Academic literature on the topic 'Electrical transport in semiconductors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrical transport in semiconductors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electrical transport in semiconductors"

1

CAMPBELL, I. H., and D. L. SMITH. "ELECTRICAL TRANSPORT IN ORGANIC SEMICONDUCTORS." International Journal of High Speed Electronics and Systems 11, no. 02 (June 2001): 585–615. http://dx.doi.org/10.1142/s0129156401000952.

Full text
Abstract:
Organic semiconductors have processing and performance advantages for low cost and/or large area applications that have led to their rapid commercialization. Organic semiconductors are π conjugated materials, either small molecules or polymers. Their electrical transport properties are fundamentally distinct from those of inorganic semiconductors. Organic semiconductor thin films are amorphous or polycrystalline and their electronic structures consist of a distribution of localized electronic states with different energies. The localized sites are either individual molecules or isolated conjugated segments of a polymer chain. Electrical transport results from carrier hopping between neighboring sites. At room temperature, equilibration between neighboring sites of different energy is fast enough that carrier transport can be described using a mobility picture. Hopping transport in these disordered systems leads to a mobility that can depend strongly on both the electric field and carrier density. This article presents experimental measurements and theoretical analysis of the electrical transport properties of representative organic semiconductors.
APA, Harvard, Vancouver, ISO, and other styles
2

Ka, O. "Electrical Transport in Polycrystalline Semiconductors." Solid State Phenomena 37-38 (March 1994): 201–12. http://dx.doi.org/10.4028/www.scientific.net/ssp.37-38.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Khan, Arif, and Atanu Das. "Diffusivity-Mobility Relationship for Heavily Doped Semiconductors with Non-Uniform Band Structures." Zeitschrift für Naturforschung A 65, no. 10 (October 1, 2010): 882–86. http://dx.doi.org/10.1515/zna-2010-1017.

Full text
Abstract:
A general relationship between the diffusivity and the mobility in degenerate semiconductors with non-uniform energy band structures has been presented. The relationship is general enough to be applicable to both non-degenerate and degenerate semiconductors. It is suitable for the study of electrical transport in heavily doped semiconductors and semiconductor devices.
APA, Harvard, Vancouver, ISO, and other styles
4

Pennetta, C., M. Tizzoni, A. Carbone, and L. Reggiani. "Electrical transport and noise in polyacene semiconductors." Journal of Computational Electronics 11, no. 3 (May 30, 2012): 287–92. http://dx.doi.org/10.1007/s10825-012-0407-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Wen. "Research on Charge Transport in One-Dimensional Organic Semiconductors Material." Advanced Materials Research 531 (June 2012): 231–34. http://dx.doi.org/10.4028/www.scientific.net/amr.531.231.

Full text
Abstract:
1D conjugated polymers belong to the family of organic semiconductor materials, in which the charge carriers are polarons or bipolarons. Charge transport in 1D organic semiconductors in the presence of high electric fields is studied within the SSH model. It is found that under a sufficiently high electric field, the polaron is dissociated into free-like electron. The electron performs Bloch oscillation (BO) in the organic semiconductors. By enhancing the electric field, BO will be destroyed and electrons can transit from the valence band to the conduction band, which is Zener tunneling in organic semiconductors. The results also indicate a field-induced insulator-metal transition.
APA, Harvard, Vancouver, ISO, and other styles
6

Schöll, Eckehard. "Modeling Nonlinear and Chaotic Dynamics in Semiconductor Device Structures." VLSI Design 6, no. 1-4 (January 1, 1998): 321–29. http://dx.doi.org/10.1155/1998/84685.

Full text
Abstract:
We review the modeling and simulation of electrical transport instabilities in semiconductors with a special emphasis on recent progress in the application to semiconductor microstructures. The following models are treated in detail: (i) The dynamics of current filaments in the regime of low-temperature impurity breakdown is studied. In particular we perform 2D simulations of the nascence of a filament upon application of a bias voltage. (ii) Vertical electrical transport in layered semiconductor structures like the heterostructure hot electron diode is considered. Periodic as well as chaotic spatio-temporal spiking of the current is obtained. In particular we find long transients of spatio-temporal chaos preceding regular spiking.
APA, Harvard, Vancouver, ISO, and other styles
7

Ghosh, Aswini. "Electrical transport properties of molybdenum tellurite glassy semiconductors." Philosophical Magazine B 61, no. 1 (January 1990): 87–96. http://dx.doi.org/10.1080/13642819008208653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

MACDONALD, A. H. "ANOMALOUS TRANSPORT IN METALS AND SEMICONDUCTORS." International Journal of Modern Physics B 22, no. 01n02 (January 20, 2008): 120. http://dx.doi.org/10.1142/s0217979208046219.

