Academic literature on the topic 'Electrical transport in semiconductors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrical transport in semiconductors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electrical transport in semiconductors"
CAMPBELL, I. H., and D. L. SMITH. "ELECTRICAL TRANSPORT IN ORGANIC SEMICONDUCTORS." International Journal of High Speed Electronics and Systems 11, no. 02 (June 2001): 585–615. http://dx.doi.org/10.1142/s0129156401000952.
Full textKa, O. "Electrical Transport in Polycrystalline Semiconductors." Solid State Phenomena 37-38 (March 1994): 201–12. http://dx.doi.org/10.4028/www.scientific.net/ssp.37-38.201.
Full textKhan, Arif, and Atanu Das. "Diffusivity-Mobility Relationship for Heavily Doped Semiconductors with Non-Uniform Band Structures." Zeitschrift für Naturforschung A 65, no. 10 (October 1, 2010): 882–86. http://dx.doi.org/10.1515/zna-2010-1017.
Full textPennetta, C., M. Tizzoni, A. Carbone, and L. Reggiani. "Electrical transport and noise in polyacene semiconductors." Journal of Computational Electronics 11, no. 3 (May 30, 2012): 287–92. http://dx.doi.org/10.1007/s10825-012-0407-x.
Full textLiu, Wen. "Research on Charge Transport in One-Dimensional Organic Semiconductors Material." Advanced Materials Research 531 (June 2012): 231–34. http://dx.doi.org/10.4028/www.scientific.net/amr.531.231.
Full textSchöll, Eckehard. "Modeling Nonlinear and Chaotic Dynamics in Semiconductor Device Structures." VLSI Design 6, no. 1-4 (January 1, 1998): 321–29. http://dx.doi.org/10.1155/1998/84685.
Full textGhosh, Aswini. "Electrical transport properties of molybdenum tellurite glassy semiconductors." Philosophical Magazine B 61, no. 1 (January 1990): 87–96. http://dx.doi.org/10.1080/13642819008208653.
Full textMACDONALD, A. H. "ANOMALOUS TRANSPORT IN METALS AND SEMICONDUCTORS." International Journal of Modern Physics B 22, no. 01n02 (January 20, 2008): 120. http://dx.doi.org/10.1142/s0217979208046219.
Full textKhan, Arif, and Atanu Das. "General Diffusivity-Mobility Relationship for Heavily Doped Semiconductors." Zeitschrift für Naturforschung A 64, no. 3-4 (April 1, 2009): 257–62. http://dx.doi.org/10.1515/zna-2009-3-414.
Full textDas, Atanu, and Arif Khan. "The Diffusivity-Mobility Relationship of Heavily Doped Semiconductors Exhibiting a Non-Parabolic Band Structure and Bandgap Narrowing." Zeitschrift für Naturforschung A 62, no. 10-11 (November 1, 2007): 605–8. http://dx.doi.org/10.1515/zna-2007-10-1108.
Full textDissertations / Theses on the topic "Electrical transport in semiconductors"
Straw, Andrew. "A study of electrical transport in two dimensional semiconductors." Thesis, University of Essex, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278532.
Full textBeaudoin, Mario. "Electrical transport properties of n-Type InP." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61237.
Full textCrump, Paul Andrew. "Classical and quantum electrical transport in two dimensional systems." Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319648.
Full textLimketkai, Benjie 1982. "Charge-carrier transport in amorphous organic semiconductors." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43063.
Full textIncludes bibliographical references (p. 101-106).
Since the first reports of efficient luminescence and absorption in organic semiconductors, organic light-emitting devices (OLEDs) and photovoltaics (OPVs) have attracted increasing interest. Organic semiconductors have proven to be a promising material set for novel optical and/or electrical devices. Not only do they have the advantage of tunable properties using chemistry, but organic semiconductors hold the potential of being fabricated cheaply with low temperature deposition on flexible plastic substrates, ink jet printing, or roll-to-roll manufacturing. These fabrication techniques are possible because organic semiconductors are composed of molecules weakly held together by van der Waals forces rather than covalent bonds. Van der Waals bonding eliminates the danger of dangling bond traps in amorphous or polycrystalline inorganic films, but results in narrower electronic bandwidths. Combined with spatial and energetic disorder due to weak intermolecular interactions, the small bandwidth leads to localization of charge carriers and electron-hole pairs, called excitons. Thus, the charge-carrier mobility in organic semiconductors is generally much smaller than in their covalently-bonded, highly-ordered crystalline semiconductor counterparts. Indeed, one major barrier to the use of organic semiconductors is their poor charge transport characteristics. Yet this major component of the operation of disordered organic semiconductor devices remains incompletely understood. This thesis analyzes charge transport and injection in organic semiconductor materials. A first-principles analytic theory that explains the current-voltage characteristics and charge-carrier mobility for different metal contacts and organic semiconductor materials over a wide range of temperatures, carrier densities, and electric field strengths will be developed.
