Contents
Academic literature on the topic 'Électro-Fenton'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Électro-Fenton.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Électro-Fenton"
Mansour, Dorsaf. "Minéralisation des antibiotiques par procédé électro-Fenton et par procédé combiné électro-Fenton : traitement biologique : application à la dépollution des effluents industriels." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S013/document.
Full textThe occurrence of human and veterinary antibiotics in the aquatic ecosystem becomes a serious environmental problem. These compounds cannot be treated by wastewater treatment plants, resulting in their entry and accumulation to measurable levels in the environment. Over the last decade, the conventional biological processes were used for wastewater treatment, but did not appear to be enough effective when dealing with wastes containing antibiotics, owing to the important recalcitrance of these compounds. Therefore, the development of efficient methods to treat antibiotics is needed. The first part of this thesis is focused on the degradation of antibiotics by electro-Fenton process. This process consists in producing in situ strongly oxidizing species, hydroxyl radicals, allowing the total degradation of persistent and toxic organic compounds. Sulfamethazine (SMT) and trimethoprim (TMP) were selected as model compounds, because of their regular detection in the effluents of sewage plants, surface water and groundwater. In this first part, we examined the influence of various operating parameters, on the efficiency of electro-Fenton process. The optimal operating conditions necessary for the removal of the studied antibiotics, were also determined. Moreover, the aromatic intermediate products, generated during antibiotics degradation, were identified. Their evolution during electrolysis was also followed. The second part is devoted to the study of mineralization, of SMT and TMP, by the electro-Fenton process. The obtained results indicate that the yields of SMT and TMP mineralization were 91 and 85%, respectively after eighteen hours of treatment. The identification and monitoring of short chain carboxylic acids and released inorganic ions during the treatment, were carried out. Furthermore, based on the identified by-products, we proposed a plausible mineralization reaction pathway for SMT and TMP. The third part of this work concerns the study of the mineralization of considered antibiotics by a combined process coupling an electro-Fenton pretreatment and a biological degradation. SMT and TMP were pretreated by the electro-Fenton process, which led to their total degradation, with low levels of mineralization, ensuring significant residual organic content for a subsequent biological treatment. Afterwards, biological treatment was performed during 20 days and showed that the level of overall mineralization increased to reach 81 and 68% for SMT and TMP, respectively. In a last part, we carried out the mineralization of two industrial effluents containing SMT and TMP, by combining electro-Fenton and activated sludge treatment. Overall mineralization yields of the combined process of 81 and 89% were obtained for SMT effluent and TMP effluent, respectively. This result confirms the relevance of combined process, even for the treatment of industrial effluents
Ayoub, Kaïdar. "Application des Procédés d’Oxydation Avancée : Fenton et électro-Fenton à la dégradation des explosifs en milieu aqueux." Paris 6, 2010. http://www.theses.fr/2010PA066146.
Full textLin, Heng. "Removal of organic pollutants from water by electro-Fenton and electro-Fenton like processes." Thesis, Paris Est, 2015. http://www.theses.fr/2015PEST1058/document.
Full textIn this paper, electro-Fenton and sulfate radical-based electro-Fenton-like processes were used to degrade artificial sweeteners and azo dye. The results obtained during the research concern the removal efficiency, the oxidation mechanism, degradation pathway and toxicity evolution of target pollutants.(1) Electro-Fenton process was a effective method for the degradation of ASP in water. The removal and mineralization rate was affected by the Fe2+ concentration and applied current. The absolute rate constant of hydroxylation reaction of ASP was (5.23 ± 0.02) × 109 M–1 S–1. Short-chain aliphatic acids such as oxalic, oxamic and maleic acid were identified as aliphatic intermediates in the electro-Fenton process. The bacteria luminescence inhibition showed the toxicity of ASP solution decreased after it reached a maximum during the first period of the oxidation reaction.(2) Artificial sweetener SAC could be degraded effectively by electro-Fenton process with a DSA, Pt or BDD anode. However, the using of BDD anode could accelerate the mineralization of SAC. The optimal conditions for SAC removal were SAC concentration 0.2 mM, Fe2+ concentration 0.2 mM, Na2SO4 concentration 50 mM, applied current 200 mA and initial pH 3.0. Oxalic, formic, and maleic acid were observed as aliphatic byproducts of SAC during electro-Fenton process. The bacteria luminescence inhibition showed the toxicity of SAC solution increased at the beginning of electrolysis, and then it declined until the end of the reaction.