Full text
Abstract:
According to the Kubo formula, the static uniform electric fields in a metal or semiconductor can induce coherence between band states far from the Fermi energy. This interband coherence response appears to be at odds with the normal view that transport is a Fermi-energy property, and is relatively unfamiliar since it makes a negligibly small contribution to the most commonly studied transport coefficients such as the longitudinal conductivity. It has recently been argued that interband coherence response can dominate the anomalous Hall conductivity of ferromagnetic metals and semiconductors and the spin-Hall conductivity of paramagnetic materials. I will review recent theoretical ideas related to the charge Hall conductivity of ferromagnetic materials and the spin Hall conductivity of paramagnetic materials and their relation to recent and future experiments. Note from Publisher: This article contains the abstract only.
APA, Harvard, Vancouver, ISO, and other styles
9

Khan, Arif, and Atanu Das. "General Diffusivity-Mobility Relationship for Heavily Doped Semiconductors." Zeitschrift für Naturforschung A 64, no. 3-4 (April 1, 2009): 257–62. http://dx.doi.org/10.1515/zna-2009-3-414.

Full text
Abstract:
Abstract A relationship between diffusivity and mobility in degenerate semiconductors is presented. The relationship is general enough to be applicable to both non-degenerate and degenerate semiconductors. It is suitable for the investigation of the electrical transport in heavily doped semiconductors
APA, Harvard, Vancouver, ISO, and other styles
10

Das, Atanu, and Arif Khan. "The Diffusivity-Mobility Relationship of Heavily Doped Semiconductors Exhibiting a Non-Parabolic Band Structure and Bandgap Narrowing." Zeitschrift für Naturforschung A 62, no. 10-11 (November 1, 2007): 605–8. http://dx.doi.org/10.1515/zna-2007-10-1108.

Full text
Abstract:
A relationship between the mobility and diffusivity of semiconductors exhibiting bandgap narrowing has been presented. The relationship is general and applicable to both non-degenerate and degenerate semiconductors under an applied bias. It is suitable for the investigation of the electrical transport in heavily doped semiconductors.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Electrical transport in semiconductors"

1

Straw, Andrew. "A study of electrical transport in two dimensional semiconductors." Thesis, University of Essex, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beaudoin, Mario. "Electrical transport properties of n-Type InP." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61237.

Full text
Abstract:
InP obtained by metal-organic vapor phase epitaxy, with properties similar to GaAs, shows mobilities approaching the theoretical maxima at low temperatures. However, the corresponding values remain abnormally low at room temperature where a pronounced electronic excitation to the conduction band is observed simultaneously. This reduction of the mobility is attributed to the presence of deep centers that are electrically inactive at low temperatures but become excited when the temperature increases. A model based on an iterative solution to the Boltzmann equation and accounting for the usual scattering mechanisms, including inelastic interactions, is able to explain the data perfectly and shows that a very high mobility at low temperature is not a sufficient measure of the purity for this material. The binding energy of the deep centers depends on the organo-metalic source used for the growth. This links the solution of this problem to the purification of the chemicals. Depletion effects at the interfaces did not appear to be significant. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO, and other styles
3

