Academic literature on the topic 'Electrical properties of graphene layer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrical properties of graphene layer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electrical properties of graphene layer"
Suh, JY, SE Shin, and DH Bae. "Electrical properties of polytetrafluoroethylene/few-layer graphene composites fabricated by solid-state processing." Journal of Composite Materials 51, no. 18 (October 13, 2016): 2565–73. http://dx.doi.org/10.1177/0021998316674349.
Full textShul’zhenko, Alexandr A., Lucyna Jaworska, Alexandr N. Sokolov, Vladislav G. Gargin, and Ludmila A. Romanko. "ELECTRICALLY CONDUCTIVE POLYCRYSTALLINE SUPER HARD MATERIAL BASED ON DIAMOND AND n-LAYER GRAPHENES." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 59, no. 8 (July 17, 2018): 69. http://dx.doi.org/10.6060/tcct.20165908.25y.
Full textSonde, Sushant, Carmelo Vecchio, Filippo Giannazzo, Rositza Yakimova, Emanuele Rimini, and Vito Raineri. "Local Electrical Properties of the 4H-SiC(0001)/Graphene Interface." Materials Science Forum 679-680 (March 2011): 769–76. http://dx.doi.org/10.4028/www.scientific.net/msf.679-680.769.
Full textCunha, Eunice, and Maria Paiva. "Composite Films of Waterborne Polyurethane and Few-Layer Graphene—Enhancing Barrier, Mechanical, and Electrical Properties." Journal of Composites Science 3, no. 2 (April 3, 2019): 35. http://dx.doi.org/10.3390/jcs3020035.
Full textGholamalizadeh, Naghmeh, Saeedeh Mazinani, Majid Abdouss, Ali Mohammad Bazargan, and Fataneh Fatemi. "Efficient and Direct Exfoliation of High-Quality Graphene Layers in Water from Different Graphite Sources and Its Electrical Characterization." Nano 16, no. 07 (June 24, 2021): 2150079. http://dx.doi.org/10.1142/s179329202150079x.
Full textIqbal, M. Z., M. F. Khan, M. W. Iqbal, and Jonghwa Eom. "Tuning the electrical properties of exfoliated graphene layers using deep ultraviolet irradiation." J. Mater. Chem. C 2, no. 27 (2014): 5404–10. http://dx.doi.org/10.1039/c4tc00522h.
Full textKim, Yeon Jae, Dong Hyun Kim, Jung Soo Kim, Jae Ho Jang, Uoo Chang Jung, and Dae Geun Nam. "Electro and Surface Properties of Graphene-Modified Stainless Steel for PEMFC Bipolar Plates." Advanced Materials Research 905 (April 2014): 167–70. http://dx.doi.org/10.4028/www.scientific.net/amr.905.167.
Full textSchmidt, U., T. Dieing, W. Ibach, and O. Hollricher. "A Confocal Raman-AFM Study of Graphene." Microscopy Today 19, no. 6 (October 28, 2011): 30–33. http://dx.doi.org/10.1017/s1551929511001192.
Full textLiu, Li-Hong, Gopichand Nandamuri, Raj Solanki, and Mingdi Yan. "Electrical Properties of Covalently Immobilized Single-Layer Graphene Devices." Journal of Nanoscience and Nanotechnology 11, no. 2 (February 1, 2011): 1288–92. http://dx.doi.org/10.1166/jnn.2011.3886.
Full textLi, Xiaomeng, Xiufang Chen, Xiangang Xu, Xiaobo Hu, and Zhiyuan Zuo. "Enhanced Performance of a Visible Light Detector Made with Quasi-Free-Standing Graphene on SiC." Materials 12, no. 19 (October 2, 2019): 3227. http://dx.doi.org/10.3390/ma12193227.
Full textDissertations / Theses on the topic "Electrical properties of graphene layer"
Piastek, Jakub. "Příprava grafenových vrstev pokrytých Ga atomy a charakterizace jejich elektrických vlastností." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231957.
Full textSkulason, Helgi. "Optical properties of few and many layer graphene flakes." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=67024.
Full textCette thèse rapporte, pour la première fois, des mesures des propriétés optiques du graphene en fonction du nombre de couches et ce allant jusqu'à 700 couches. La réflexion et la transmission optique ainsi que la microscopie par force atomique ont été utilisés sur du graphene déposé sur de la vitre. La conductance optique universelle du graphene provenant des transitions entre les bandes pi-pi^* a été utilisée afin de compter jusqu'à 9 couches de graphene avec seulement la microscopie à réflexion optique. Les propriétés optiques du graphene sont bien décrites par un index de réfraction de 1.88-1.59i à 550 nm et ce jusqu'à 90 couches. Pour des échantillons plus épais, nous présentons un modèle servant à calculer la conductance causée par les transitions entre les bandes sigma-sigma^*. En incorporant les deux transitions, nous trouvons un index de 2.70-1.11i à 550 nm, ce qui démontre un bon accord avec les échantillons de graphene de 250-700 couches.
