Journal articles on the topic 'Electrically-small metamaterials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Electrically-small metamaterials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ghosh, Bratin, and Susmita Ghosh. "Gain enhancement of an electrically small antenna array using metamaterials." Applied Physics A 102, no. 2 (2010): 345–51. http://dx.doi.org/10.1007/s00339-010-5984-6.
Full textGong, Yongkang, Kang Li, Nigel Copner, et al. "Integrated and spectrally selective thermal emitters enabled by layered metamaterials." Nanophotonics 10, no. 4 (2021): 1285–93. http://dx.doi.org/10.1515/nanoph-2020-0578.
Full textZhou, Cheng, Guangming Wang, and Yu Xiao. "Planar Dual-Band Electrically Small Antenna Based on Double-Negative Metamaterials." Journal of Computer and Communications 03, no. 03 (2015): 27–34. http://dx.doi.org/10.4236/jcc.2015.33005.
Full textShaw, Tarakeswar, and Debasis Mitra. "Efficient design of electrically small antenna using metamaterials for wireless applications." CSI Transactions on ICT 6, no. 1 (2017): 51–58. http://dx.doi.org/10.1007/s40012-017-0186-4.
Full textJacobsen, Rasmus E., Andrei V. Lavrinenko, and Samel Arslanagić. "Electrically Small Water-Based Hemispherical Dielectric Resonator Antenna." Applied Sciences 9, no. 22 (2019): 4848. http://dx.doi.org/10.3390/app9224848.
Full textHuang, Ming Da, and Soon Yim Tan. "EFFICIENT ELECTRICALLY SMALL PROLATE SPHEROIDAL ANTENNAS COATED WITH A SHELL OF DOUBLE-NEGATIVE METAMATERIALS." Progress In Electromagnetics Research 82 (2008): 241–55. http://dx.doi.org/10.2528/pier08031604.
Full textSikdar, Debabrata, and Alexei A. Kornyshev. "An electro-tunable Fabry–Perot interferometer based on dual mirror-on-mirror nanoplasmonic metamaterials." Nanophotonics 8, no. 12 (2019): 2279–90. http://dx.doi.org/10.1515/nanoph-2019-0317.
Full textMa, Zhenhe, Xianghe Meng, Xiaodi Liu, Guangyuan Si, and Yan Jun Liu. "Liquid Crystal Enabled Dynamic Nanodevices." Nanomaterials 8, no. 11 (2018): 871. http://dx.doi.org/10.3390/nano8110871.
Full textZiolkowski, Richard W., and Aycan Erentok. "Metamaterial-based efficient electrically small antennas." IEEE Transactions on Antennas and Propagation 54, no. 7 (2006): 2113–30. http://dx.doi.org/10.1109/tap.2006.877179.
Full textErentok, Aycan, and Richard W. Ziolkowski. "Metamaterial-Inspired Efficient Electrically Small Antennas." IEEE Transactions on Antennas and Propagation 56, no. 3 (2008): 691–707. http://dx.doi.org/10.1109/tap.2008.916949.
Full textJin, Peng, and Richard W. Ziolkowski. "Metamaterial-Inspired, Electrically Small Huygens Sources." IEEE Antennas and Wireless Propagation Letters 9 (2010): 501–5. http://dx.doi.org/10.1109/lawp.2010.2051311.
Full textErentok, Aycan, and Richard W. Ziolkowski. "An efficient metamaterial-inspired electrically-small antenna." Microwave and Optical Technology Letters 49, no. 6 (2007): 1287–90. http://dx.doi.org/10.1002/mop.22415.
Full textJoshi, J. G., Shyam S. Pattnaik, Swapna Devi, and M. R. Lohokare. "Electrically Small Patch Antenna Loaded with Metamaterial." IETE Journal of Research 56, no. 6 (2010): 373–79. http://dx.doi.org/10.1080/03772063.2010.10876328.