(cont) Most significantly, the theory will enable predictive models of organic semiconductor devices based on physical material parameters that may be determined by experimental measurements or quantum chemical simulations. Understanding charge transport and injection through these materials is crucial to enable the rational design for organic device applications, and also contributes to the general knowledge of the physics of materials characterized by charge localization and energetic disorder.
by Benjie N. Limketkai.
Ph.D.
Limketkai, Benjie 1982. "Charge carrier transport in amorphous organic semiconductors." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/87446.
Full textBange, Sebastian. "Transient optical and electrical effects in polymeric semiconductors." Phd thesis, Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2009/3631/.
Full textKlassische Halbleiterphysik beschäftigt sich bereits seit mehreren Jahrzehnten erfolgreich mit der Weiterentwicklung elektronischer Bauteile wie Dioden, Leuchtdioden, Solarzellen und Transistoren auf der Basis von hochreinen anorganischen Kristallstrukturen. Im Gegensatz hierzu ist das Forschungsgebiet der organischen, insbesondere der polymeren Halbleiter noch recht jung: Die erste Leuchtdiode auf der Basis von "leitfähigem Plastik" wurde erst 1990 demonstriert. Polymere Halbleiter sind hierbei von besonderem Interesse für hochvolumige Anwendungen im Beleuchtungsbereich, da sie sich kostengünstig herstellen und verarbeiten lassen ("gedruckte Elektronik"). Die vereinfachte Herstellung bedingt dabei eine vergleichsweise geringe Komplexität der Bauteilstruktur und verringert die Optimierungsmöglichkeiten. Die vorliegende Arbeit leistet einen Beitrag zum Verständnis der Vorgänge an Grenzflächen und im Volumen von polymeren Leuchtdioden und ermöglicht damit ein besseres Verständnis der Bauteilfunktion. Im Fokus steht hierbei mit einem spiro-verknüpften Polyfluorenderivat ein kommerziell relevanter Polymertyp, der amorphe und hochgradig temperaturstabile Halbleiterschichten bildet. Ausgehend von einer Charakterisierung der Ladungstransporteigenschaften wird im Zusammenspiel mit numerischen Simulationen der Bauteilemission gezeigt, welche Rolle die polymeren und metallenen Kontaktelektroden für die Bauteilfunktion und -effizienz spielen. Des Weiteren wird ein weiß-emittierendes Polymer untersucht, bei dem die Mischung von blauen, grünen und roten Farbstoffen die Emissionsfarbe bestimmt. Hierbei wird das komplexe Wechselspiel aus Energieübertrag zwischen den Farbstoffen und direktem Ladungseinfang aufgeklärt. Es wird ein quantitatives Modell entwickelt, das die beobachtete Verschiebung der Emissionsfarbe unter wechselnden elektrischen Betriebsparametern erklärt und zusätzlich die Vorhersage von Temperatur- und elektrischen Konditionierungseffekten ermöglicht. Ausgehend von leicht messbaren Parametern wie Stromstärken und Emissionsspektren ermöglicht es Rückschlüsse auf mikroskopische Vorgänge wie die Diffusion von Ladungen hin zu Farbstoffen. Es wird gezeigt, dass im Gegensatz zu bisherigen Erkenntnissen der Ladungseinfang durch Drift im elektrischen Feld gegenüber der Diffusion überwiegt. In einem eher methodisch orientierten Teil zeigt die Arbeit, wie die beim Abschalten von Leuchtdioden beobachtbare Emission dazu verwendet werden kann, Erkenntnisse zu Ladungsdichten während der Betriebsphase zu gewinnen. Es wird abschließend nachgewiesen, dass eine gängige Methode zur Bestimmung von Ladungsbeweglichkeiten unter typischen Messbedingungen fehlerbehaftet ist. Ergebnisse, die bisher als eine zeitliche Relaxation der Beweglichkeit in ungeordneten Halbleitern interpretiert wurden, können damit auf die Rekombination von Ladungen während der Messung zurückgeführt werden. Es wird außerdem gezeigt, dass eine Modifikation der bei der Auswertung verwendeten Analytik die genauere Vermessung der Feldstärkeabhängigkeit der Beweglichkeit ermöglicht.