Khrapach, Ivan. "Engineering the electrical properties of graphene materials." Thesis, University of Exeter, 2012. http://hdl.handle.net/10871/8168.
Full textKhodkov, Tymofiy. "Probing the electrical properties of multilayer graphene." Thesis, University of Exeter, 2012. http://hdl.handle.net/10036/4352.
Full textBryan, Sarah Elizabeth. "Structural and electrical properties of epitaxial graphene nanoribbons." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47583.
Full textSmith, Anderson David. "Strain Effects on Electrical Properties of Suspended Graphene." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-52913.
Full textJones, Jason David. "Modification of Graphene Properties: Electron Induced Reversible Hydrogenation, Oxidative Etching and Layer-by-layer Thinning." Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc115101/.
Full textMarashdeh, Wajeeh. "Relaxation Behavior and Electrical Properties of Polyimide/Graphene Nanocomposite." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850361812632.
Full textRyan, Shawn David. "Bifurcation and Boundary Layer Analysis for Graphene Sheets." University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1239646272.
Full textMalekpour, Hoda. "Optothermal Raman Studies of Thermal Properties of Graphene Based Films." Thesis, University of California, Riverside, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10252873.
Full textEfficient thermal management is becoming a critical issue for development of the next generation of electronics. As the size of electronic devices shrinks, the dissipated power density increases, demanding a better heat removal. The discovery of graphene’s unique electrical and thermal properties stimulated interest of electronic industry to development of graphene based technologies. In this dissertation, I report the results of my investigation of thermal properties of graphene derivatives and their applications in thermal management. The dissertation consists of three parts. In the first part, I investigated thermal conductivity of graphene laminate films deposited on thermally insulating polyethylene terephthalate substrates. Graphene laminate is made of chemically derived graphene and few layer graphene flakes packed in overlapping structure. Two types of graphene laminate were studied: as deposited and compressed. The thermal conductivity of the laminate was found to be in the range from 40 W/mK to 90 W/mK at room temperature. It was established that the average size and the alignment of graphene flakes are parameters dominating the heat conduction. In the second part of this dissertation, I investigated thermal conductivity of chemically reduced freestanding graphene oxide films. It was found that the in-plane thermal conductivity of graphene oxide can be increased significantly using chemical reduction and temperature treatment. Finally, I studied the effect of defects on thermal conductivity of suspended graphene. The knowledge of the thermal conductivity dependence on the concentration of defects can shed light on the strength of the phonon - point defect scattering in two-dimensional materials. The defects were introduced to graphene in a controllable way using the low-energy electron beam irradiation. It was determined that as the defect density increases the thermal conductivity decreases down to about 400 W/mK, and then reveal saturation type behavior. The thermal conductivity dependence on the defect density was analyzed using the Boltzmann transport equation and molecular dynamics simulations. The obtained results are important for understanding phonon transport in two-dimensional systems and for practical applications of graphene in thermal management.
Books on the topic "Electrical properties of graphene layer"
Birdi, K. S. Introduction to electrical interfacial phenomena. Boca Raton: Taylor & Francis, 2010.
Find full textIntroduction to electrical interfacial phenomena. Boca Raton: Taylor & Francis, 2010.
Find full textLiu, Cheng-Hua. Electrical and Optoelectronic Properties of the Nanodevices Composed of Two-Dimensional Materials: Graphene and Molybdenum Disulfide. Springer, 2018.
Find full textLiu, Cheng-Hua. Electrical and Optoelectronic Properties of the Nanodevices Composed of Two-Dimensional Materials: Graphene and Molybdenum Disulfide. Springer, 2019.
Find full textBook chapters on the topic "Electrical properties of graphene layer"
Wolf, E. L. "Physical and Electrical Properties of Graphene." In Applications of Graphene, 1–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03946-6_1.
Full textKhanam, P. Noorunnisa, Deepalekshmi Ponnamma, and M. A. AL-Madeed. "Electrical Properties of Graphene Polymer Nanocomposites." In Graphene-Based Polymer Nanocomposites in Electronics, 25–47. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13875-6_2.
Full textSarto, M. S., G. De Bellis, A. Tamburrano, A. G. D’Aloia, and F. Marra. "Graphene-Based Nanocomposites with Tailored Electrical, Electromagnetic, and Electromechanical Properties." In Graphene Science Handbook, 507–32. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2016. | “2016: CRC Press, 2016. http://dx.doi.org/10.1201/b19642-31.
Full textTripathi, Subodh Kumar, and Rohit Tripathi. "Graphene Properties and Its Utility for High-Frequency Antennas." In Lecture Notes in Electrical Engineering, 409–16. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0749-3_30.
Full textRaval, Bhargav, S. K. Mahapatra, and Indrani Banerjee. "Processing of Graphene Oxide for Enhanced Electrical Properties." In Advanced Battery Materials, 613–44. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119407713.ch12.