Crump, Paul Andrew. "Classical and quantum electrical transport in two dimensional systems." Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Limketkai, Benjie 1982. "Charge-carrier transport in amorphous organic semiconductors." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43063.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
Includes bibliographical references (p. 101-106).
Since the first reports of efficient luminescence and absorption in organic semiconductors, organic light-emitting devices (OLEDs) and photovoltaics (OPVs) have attracted increasing interest. Organic semiconductors have proven to be a promising material set for novel optical and/or electrical devices. Not only do they have the advantage of tunable properties using chemistry, but organic semiconductors hold the potential of being fabricated cheaply with low temperature deposition on flexible plastic substrates, ink jet printing, or roll-to-roll manufacturing. These fabrication techniques are possible because organic semiconductors are composed of molecules weakly held together by van der Waals forces rather than covalent bonds. Van der Waals bonding eliminates the danger of dangling bond traps in amorphous or polycrystalline inorganic films, but results in narrower electronic bandwidths. Combined with spatial and energetic disorder due to weak intermolecular interactions, the small bandwidth leads to localization of charge carriers and electron-hole pairs, called excitons. Thus, the charge-carrier mobility in organic semiconductors is generally much smaller than in their covalently-bonded, highly-ordered crystalline semiconductor counterparts. Indeed, one major barrier to the use of organic semiconductors is their poor charge transport characteristics. Yet this major component of the operation of disordered organic semiconductor devices remains incompletely understood. This thesis analyzes charge transport and injection in organic semiconductor materials. A first-principles analytic theory that explains the current-voltage characteristics and charge-carrier mobility for different metal contacts and organic semiconductor materials over a wide range of temperatures, carrier densities, and electric field strengths will be developed.
(cont) Most significantly, the theory will enable predictive models of organic semiconductor devices based on physical material parameters that may be determined by experimental measurements or quantum chemical simulations. Understanding charge transport and injection through these materials is crucial to enable the rational design for organic device applications, and also contributes to the general knowledge of the physics of materials characterized by charge localization and energetic disorder.
by Benjie N. Limketkai.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
5

Limketkai, Benjie 1982. "Charge carrier transport in amorphous organic semiconductors." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/87446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bange, Sebastian. "Transient optical and electrical effects in polymeric semiconductors." Phd thesis, Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2009/3631/.