Emeleus, Charles John. "Electrical transport properties of two-dimensional hole gases in the Si/Siâ†1â†-â†xGeâ†x system." Thesis, University of Warwick, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387322.
Full textTirino, Louis. "Transport Properties of Wide Band Gap Semiconductors." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5210.
Full textErol, Mustafa. "Phonon studies in two dimensional electron gases." Thesis, Lancaster University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317611.
Full textArikan, Mustafa. "Electrical Transport In Metal-oxide-semiconductor Capacitors." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605489/index.pdf.
Full textBooks on the topic "Electrical transport in semiconductors"
Kusz, Bogusław. Nanostruktury metalicznego bizmutu w redukowanych szkłach bizmutowo-germanianowych i bizmutowo-krzemianowych: Wytwarzanie, struktura i transport nośników ładunków. Gdańsk: Wydawn. Politechniki Gdańskiej, 2004.
Find full textCisowski, Jan. Niektóre zjawiska transportu elektronowego w półprzewodnikach typu II₃--V₂. Wrocław: Zakład Narodowy im. 0ssolińskich, 1989.
Find full textLinjun, Wang, Song Chenchen, and SpringerLink (Online service), eds. Theory of Charge Transport in Carbon Electronic Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textFerry, David K., and Carlo Jacoboni, eds. Quantum Transport in Semiconductors. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-2359-2.
Full textTorres Alvarez, Pol. Thermal Transport in Semiconductors. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94983-3.
Full textJüngel, Ansgar. Transport Equations for Semiconductors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89526-8.
Full textReggiani, Lino, ed. Hot-Electron Transport in Semiconductors. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-13321-6.
Full textBook chapters on the topic "Electrical transport in semiconductors"
Yu, Peter Y., and Manuel Cardona. "Electrical Transport." In Fundamentals of Semiconductors, 193–231. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03313-5_5.
Full textYu, Peter Y., and Manuel Cardona. "Electrical Transport." In Fundamentals of Semiconductors, 203–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-00710-1_5.
Full textYu, Peter Y., and Manuel Cardona. "Electrical Transport." In Fundamentals of Semiconductors, 193–231. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03848-2_5.
Full textYu, Peter Y., and Manuel Cardona. "Electrical Transport." In Fundamentals of Semiconductors, 203–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26475-2_5.
Full textMuscato, O. "Kinetic Relaxation Models for the Boltzmann Transport Equation for Silicon Semiconductors." In Scientific Computing in Electrical Engineering, 377–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-32862-9_54.
Full textBüttiker, M., and T. Christen. "Basic Elements of Electrical Conduction." In Quantum Transport in Semiconductor Submicron Structures, 263–91. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1760-6_13.
Full textPalmier, J. F. "Electrical Transport Perpendicular to Layers in Superlattices." In Heterojunctions and Semiconductor Superlattices, 127–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71010-0_10.
Full textSchmidt, Georg, and Laurens W. Molenkamp. "Electrical Spin Injection: Spin-Polarized Transport from Magnetic into Non-Magnetic Semiconductors." In Semiconductor Spintronics and Quantum Computation, 93–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05003-3_3.
Full textDi Carlo, A., C. Hamaguchi, M. Yamaguchi, H. Nagasawa, M. Morifuji, P. Vogl, G. Böhm, et al. "Wannier-Stark Resonances in DC Transport and Electrically Driven Bloch Oscillations." In Hot Carriers in Semiconductors, 143–46. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0401-2_34.
Full textBanerjee, Jyoti Prasad, and Suranjana Banerjee. "Transport Phenomena in Quantum Nanostructures under an Electric Field." In Physics of Semiconductors and Nanostructures, 293–323. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9781315156804-7.