Full textRodrigues Vaz, Alfredo, Andrei Alaferdov, Victor Ermakov, and Stanislav Moshkalev. "Conventional and Laser Annealing to Improve Electrical and Thermal Contacts between Few-Layer or Multilayer Graphene and Metals." In Graphene Science Handbook, 25–40. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2016. | “2016: CRC Press, 2016. http://dx.doi.org/10.1201/b19642-3.
Full textPal, Sarika, Y. K. Prajapati, and J. P. Saini. "Analyzing the Sensitivity of Heterostructure of BP-Graphene/TMDC Layer Coated SPR Biosensor." In Lecture Notes in Electrical Engineering, 663–71. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9775-3_61.
Full textBouhfid, Rachid, Hamid Essabir, and Abou el kacem Qaiss. "Graphene-Based Nanocomposites: Mechanical, Thermal, Electrical, and Rheological Properties." In Rheology and Processing of Polymer Nanocomposites, 405–30. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118969809.ch12.
Full textBaah, Marian, and Tommi Kaplas. "Optical and Electrical Properties of Ferric Chloride Doped Graphene." In NATO Science for Peace and Security Series B: Physics and Biophysics, 59–74. Dordrecht: Springer Netherlands, 2019. http://dx.doi.org/10.1007/978-94-024-1687-9_4.
Full textMuhd Zaimi, Nurul Humaira, Amirjan Nawabjan, Shaharin Fadzli Abdul Rahman, and Siti Maherah Hussin. "Effect of Graphene Oxide Nanoparticles on Thermal Properties of Paraffin Wax." In Lecture Notes in Electrical Engineering, 767–81. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2317-5_64.
Full textConference papers on the topic "Electrical properties of graphene layer"
Joshi, P., A. Gupta, P. C. Eklund, and S. A. Tadigadapa. "Electrical properties of back-gated n -layer graphene films." In MOEMS-MEMS 2007 Micro and Nanofabrication, edited by Srinivas A. Tadigadapa, Reza Ghodssi, and Albert K. Henning. SPIE, 2007. http://dx.doi.org/10.1117/12.707654.
Full textMailian, Manuel R., and Aram R. Mailian. "Separation and electrical properties of self-organized graphene/graphite layers." In INTERNATIONAL CONFERENCES AND EXHIBITION ON NANOTECHNOLOGIES AND ORGANIC ELECTRONICS (NANOTEXNOLOGY 2014): Proceedings of NN14 and ISFOE14. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4908583.
Full textDiaham, S., E. Pizzutilo, L. Da Gama Fernandes Vieira, Z. Valdez Nava, J. Y. Chane Ching, E. Flahaut, and D. Fabiani. "Novel electrical conduction properties obtained in few-layer graphene/epoxy nanocomposites." In 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2015. http://dx.doi.org/10.1109/nano.2015.7388640.
Full textIshikura, Taishi, Atsunobu Isobayashi, Daisuke Nishide, Ban Ito, Tatsuro Saito, Takashi Matsumoto, Yuichi Yamazaki, et al. "Electrical properties of 30 nm width bi-layer interconnects of multi layer graphene and Ni." In 2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM). IEEE, 2015. http://dx.doi.org/10.1109/iitc-mam.2015.7325591.
Full textKasry, Amal, George Tulevski, Marcelo A. Kuroda, Ageeth A. Bol, Glenn J. Martyna, Bernhard Menges, Satoshi Oida, Mostafa El Ashry, Matthew Copel, and Libor Vyklicky. "Electrical and optical properties of graphene mono- and multi-layers; towards graphene-based optoelectronics." In 8th International Vacuum Electron Sources Conference and Nanocarbon (2010 IVESC). IEEE, 2010. http://dx.doi.org/10.1109/ivesc.2010.5644444.
Full textHuang, C. W., J. Y. Chen, and W. W. Wu. "Direct Observation of Evolution in Graphene Layers by Electrical Properties." In 2015 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2015. http://dx.doi.org/10.7567/ssdm.2015.ps-13-1.
Full textNakamura, A., and J. Temmyo. "Optical and electrical properties of graphene layers directly-grown by Alcohol-CVD." In 2011 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2011. http://dx.doi.org/10.7567/ssdm.2011.p-13-18.
Full textAlam, Md Hasibul, Khalid Ibne Masood, and Quazi D. M. Khosru. "Effect of biaxial strain on structural and electronic properties of graphene / boron nitride hetero bi-layer structure." In 2014 8th International Conference on Electrical and Computer Engineering (ICECE). IEEE, 2014. http://dx.doi.org/10.1109/icece.2014.7027025.
Full textSojoudi, Hossein, Fernando Reiter, and Samuel Graham. "Transparent Electrodes From Graphene/Single Wall Carbon Nanotube Composites." In ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ipack2013-73158.
Full textKim, Jung Sub, Young Chang Kim, Sang Won Lee, Jeonghan Ko, and Haseung Chung. "Development of a New Laser-Assisted Additive Manufacturing Technology for Hybrid Functionally Graded Material Composites." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-3048.
Full text