Full text
Abstract:
Classical semiconductor physics has been continuously improving electronic components such as diodes, light-emitting diodes, solar cells and transistors based on highly purified inorganic crystals over the past decades. Organic semiconductors, notably polymeric, are a comparatively young field of research, the first light-emitting diode based on conjugated polymers having been demonstrated in 1990. Polymeric semiconductors are of tremendous interest for high-volume, low-cost manufacturing ("printed electronics"). Due to their rather simple device structure mostly comprising only one or two functional layers, polymeric diodes are much more difficult to optimize compared to small-molecular organic devices. Usually, functions such as charge injection and transport are handled by the same material which thus needs to be highly optimized. The present work contributes to expanding the knowledge on the physical mechanisms determining device performance by analyzing the role of charge injection and transport on device efficiency for blue and white-emitting devices, based on commercially relevant spiro-linked polyfluorene derivatives. It is shown that such polymers can act as very efficient electron conductors and that interface effects such as charge trapping play the key role in determining the overall device efficiency. This work contributes to the knowledge of how charges drift through the polymer layer to finally find neutral emissive trap states and thus allows a quantitative prediction of the emission color of multichromophoric systems, compatible with the observed color shifts upon driving voltage and temperature variation as well as with electrical conditioning effects. In a more methodically oriented part, it is demonstrated that the transient device emission observed upon terminating the driving voltage can be used to monitor the decay of geminately-bound species as well as to determine trapped charge densities. This enables direct comparisons with numerical simulations based on the known properties of charge injection, transport and recombination. The method of charge extraction under linear increasing voltages (CELIV) is investigated in some detail, correcting for errors in the published approach and highlighting the role of non-idealized conditions typically present in experiments. An improved method is suggested to determine the field dependence of charge mobility in a more accurate way. Finally, it is shown that the neglect of charge recombination has led to a misunderstanding of experimental results in terms of a time-dependent mobility relaxation.
Klassische Halbleiterphysik beschäftigt sich bereits seit mehreren Jahrzehnten erfolgreich mit der Weiterentwicklung elektronischer Bauteile wie Dioden, Leuchtdioden, Solarzellen und Transistoren auf der Basis von hochreinen anorganischen Kristallstrukturen. Im Gegensatz hierzu ist das Forschungsgebiet der organischen, insbesondere der polymeren Halbleiter noch recht jung: Die erste Leuchtdiode auf der Basis von "leitfähigem Plastik" wurde erst 1990 demonstriert. Polymere Halbleiter sind hierbei von besonderem Interesse für hochvolumige Anwendungen im Beleuchtungsbereich, da sie sich kostengünstig herstellen und verarbeiten lassen ("gedruckte Elektronik"). Die vereinfachte Herstellung bedingt dabei eine vergleichsweise geringe Komplexität der Bauteilstruktur und verringert die Optimierungsmöglichkeiten. Die vorliegende Arbeit leistet einen Beitrag zum Verständnis der Vorgänge an Grenzflächen und im Volumen von polymeren Leuchtdioden und ermöglicht damit ein besseres Verständnis der Bauteilfunktion. Im Fokus steht hierbei mit einem spiro-verknüpften Polyfluorenderivat ein kommerziell relevanter Polymertyp, der amorphe und hochgradig temperaturstabile Halbleiterschichten bildet. Ausgehend von einer Charakterisierung der Ladungstransporteigenschaften wird im Zusammenspiel mit numerischen Simulationen der Bauteilemission gezeigt, welche Rolle die polymeren und metallenen Kontaktelektroden für die Bauteilfunktion und -effizienz spielen. Des Weiteren wird ein weiß-emittierendes Polymer untersucht, bei dem die Mischung von blauen, grünen und roten Farbstoffen die Emissionsfarbe bestimmt. Hierbei wird das komplexe Wechselspiel aus Energieübertrag zwischen den Farbstoffen und direktem Ladungseinfang aufgeklärt. Es wird ein quantitatives Modell entwickelt, das die beobachtete Verschiebung der Emissionsfarbe unter wechselnden elektrischen Betriebsparametern erklärt und zusätzlich die Vorhersage von Temperatur- und elektrischen Konditionierungseffekten ermöglicht. Ausgehend von leicht messbaren Parametern wie Stromstärken und Emissionsspektren ermöglicht es Rückschlüsse auf mikroskopische Vorgänge wie die Diffusion von Ladungen hin zu Farbstoffen. Es wird gezeigt, dass im Gegensatz zu bisherigen Erkenntnissen der Ladungseinfang durch Drift im elektrischen Feld gegenüber der Diffusion überwiegt. In einem eher methodisch orientierten Teil zeigt die Arbeit, wie die beim Abschalten von Leuchtdioden beobachtbare Emission dazu verwendet werden kann, Erkenntnisse zu Ladungsdichten während der Betriebsphase zu gewinnen. Es wird abschließend nachgewiesen, dass eine gängige Methode zur Bestimmung von Ladungsbeweglichkeiten unter typischen Messbedingungen fehlerbehaftet ist. Ergebnisse, die bisher als eine zeitliche Relaxation der Beweglichkeit in ungeordneten Halbleitern interpretiert wurden, können damit auf die Rekombination von Ladungen während der Messung zurückgeführt werden. Es wird außerdem gezeigt, dass eine Modifikation der bei der Auswertung verwendeten Analytik die genauere Vermessung der Feldstärkeabhängigkeit der Beweglichkeit ermöglicht.
APA, Harvard, Vancouver, ISO, and other styles
7

Emeleus, Charles John. "Electrical transport properties of two-dimensional hole gases in the Si/Si←1←-←xGe←x system." Thesis, University of Warwick, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tirino, Louis. "Transport Properties of Wide Band Gap Semiconductors." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5210.

Full text
Abstract:
Transport Properties of Wide Band Gap Semiconductors Louis Tirino III 155 pages Directed by Dr. Kevin F. Brennan The objective of this research has been the study of the transport properties and breakdown characteristics of wide band gap semiconductor materials and their implications on device performance. Though the wide band gap semiconductors have great potential for a host of device applications, many gaps remain in the collective understanding about their properties, frustrating the evaluation of devices made from these materials. The model chosen for this study is based on semiclassical transport theory as described by the Boltzmann Transport Equation. The calculations are performed using an ensemble Monte Carlo simulation method. The simulator includes realistic, numerical energy band structures derived from an empirical pseudo-potential method. The carrier-phonon scattering rates and impact ionization transition rates are numerically evaluated from the electronic band structure. Several materials systems are discussed and compared. The temperature-dependent, high-field transport properties of electrons in gallium arsenide, zincblende gallium nitride, and cubic-phase silicon carbide are compared. Since hole transport is important in certain devices, the simulator is designed to simulate electrons and holes simultaneously. The bipolar simulator is demonstrated in the study of the multiplication region of gallium nitride avalanche photodiodes.
APA, Harvard, Vancouver, ISO, and other styles
9

