017. http://dx.doi.org/10.1109/elma.2017.7955439.
Full textMoya Ch, Francisco D., Juan C. Lopez A, and Luiz C. P. da Silva. "Model for smart building electrical loads scheduling." In 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, 2016. http://dx.doi.org/10.1109/eeeic.2016.7555639.
Full textCarvalho, M. C. A., Y. A. S. Gomes, M. Z. Fortes, and F. Sass. "Power quality — Regulation of residential electrical loads." In 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE) [VII Brazilian Electrical Systems Symposium (SBSE)]. IEEE, 2018. http://dx.doi.org/10.1109/sbse.2018.8395872.
Full textBohorquez, Veronica B. "Fast Varying Loads." In 2007 9th International Conference on Electrical Power Quality and Utilisation. IEEE, 2007. http://dx.doi.org/10.1109/epqu.2007.4424079.
Full textNedeltcheva, Stefka, G. Stamov, G. Notton, P. Poggi, and M. Matsankov. "Simulation of electrical loads in electrical network nodes with decentralized productions." In Electric Drives Joint Symposium (ELECTROMOTION). IEEE, 2009. http://dx.doi.org/10.1109/electromotion.2009.5259105.
Full textFokeev, Aleksander, Bullat Subgatullin, and Yossef Eslam Ahmed. "Methods of electrical loads calculation and selection of electrical power equipment." In 2019 International Conference on Electrotechnical Complexes and Systems (ICOECS). IEEE, 2019. http://dx.doi.org/10.1109/icoecs46375.2019.8949966.
Full textReports on the topic "Electrical loads"
Y.D. Shane. Standby Generators for North Portal Electrical Loads (SCPB:N/A). Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/893913.
Full textHammerstrom, Donald J., Ross T. Guttromson, Ning Lu, Paul A. Boyd, Daniel Trudnowski, David P. Chassin, Christopher A. Bonebrake, and James M. Shaw. Detection of Periodic Beacon Loads in Electrical Distribution Substation Data. Office of Scientific and Technical Information (OSTI), May 2006. http://dx.doi.org/10.2172/883218.
Full textGentile-Polese, L., S. Frank, M. Sheppy, C. Lobato, E. Rader, J. Smith, and N. Long. Monitoring and Characterization of Miscellaneous Electrical Loads in a Large Retail Environment. Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1126300.
Full textGreenblatt, Jeffery B., Stacy Pratt, Henry Willem, Erin Claybaugh, Louis-Benoit Desroches, Bereket Beraki, Mythri Nagaraju, Sarah K. Price, and Scott J. Young. Field data collection of miscellaneous electrical loads in Northern California: Initial results. Office of Scientific and Technical Information (OSTI), February 2013. http://dx.doi.org/10.2172/1172006.
Full textBarley, C. D., C. Haley, R. Anderson, and L. Pratsch. Building America System Research Plan for Reduction of Miscellaneous Electrical Loads in Zero Energy Homes. Office of Scientific and Technical Information (OSTI), November 2008. http://dx.doi.org/10.2172/944458.
Full textHail, John C., Daryl R. Brown, Jeffrey J. McCullough, and Ronald M. Underhill. Final Report Recommended Actions to Reduce Electrical Peak Loads at the Marine Corps Air Station at Camp Pendleton, California. Office of Scientific and Technical Information (OSTI), May 2001. http://dx.doi.org/10.2172/949181.
Full textPratt, R., and B. Ross. Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10105371.
Full textGiamberardini, S. J. 308 Building electrical load list and panel schedules. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10189688.
Full textDevine, M., and E. I. Baring-Gould. Alaska Village Electric Load Calculator. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/15011687.
Full textRauch, Emily M. Assessing and Reducing Miscellaneous Electric Loads (MELs) in Banks. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1034576.
Full text