Full textChaturvedi, Divya, and Singaravelu Raghavan. "SRR-LOADED METAMATERIAL-INSPIRED ELECTRICALLY-SMALL MONOPOLE ANTENNA." Progress In Electromagnetics Research C 81 (2018): 11–19. http://dx.doi.org/10.2528/pierc17101202.
Full textErentok, Aycan, and Richard W. Ziolkowski. "Two-dimensional efficient metamaterial-inspired electrically-small antenna." Microwave and Optical Technology Letters 49, no. 7 (2007): 1669–73. http://dx.doi.org/10.1002/mop.22542.
Full textNtaikos, Dimitrios K., Nektarios K. Bourgis, and Traianos V. Yioultsis. "Metamaterial-Based Electrically Small Multiband Planar Monopole Antennas." IEEE Antennas and Wireless Propagation Letters 10 (2011): 963–66. http://dx.doi.org/10.1109/lawp.2011.2167309.
Full textBourgis, Nektarios K., and Traianos V. Yioultsis. "EFFICIENT ISOLATION BETWEEN ELECTRICALLY SMALL METAMATERIAL-INSPIRED MONOPOLE ANTENNAS." Progress In Electromagnetics Research B 60 (2014): 227–39. http://dx.doi.org/10.2528/pierb14051304.
Full textGarg, Tanuj K. "Metamaterial Loaded Frequency Tunable Electrically Small Planar Patch Antenna." Indian Journal of Science and Technology 7, no. 11 (2014): 1738–43. http://dx.doi.org/10.17485/ijst/2014/v7i11.7.
Full textZhu, Ning, and Richard W. Ziolkowski. "Active Metamaterial-Inspired Broad-Bandwidth, Efficient, Electrically Small Antennas." IEEE Antennas and Wireless Propagation Letters 10 (2011): 1582–85. http://dx.doi.org/10.1109/lawp.2012.2182981.
Full textZhu, Cheng, Tong Li, Ke Li, et al. "Electrically Small Metamaterial-Inspired Tri-Band Antenna With Meta-Mode." IEEE Antennas and Wireless Propagation Letters 14 (2015): 1738–41. http://dx.doi.org/10.1109/lawp.2015.2421356.
Full textBaena, J. D., L. Jelinek, R. Marqués, and J. Zehentner. "Electrically small isotropic three-dimensional magnetic resonators for metamaterial design." Applied Physics Letters 88, no. 13 (2006): 134108. http://dx.doi.org/10.1063/1.2190442.
Full textErentok, Aycan, and Richard W. Ziolkowski. "A Hybrid Optimization Method to Analyze Metamaterial-Based Electrically Small Antennas." IEEE Transactions on Antennas and Propagation 55, no. 3 (2007): 731–41. http://dx.doi.org/10.1109/tap.2007.891553.
Full textKokkinos, T., and A. P. Feresidis. "Electrically Small Superdirective Endfire Arrays of Metamaterial-Inspired Low-Profile Monopoles." IEEE Antennas and Wireless Propagation Letters 11 (2012): 568–71. http://dx.doi.org/10.1109/lawp.2012.2199460.
Full textLi, Ke, Cheng Zhu, Long Li, Yuan-Ming Cai, and Chang-Hong Liang. "Design of Electrically Small Metamaterial Antenna With ELC and EBG Loading." IEEE Antennas and Wireless Propagation Letters 12 (2013): 678–81. http://dx.doi.org/10.1109/lawp.2013.2264099.
Full textLiu, Liang-Yuan, and Bing-Zhong Wang. "A Broadband and Electrically Small Planar Monopole Employing Metamaterial Transmission Line." IEEE Antennas and Wireless Propagation Letters 14 (2015): 1018–21. http://dx.doi.org/10.1109/lawp.2015.2388762.
Full textWu, Zhentian, Ming-Chun Tang, Mei Li, and Richard W. Ziolkowski. "Ultralow-Profile, Electrically Small, Pattern-Reconfigurable Metamaterial-Inspired Huygens Dipole Antenna." IEEE Transactions on Antennas and Propagation 68, no. 3 (2020): 1238–48. http://dx.doi.org/10.1109/tap.2019.2925280.
Full textAntoniades, M. A., and G. V. Eleftheriades. "A Folded-Monopole Model for Electrically Small NRI-TL Metamaterial Antennas." IEEE Antennas and Wireless Propagation Letters 7 (2008): 425–28. http://dx.doi.org/10.1109/lawp.2008.2008773.
Full textWang, Yi-Dong, Feng-Yuan Han, Jin Zhao, et al. "Design of Double-Layer Electrically Extremely Small-Size Displacement Sensor." Sensors 21, no. 14 (2021): 4923. http://dx.doi.org/10.3390/s21144923.
Full textSharma, Sameer K., Mahmoud A. Abdalla, and Zhirun Hu. "Miniaturisation of an electrically small metamaterial inspired antenna using additional conducting layer." IET Microwaves, Antennas & Propagation 12, no. 8 (2018): 1444–49. http://dx.doi.org/10.1049/iet-map.2017.0927.
Full textZhu, Cheng, Jing-Jing Ma, Hui-Qing Zhai, Long Li, and Chang-Hong Liang. "Characteristics of Electrically Small Spiral Resonator Metamaterial With Electric and Magnetic Responses." IEEE Antennas and Wireless Propagation Letters 11 (2012): 1580–83. http://dx.doi.org/10.1109/lawp.2012.2236878.
Full textTurkmen, Oznur, Gonul Turhan-Sayan, and Richard W. Ziolkowski. "Single-, dual-, and triple-band metamaterial-inspired electrically small planar magnetic dipole antennas." Microwave and Optical Technology Letters 56, no. 1 (2013): 83–87. http://dx.doi.org/10.1002/mop.28059.
Full textLin, Wei, and Richard W. Ziolkowski. "Wirelessly Powered Light and Temperature Sensors Facilitated by Electrically Small Omnidirectional and Huygens Dipole Antennas." Sensors 19, no. 9 (2019): 1998. http://dx.doi.org/10.3390/s19091998.
Full textDurán-Sindreu, Miguel, Jordi Naqui, Ferran Paredes, Jordi Bonache, and Ferran Martín. "Electrically Small Resonators for Planar Metamaterial, Microwave Circuit and Antenna Design: A Comparative Analysis." Applied Sciences 2, no. 2 (2012): 375–95. http://dx.doi.org/10.3390/app2020375.
Full textArslanagic, Samel, Richard W. Ziolkowski, and Olav Breinbjerg. "Excitation of an electrically small metamaterial-coated cylinder by an arbitrarily located line source." Microwave and Optical Technology Letters 48, no. 12 (2006): 2598–606. http://dx.doi.org/10.1002/mop.21990.
Full textSharma, Sameer Kumar, Mahmoud A. Abdalla, and Raghvendra Kumar Chaudhary. "An electrically small sicrr metamaterial-inspired dual-band antenna for WLAN and WiMAX applications." Microwave and Optical Technology Letters 59, no. 3 (2017): 573–78. http://dx.doi.org/10.1002/mop.30339.
Full textPeng Jin and R. W. Ziolkowski. "Broadband, Efficient, Electrically Small Metamaterial-Inspired Antennas Facilitated by Active Near-Field Resonant Parasitic Elements." IEEE Transactions on Antennas and Propagation 58, no. 2 (2010): 318–27. http://dx.doi.org/10.1109/tap.2009.2037708.
Full textMonzon, Cesar. "Venturi effect on slotted metamaterial interfaces: broadband tunnelling." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, no. 2110 (2009): 2977–90. http://dx.doi.org/10.1098/rspa.2009.0092.
Full textZiolkowski, R. W., and A. Erentok. "At and below the Chu limit: passive and active broad bandwidth metamaterial-based electrically small antennas." IET Microwaves, Antennas & Propagation 1, no. 1 (2007): 116. http://dx.doi.org/10.1049/iet-map:20050342.