Erol, Mustafa. "Phonon studies in two dimensional electron gases." Thesis, Lancaster University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Arikan, Mustafa. "Electrical Transport In Metal-oxide-semiconductor Capacitors." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605489/index.pdf.

Full text
Abstract:
The current transport mechanisms in metal-oxide-semiconductor (MOS) capacitors have been studied. The devices used in this study have characterized by current-voltage analyses. Physical parameter extractions and computer generated fit methods have been applied to experimental data. Two devices have been investigated: A relatively thick oxide (125 nm) and an ultra-thin oxide (3 nm) MOS structures. The voltage and temperature dependence of these devices have been explained by using present current transport models.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Electrical transport in semiconductors"

1

Kusz, Bogusław. Nanostruktury metalicznego bizmutu w redukowanych szkłach bizmutowo-germanianowych i bizmutowo-krzemianowych: Wytwarzanie, struktura i transport nośników ładunków. Gdańsk: Wydawn. Politechniki Gdańskiej, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cisowski, Jan. Niektóre zjawiska transportu elektronowego w półprzewodnikach typu II₃--V₂. Wrocław: Zakład Narodowy im. 0ssolińskich, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Linjun, Wang, Song Chenchen, and SpringerLink (Online service), eds. Theory of Charge Transport in Carbon Electronic Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Semiconductors. New York: Macmillan, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ferry, David K. Semiconductors. New York: Macmillan, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Transport equations for semiconductors. Berlin: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ferry, David K., and Carlo Jacoboni, eds. Quantum Transport in Semiconductors. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-2359-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Torres Alvarez, Pol. Thermal Transport in Semiconductors. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94983-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jüngel, Ansgar. Transport Equations for Semiconductors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89526-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Reggiani, Lino, ed. Hot-Electron Transport in Semiconductors. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-13321-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Electrical transport in semiconductors"

1

Yu, Peter Y., and Manuel Cardona. "Electrical Transport." In Fundamentals of Semiconductors, 193–231. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03313-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yu, Peter Y., and Manuel Cardona. "Electrical Transport." In Fundamentals of Semiconductors, 203–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-00710-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yu, Peter Y., and Manuel Cardona. "Electrical Transport." In Fundamentals of Semiconductors, 193–231. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03848-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Peter Y., and Manuel Cardona. "Electrical Transport." In Fundamentals of Semiconductors, 203–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26475-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Muscato, O. "Kinetic Relaxation Models for the Boltzmann Transport Equation for Silicon Semiconductors." In Scientific Computing in Electrical Engineering, 377–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-32862-9_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Büttiker, M., and T. Christen. "Basic Elements of Electrical Conduction." In Quantum Transport in Semiconductor Submicron Structures, 263–91. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1760-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Palmier, J. F. "Electrical Transport Perpendicular to Layers in Superlattices." In Heterojunctions and Semiconductor Superlattices, 127–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71010-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schmidt, Georg, and Laurens W. Molenkamp. "Electrical Spin Injection: Spin-Polarized Transport from Magnetic into Non-Magnetic Semiconductors." In Semiconductor Spintronics and Quantum Computation, 93–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05003-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Di Carlo, A., C. Hamaguchi, M. Yamaguchi, H. Nagasawa, M. Morifuji, P. Vogl, G. Böhm, et al. "Wannier-Stark Resonances in DC Transport and Electrically Driven Bloch Oscillations." In Hot Carriers in Semiconductors, 143–46. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0401-2_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Banerjee, Jyoti Prasad, and Suranjana Banerjee. "Transport Phenomena in Quantum Nanostructures under an Electric Field." In Physics of Semiconductors and Nanostructures, 293–323. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9781315156804-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electrical transport in semiconductors"