Full textConference papers on the topic "Electrical transport in semiconductors"
Choi, H. M., H. S. Han, J. Y. Lee, J. Y. Shin, T. W. Kim, J. W. Hong, Jisoon Ihm, and Hyeonsik Cheong. "Effect of the electron-transport and hole-transport layers on the electrical properties of organic photovoltaic cells performed by simulation and experiment." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666656.
Full textMohaidat, J. M. "Inter-granular electrical transport in polycrystalline semiconductors via tunneling mechanism." In Proceedings of International Conference on Microelectronics (ICM'99). IEEE, 2000. http://dx.doi.org/10.1109/icm.2000.884853.
Full textMarquardt, Bastian, Martin Geller, Benjamin Baxevanis, Daniela Pfannkuche, Andreas D. Wieck, Dirk Reuter, Axel Lorke, Jisoon Ihm, and Hyeonsik Cheong. "All-electrical transport spectroscopy of non-equilibrium many-particle states in self-assembled quantum dots." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666398.
Full textGurevich, Yu, J. e. Velazquez-Perez, and O. Titov. "Space Charge and Transport of Nonequilibrium Carriers in Bipolar Semiconductors." In 2006 3rd International Conference on Electrical and Electronics Engineering. IEEE, 2006. http://dx.doi.org/10.1109/iceee.2006.251856.
Full textFang, Zhihua, Eric Robin, Elena Rozas-Jimenez, Ana Cros, Fabrice Donatini, Nicolas Mollard, Julien Pernot, and Bruno Daudin. "Structural and Electrical Transport Properties of Si doped GaN nanowires." In 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528770.
Full textBarua, Sourabh, and K. P. Rajeev. "Thickness dependence of electrical transport: A test for surface conduction in topological insulators." In INTERNATIONAL CONFERENCE ON DEFECTS IN SEMICONDUCTORS 2013: Proceedings of the 27th International Conference on Defects in Semiconductors, ICDS-2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4865630.
Full textLiu, F. "The Crystalline Volume Fraction Dependence of Anisotropic Electrical Transport in nc-Si Thin Films—Theoretical and Experimental Studies." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994368.
Full textZimmermann, J., R. Fauquembergue, M. Pernisek, and J. L. Thobel. "High field carrier transport in semiconductors: From basic physics to submicron device simulation." In Conference on Electrical Insulation & Dielectric Phenomena — Annual Report 1987. IEEE, 1987. http://dx.doi.org/10.1109/ceidp.1987.7736556.
Full textRapoport, I. "Alkali Metals Transport at High Temperatures in the Presence of an Electric Field." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994573.
Full textBlokhin, Alexander, and Stanislav Boyarskiy. "Construction of difference schemes for the moment equations of charge transport in semiconductors." In 2010 IEEE Region 8 International Conference on "Computational Technologies in Electrical and Electronics Engineering" (SIBIRCON 2010). IEEE, 2010. http://dx.doi.org/10.1109/sibircon.2010.5555189.
Full textReports on the topic "Electrical transport in semiconductors"
Ferry, David K. Quantum Transport in Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada244101.
Full textMarx, K. D., R. W. Jr Bickes, and D. E. Wackerbarth. Characterization and electrical modeling of semiconductors bridges. Office of Scientific and Technical Information (OSTI), March 1997. http://dx.doi.org/10.2172/481914.
Full textSpain, Ian L., and James R. Sites. High Pressure Electronic Transport in Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada187428.
Full textAppelbaum, Ian R. All Electrical Spin Detection in III-V Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, May 2007. http://dx.doi.org/10.21236/ada462737.
Full textGrubin, H. L., J. P. Kreskovsky, M. Meyyappan, and B. J. Morrison. Transient Transport in Binary and Ternary Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, February 1986. http://dx.doi.org/10.21236/ada165464.
Full textFerry, David K. Advanced Research Workshop on Quantum Transport in Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada400380.
Full textAncona, M. G., and H. F. Tiersten. Density-Gradient Theory of Electron Transport in Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada206995.
Full textUllrich, Carsten A. Charge and Spin Transport in Dilute Magnetic Semiconductors. Office of Scientific and Technical Information (OSTI), July 2009. http://dx.doi.org/10.2172/960296.
Full textTsui, Daniel. Transport Experiments on 2D Correlated Electron Physics in Semiconductors. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1124191.
Full textKim, Ki Wook, and M. A. Littlejohn. Solid-State Dynamics and Carrier Transport in Supervelocity Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada421810.
Full text