(3) Artificial sweetener Sucralose could be completely mineralized in a 360 min reaction by electro-Fenton process with a Pt or BDD anode. The mineralization rate was affected by the Fe2+ concentration and applied current. The mineralization current efficiency (MCE) decreased with rising applied current from 100 to 500 mA with both Pt and BDD anode. Oxalic, pyruvic, formic and glycolic acids were detected during the oxidation of sucralose.(4) Orange II was effectively decolorized by EC/α-FeOOH/PDS process. The initial pH of Orange II solution had little effect on the decolorization of Orange II. RSM based on Box-Behnken statistical experiment design was applied to analyze the experimental variables. The response surface methodology models were derived based on the results of the pseudo-first-order decolorization rate constant and the response surface plots were developed accordingly. The results indicated the applied current showed a positive effect on the decolorization rate constant of Orange II. The interaction of α-FeOOH dosage and PDS concentration was significant. The ANOVA results confirmed that the proposed models were accurate and reiable for the analysis of the varibles of EC/α-FeOOH/PDS process. The catalystα-FeOOH showed good structural stability and could be reused.(5) Aqueous solutions of Orange II have been degraded effectively in the EC/Fe3O4/PDS process. The decolorization rate was affected by the initial pH of Orange II solution, current density, PDS concentration and Fe3O4 dosage. Orange II can be totally decolorizated in a 60 min reaction when initial Orange II concentration was 25 mg/L, PDS concentration was 10 mM, Fe3O4 dosage was 0.8 g/L, current density was 8.4 mA/cm2 and initial pH was 6.0. Recycle experiments showed Fe3O4 particles were stable and can be reused. XPS spectrum indicated Fe(II) was generated on the surface of Fe3O4 particles after reaction. The main intermediates were separated and identified by GC-MS technique and a plausible degradation pathway of Orange II was proposed
Lou, Yaoyin. "Electrochemical processes as a pre-treatment step before biological treatment : Application to the removal of organo-halogenated compounds." Thesis, Rennes, Ecole nationale supérieure de chimie, 2019. http://www.theses.fr/2019ENCR0057.
Full textElectrochemical process coupling with a biological treatment is a promising alternative for the degradation of biorecalcitrant organo-halogenated compounds in the environment. The electroreduction treatment, known to cut selectively carbon-halogen bonds, was first implemented to decrease the toxicity of the target molecules and increase their biodegradability before a complete mineralization of the pollutants by a biological treatment. To improve the dechlorination efficiency, the cathode was modified by silver nanoparticles after a previous nickelisation, since silver is considered as one of the best electrocatalysts to selectively cleave the carbonhalogen bond. The graphite felt was chosen as the electrode support due to its high specific surface area. For alachlor herbicide, deschloroalachlor, the main by-product after dechlorination, was still biorecalcitrant. To overcome this issue, electro-Fenton treatment, in which hydroxyl radicals were generated to degrade the target pollutants, was implemented. Significant improvement of biodegradability of the alachlor solution was observed after electro-Fenton treatment, which was further improved when the chlorine atom was beforehand removed from the alachlor structure by the electroreduction process. Bismuth was also used as electrode support due to its high overpotential for hydrogen evolution. A high selectivity of chloroacetamide herbicides reduction was observed on the bismuth based cathode. As an extended application of the bismuth based cathode, the electrochemical reduction of carbon dioxide was performed on Bi electrode modified by silver nanoparticles
Chergui, Souâd. "Dégradation des colorants textiles par procédés d'oxydation avancée basée sur la réaction de Fenton : application à la dépollution des rejets industriels." Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00582374.
Full textLecours, Marc-André. "Développement d’une méthode électrochimique pour l’imitation du métabolisme de composés pharmaceutiques modèles." Mémoire, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/10440.
Full textGörkem, Balci Beytül. "Procédé électro-Fenton : développement et application à la dégradation d'herbicides atrazine, glyphosate et sulcotrione, et à la dépollution d'un effluent agricole." Université de Marne-la-Vallée, 2007. http://www.theses.fr/2007MARN0390.