1

Choi, H. M., H. S. Han, J. Y. Lee, J. Y. Shin, T. W. Kim, J. W. Hong, Jisoon Ihm, and Hyeonsik Cheong. "Effect of the electron-transport and hole-transport layers on the electrical properties of organic photovoltaic cells performed by simulation and experiment." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mohaidat, J. M. "Inter-granular electrical transport in polycrystalline semiconductors via tunneling mechanism." In Proceedings of International Conference on Microelectronics (ICM'99). IEEE, 2000. http://dx.doi.org/10.1109/icm.2000.884853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marquardt, Bastian, Martin Geller, Benjamin Baxevanis, Daniela Pfannkuche, Andreas D. Wieck, Dirk Reuter, Axel Lorke, Jisoon Ihm, and Hyeonsik Cheong. "All-electrical transport spectroscopy of non-equilibrium many-particle states in self-assembled quantum dots." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gurevich, Yu, J. e. Velazquez-Perez, and O. Titov. "Space Charge and Transport of Nonequilibrium Carriers in Bipolar Semiconductors." In 2006 3rd International Conference on Electrical and Electronics Engineering. IEEE, 2006. http://dx.doi.org/10.1109/iceee.2006.251856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fang, Zhihua, Eric Robin, Elena Rozas-Jimenez, Ana Cros, Fabrice Donatini, Nicolas Mollard, Julien Pernot, and Bruno Daudin. "Structural and Electrical Transport Properties of Si doped GaN nanowires." In 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barua, Sourabh, and K. P. Rajeev. "Thickness dependence of electrical transport: A test for surface conduction in topological insulators." In INTERNATIONAL CONFERENCE ON DEFECTS IN SEMICONDUCTORS 2013: Proceedings of the 27th International Conference on Defects in Semiconductors, ICDS-2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4865630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, F. "The Crystalline Volume Fraction Dependence of Anisotropic Electrical Transport in nc-Si Thin Films—Theoretical and Experimental Studies." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zimmermann, J., R. Fauquembergue, M. Pernisek, and J. L. Thobel. "High field carrier transport in semiconductors: From basic physics to submicron device simulation." In Conference on Electrical Insulation & Dielectric Phenomena — Annual Report 1987. IEEE, 1987. http://dx.doi.org/10.1109/ceidp.1987.7736556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rapoport, I. "Alkali Metals Transport at High Temperatures in the Presence of an Electric Field." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blokhin, Alexander, and Stanislav Boyarskiy. "Construction of difference schemes for the moment equations of charge transport in semiconductors." In 2010 IEEE Region 8 International Conference on "Computational Technologies in Electrical and Electronics Engineering" (SIBIRCON 2010). IEEE, 2010. http://dx.doi.org/10.1109/sibircon.2010.5555189.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Electrical transport in semiconductors"

1

Ferry, David K. Quantum Transport in Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada244101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marx, K. D., R. W. Jr Bickes, and D. E. Wackerbarth. Characterization and electrical modeling of semiconductors bridges. Office of Scientific and Technical Information (OSTI), March 1997. http://dx.doi.org/10.2172/481914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Spain, Ian L., and James R. Sites. High Pressure Electronic Transport in Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada187428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Appelbaum, Ian R. All Electrical Spin Detection in III-V Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, May 2007. http://dx.doi.org/10.21236/ada462737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Grubin, H. L., J. P. Kreskovsky, M. Meyyappan, and B. J. Morrison. Transient Transport in Binary and Ternary Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, February 1986. http://dx.doi.org/10.21236/ada165464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ferry, David K. Advanced Research Workshop on Quantum Transport in Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada400380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ancona, M. G., and H. F. Tiersten. Density-Gradient Theory of Electron Transport in Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada206995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ullrich, Carsten A. Charge and Spin Transport in Dilute Magnetic Semiconductors. Office of Scientific and Technical Information (OSTI), July 2009. http://dx.doi.org/10.2172/960296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tsui, Daniel. Transport Experiments on 2D Correlated Electron Physics in Semiconductors. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1124191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Ki Wook, and M. A. Littlejohn. Solid-State Dynamics and Carrier Transport in Supervelocity Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada421810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography