Academic literature on the topic 'Electroactive bacteria'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electroactive bacteria.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electroactive bacteria"

1

Cordas, Cristina M., L. Tiago Guerra, Catarina Xavier, and José J. G. Moura. "Electroactive biofilms of sulphate reducing bacteria." Electrochimica Acta 54, no. 1 (December 2008): 29–34. http://dx.doi.org/10.1016/j.electacta.2008.02.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sydow, Anne, Thomas Krieg, Florian Mayer, Jens Schrader, and Dirk Holtmann. "Electroactive bacteria—molecular mechanisms and genetic tools." Applied Microbiology and Biotechnology 98, no. 20 (August 20, 2014): 8481–95. http://dx.doi.org/10.1007/s00253-014-6005-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Catania, Chelsea, Amruta A. Karbelkar, and Ariel L. Furst. "Engineering the interface between electroactive bacteria and electrodes." Joule 5, no. 4 (April 2021): 743–47. http://dx.doi.org/10.1016/j.joule.2021.02.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gaffney, Erin M., Olja Simoska, and Shelley D. Minteer. "The Use of Electroactive Halophilic Bacteria for Improvements and Advancements in Environmental High Saline Biosensing." Biosensors 11, no. 2 (February 12, 2021): 48. http://dx.doi.org/10.3390/bios11020048.

Full text
Abstract:
Halophilic bacteria are remarkable organisms that have evolved strategies to survive in high saline concentrations. These bacteria offer many advances for microbial-based biotechnologies and are commonly used for industrial processes such as compatible solute synthesis, biofuel production, and other microbial processes that occur in high saline environments. Using halophilic bacteria in electrochemical systems offers enhanced stability and applications in extreme environments where common electroactive microorganisms would not survive. Incorporating halophilic bacteria into microbial fuel cells has become of particular interest for renewable energy generation and self-powered biosensing since many wastewaters can contain fluctuating and high saline concentrations. In this perspective, we highlight the evolutionary mechanisms of halophilic microorganisms, review their application in microbial electrochemical sensing, and offer future perspectives and directions in using halophilic electroactive microorganisms for high saline biosensing.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Chun-Lian, Yang-Yang Yu, Zhen Fang, Saraschandra Naraginti, Yunhai Zhang, and Yang-Chun Yong. "Recent advances in nitroaromatic pollutants bioreduction by electroactive bacteria." Process Biochemistry 70 (July 2018): 129–35. http://dx.doi.org/10.1016/j.procbio.2018.04.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Nan, Yuxuan Wan, and Xin Wang. "Nutrient conversion and recovery from wastewater using electroactive bacteria." Science of The Total Environment 706 (March 2020): 135690. http://dx.doi.org/10.1016/j.scitotenv.2019.135690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yates, Matthew D., Lina J. Bird, Brian J. Eddie, Elizabeth L. Onderko, Christopher A. Voigt, and Sarah M. Glaven. "Nanoliter scale electrochemistry of natural and engineered electroactive bacteria." Bioelectrochemistry 137 (February 2021): 107644. http://dx.doi.org/10.1016/j.bioelechem.2020.107644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aguirre-Sierra, A., T. Bacchetti-De Gregoris, A. Berná, J. J. Salas, C. Aragón, and A. Esteve-Núñez. "Microbial electrochemical systems outperform fixed-bed biofilters in cleaning up urban wastewater." Environmental Science: Water Research & Technology 2, no. 6 (2016): 984–93. http://dx.doi.org/10.1039/c6ew00172f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wibowo, Arie, Gusti U. N. Tajalla, Maradhana A. Marsudi, Glen Cooper, Lia A. T. W. Asri, Fengyuan Liu, Husaini Ardy, and Paulo J. D. S. Bartolo. "Green Synthesis of Silver Nanoparticles Using Extract of Cilembu Sweet Potatoes (Ipomoea batatas L var. Rancing) as Potential Filler for 3D Printed Electroactive and Anti-Infection Scaffolds." Molecules 26, no. 7 (April 2, 2021): 2042. http://dx.doi.org/10.3390/molecules26072042.

Full text
Abstract:
Electroactive biomaterials are fascinating for tissue engineering applications because of their ability to deliver electrical stimulation directly to cells, tissue, and organs. One particularly attractive conductive filler for electroactive biomaterials is silver nanoparticles (AgNPs) because of their high conductivity, antibacterial activity, and ability to promote bone healing. However, production of AgNPs involves a toxic reducing agent which would inhibit biological scaffold performance. This work explores facile and green synthesis of AgNPs using extract of Cilembu sweet potato and studies the effect of baking and precursor concentrations (1, 10 and 100 mM) on AgNPs’ properties. Transmission electron microscope (TEM) results revealed that the smallest particle size of AgNPs (9.95 ± 3.69 nm) with nodular morphology was obtained by utilization of baked extract and ten mM AgNO3. Polycaprolactone (PCL)/AgNPs scaffolds exhibited several enhancements compared to PCL scaffolds. Compressive strength was six times greater (3.88 ± 0.42 MPa), more hydrophilic (contact angle of 76.8 ± 1.7°), conductive (2.3 ± 0.5 × 10−3 S/cm) and exhibited anti-bacterial properties against Staphylococcus aureus ATCC3658 (99.5% reduction of surviving bacteria). Despite the promising results, further investigation on biological assessment is required to obtain comprehensive study of this scaffold. This green synthesis approach together with the use of 3D printing opens a new route to manufacture AgNPs-based electroactive with improved anti-bacterial properties without utilization of any toxic organic solvents.
APA, Harvard, Vancouver, ISO, and other styles
10