Full textThis study concerns the application of an electrochemical advanced oxidation process, namely the "electro-Fenton process", to treatment of waste water containing the persistent organic pollutants such as herbicides. A very strong oxidant, the hydroxyl radical, is generated in situ in electrocatalytic way. This radical is able to oxidize any organic molecule until the ultimate oxidation stage, i. E. Mineralization (transformation into CO2 and H2O). Degradation/mineralization of three herbicides (atrazine, glyphosate and sulcotrione) was the subject of this work. Atrazine was very largely used herbicide in the past and prohibited recently in France because of its negative impact on the environment. During the two last decades atrazine and glyphosate constituted the chronic pollutants of surface and underground waters. Atrazine and its metabolites will be present in water still during several years. The glyphosate which was presented initially as a biodegradable molecule appeared very toxic and persistent through its principal metabolite the AMPA. Atrazine and glyphosate are well-known as problematic herbicides for their treatment. Atrazine is one of the rare molecules which resist to mineralization by the advanced oxidation processes. As for the glyphosate, there is very few on its degradation because of analytical difficulties. After having optimized the operational parameters of the electro-Fenton process (nature and concentration of the catalyst, the use of a boron doped diamond (BDD) instead of Pt, etc. ) in order to increase its efficiency, we applied it to treatment of the aqueous solutions of selected herbicides. Initially, we identified and carried out the quantitative follow-up of the aromatic and aliphatic reaction intermediates formed during current controlled electrolysis. The release of the mineral ions was measured by ion chromatography and their evolution during electrolysis was followed. The mineralization efficiency of treated solutions was determined in term of total organic carbon (TOC) measurements. In the case of the atrazine, a mineralization ratio of 81% was obtained. Such mineralization efficiency was never reported by an advanced oxidation process. The degradation kinetics study of the herbicides under examination permitted to determine the apparent rate constants (kapp) of the reactions between herbicides and hydroxyl radical. The absolute rate constants (kabs) of degradation reactions of studied herbicides were determined by employing the competition kinetics method using a standard molecule for which kabs is known. The values of (2,58 ± 0,4) x 10 [exposant] 9 M-1s-1, (2,9 ± 0,4) x 10 [exposant] 9 M-1s-1 et (3,64± 0,4) x 10 [exposant] 9 M-1s-1 were found respectively for the atrazine, the sulcotrione and the glyphosate. The electro-Fenton process was also applied to treatment of a real effluent, a cocktail of wine pesticides for wine growing, provided by the Agricultural college of Libourne. A quasi-total mineralization was obtained without catalyst addition and oxygen
Dirany, Ahmad. "Études cinétiques et mécanistique d'oxydation/minéralisation des antibiotiques sulfaméthoxazole (SMX), amoxicilline (AMX) et sulfachloropyridazine (SPC) en milieux aqueux par procédés électrochimiques d'oxydation avancée. Mesure et suivi d'évolution de la toxicité lors du traitement." Phd thesis, Université de Marne la Vallée, 2010. http://tel.archives-ouvertes.fr/tel-00740119.
Full textOzcan, Ali. "DEGRADATION DES POLLUANTS ORGANIQUES PAR LA TECHNOLOGIE ELECTRO-FENTON." Phd thesis, Université de Marne la Vallée, 2010. http://tel.archives-ouvertes.fr/tel-00742451.
Full textAbou, Dalle Arwa. "Couplage d’un procédé électrochimique d’oxydation avancée, électro-Fenton, et d’un traitement biologique avancé pour l’élimination d’un composé pharmaceutique, le Métronidazole, en milieux aqueux." Rennes, Ecole nationale supérieure de chimie, 2017. http://www.theses.fr/2017ENCR0043.
Full textThe PhD work deals with the coupling between an electrochemical process and an advanced biological treatment in order to eliminate a biorecalcitrant antibiotic : Metronidazole. The electro-Fenton process, envisaged as a pre-treatment, was carried out in a mono-compartmentalized electrochemical reactor operating in batch mode. It was equipped with a graphite felt cathode and a platinum electrode. An analytical method was developed to quantify hydroxyl radicals produced by the electro- Fenton process. In this protocol, Dimethyl sulfoxide (DMSO) was used as scavenger of radicals. The quantification of the hydroxyl radicals has the advantage of improving the understanding of electro-Fenton pretreatment as a function of the operating conditions. The results showed that DMSO can be used during the electro-Fenton process for current densities less than or equal to 0. 07 mA. Cm-2. During electro-Fenton pretreatment, Metronidazole was completely degraded and mineralized to 40 % after 20 min and 135 min of electrolysis respectively. This pretreatment led to an improvement of the biodegradability of the by-products, assessed from the BOD5 on COD ratio, which increased from 0 before treatment until 0. 46 after 1 hour of electrolysis. The subsequent conventional biological treatment carried out with activated sludge confirmed the efficiency of coupled process with global mineralization yield of 87. 4 %. A monitoring of the microbial population showed a decrease of the microbial diversity during the biological treatment and only two species were found and isolated at the end of culture. The isolated microorganisms were identified and belonged to Pseudomonas putida (99 %) and Achromobacter (denitrificans (50 %) or xyloxidans (50 %)). The last part of this work was dedicated to the improvement of the performance of the biological treatment through the application of advanced biological treatment. It was based on the biostimulation of the activated sludge by nutrients (glucose) and / or the bioaugmentation of the activated sludge by the addition of the isolated bacteria. The coupling between electro-Fenton and the combination of biostimulation and bioaugmentation led to an overall mineralization yield of 97 % with a processing time gain of 16 days compared to the conventional biological treatment. This proves the relevance of the application of the advanced biological process in the context of a coupling with an electro-Fenton pretreatment