Full textRajesh Kumar, Narayanasamy, Palan Sathya, Sharul Rahim, Muhammed Nor, Akram Alomainy, and Akaa Eteng. "Compact Tri-Band Microstrip Patch Antenna Using Complementary Split Ring Resonator Structure." Applied Computational Electromagnetics Society 36, no. 3 (2021): 346–53. http://dx.doi.org/10.47037/2020.aces.j.360314.
Full textKiem, Nguyen Khac, Huynh Nguyen Bao Phuong, Quang Ngoc Hieu, and Dao Ngoc Chien. "A Novel Metamaterial MIMO Antenna with High Isolation for WLAN Applications." International Journal of Antennas and Propagation 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/851904.
Full textVélez, A., F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martín. "Stop-band and band-pass filters in coplanar waveguide technology implemented by means of electrically small metamaterial-inspired open resonators." IET Microwaves, Antennas & Propagation 4, no. 6 (2010): 712. http://dx.doi.org/10.1049/iet-map.2009.0291.
Full textSonak, Ruchita, Mohammad Ameen, and Raghvendra Kumar Chaudhary. "CPW-fed electrically small open-ended zeroth order resonating metamaterial antenna with dual-band features for GPS/WiMAX/WLAN applications." AEU - International Journal of Electronics and Communications 104 (May 2019): 99–107. http://dx.doi.org/10.1016/j.aeue.2019.03.017.
Full textZhu, Ning, Richard W. Ziolkowski, and Hao Xin. "A metamaterial-inspired, electrically small rectenna for high-efficiency, low power harvesting and scavenging at the global positioning system L1 frequency." Applied Physics Letters 99, no. 11 (2011): 114101. http://dx.doi.org/10.1063/1.3637045.
Full textAmeen, Mohammad, Abinash Mishra, and Raghvendra Kumar Chaudhary. "Asymmetric CPW-fed electrically small metamaterial- inspired wideband antenna for 3.3/3.5/5.5 GHz WiMAX and 5.2/5.8 GHz WLAN applications." AEU - International Journal of Electronics and Communications 119 (May 2020): 153177. http://dx.doi.org/10.1016/j.aeue.2020.153177.
Full textTang, Wenxuan, Yujie Hua, and Tie Jun Cui. "A Compact Component for Multi-Band Rejection and Frequency Coding in the Plasmonic Circuit at Microwave Frequencies." Electronics 10, no. 1 (2020): 4. http://dx.doi.org/10.3390/electronics10010004.
Full textCheng, Hesheng, and Huakun Zhang. "Investigation of Improved Methods in Power Transfer Efficiency for Radiating Near-Field Wireless Power Transfer." Journal of Electrical and Computer Engineering 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/2136923.
Full textStrickland, D., J. Pruitt, J. Helffrich, E. Martinez, B. Nance, and L. Griffith. "Realization of Electrically Small Patch Antennas Loaded with Metamaterials." MRS Proceedings 1223 (2009). http://dx.doi.org/10.1557/proc-1223-ee02-06.
Full textKosulnikov, S., D. Filonov, A. Boag, and P. Ginzburg. "Volumetric metamaterials versus impedance surfaces in scattering applications." Scientific Reports 11, no. 1 (2021). http://dx.doi.org/10.1038/s41598-021-88421-2.
Full textTamim, Ahmed M., Mohammad RI Faruque, and Mohammad T. Islam. "Metamaterial-inspired electrically small antenna for microwave applications." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, April 26, 2021, 146442072110114. http://dx.doi.org/10.1177/14644207211011499.
Full textZiolkowski, R. "Metamaterial-based source and scattering enhancements: From microwave to optical frequencies." Opto-Electronics Review 14, no. 3 (2006). http://dx.doi.org/10.2478/s11772-006-0022-0.
Full text