Sanchez, Jérémie-Luc, and Christel Laberty-Robert. "A novel microbial fuel cell electrode design: prototyping a self-standing one-step bacteria-encapsulating bioanode with electrospinning." Journal of Materials Chemistry B 9, no. 21 (2021): 4309–18. http://dx.doi.org/10.1039/d1tb00680k.

Full text
Abstract:
A microbial fuel cell bioanode encapsulating electroactive bacteria in core–shell fibers mixed with a conductive scaffold was electrospun. This new design opens up perspectives of storable ready-to-use anodes for portable applications.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Electroactive bacteria"

1

Stöckl, Markus [Verfasser]. "Attachment under current – biofilm formation by electroactive bacteria / Markus Stöckl." Aachen : Shaker, 2018. http://d-nb.info/1159835918/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stöckl, Markus [Verfasser], and Wolfgang [Akademischer Betreuer] Sand. "Attachment under current – biofilm formation by electroactive bacteria / Markus Stöckl ; Betreuer: Wolfgang Sand." Duisburg, 2018. http://d-nb.info/1155722590/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Trigodet, Florian. "Caractérisation électrochimique et moléculaire des biofilms électroactifs sur acier inoxydable en milieu marin." Thesis, Brest, 2019. http://www.theses.fr/2019BRES0029/document.

Full text
Abstract:
Les microorganismes sont capables d'augmenter le potentiel libre des aciers inoxydables en eau de mer via un phénomène que l’on appelle anoblissement. Cette élévation de plusieurs centaines de millivolts du potentiel augmente le risque de corrosion localisé. L’anoblissement a été étudié pendant plus de 40 ans, et malgré son importance, les mécanismes microbiens responsables du phénomène n’ont pas été identifiés. Nous avons combiné l’écologie microbienne et l'électrochimie pour étudier la diversité des bactéries associées à l’anoblissement des aciers inoxydables. La température de l’eau de mer ainsi que la teneur en oxygène dissous sont des facteurs qui influencent l’anoblissement et nous les avons utilisés pour identifier la fraction bactérienne associée au changement de potentiel. L’anoblissement est inhibé par une température critique de l’eau de mer (au-dessus de 38°C/40°C) et par une teneur basse en oxygène dissous. A l’aide du séquençage d’amplicons ADN, nous avons identifié des unités taxonomiques opérationnels (OTUs) comme biomarqueurs de l’anoblissement. Certaines étaient affiliées à des bactéries capables de dégrader des hydrocarbures, et une OTU était affiliée à ‘Candidatus Tenderia electrophaga’, une bactérie électrotrophe capable de réduire l'oxygène avec des électrons provenant d’une électrode. Nous avons étudié le rôle de ces bactéries avec des conditions a potentiels fixés et libres avec une approche de métagénomique. Nous avons reconstitué un génome issu d’assemblage métagénomique (MAG) très proche de ‘Candidatus Tenderia electrophaga’ et associé à l'anoblissement. Avec ces résultats, nous avons proposé un nouveau mécanisme bactérien pour expliquer l’anoblissement : les bactéries électrotrophes seraient capables de réduire de l’oxygène avec des électrons provenant du film passif de l’acier inoxydable, et ainsi influencer le potentiel libre et donc l’anoblissement
Microorganisms increase the opencircuit potential of stainless Steel immersed in seawater in a phenomenon called ennoblement.This change of potential of several hundreds of millivolts raises the chance of localized corrosion.The ennoblement has been studied for more than 40 years, and despite the importance and impact of ennoblement, little is known about the microbial mechanisms responsible for the phenomenon. We have combined microbial ecology and electrochemistry to investigate the diversity of surface attached bacteria associated with stainless steel ennoblement. Seawater temperature and dissolved oxygen content are factors that influence the ennoblement and we used them to infer the bacterial fraction associated with the phenomenon. The ennoblement is inhibited by a critical seawater tempzrature (above 38°C/40°C) and low dissolved oxygen content.With DNA amplicon sequencing, we identified operational taxonomie units (OTUs) that were biomarkers of the ennoblement. There were some OTUs affiliated to hydrocarbon degrading bacteria, and one OTU affiliated to ‘Candidatus Tenderia electrophaga’, an electrotrophic bacteria able to reduce oxygen with electrons from an electrode.We investigated the role of electrotrophic bacteria with potentiostatic and open circuit conditions and with metagenomics we recovered a metagenome assembled genome (MAG) very close to 'Candidatus Tenderia electrophaga’ associated with the ennoblement.From these results, we proposed a new bacterial mechanism to explain the ennoblement : electrotrophic bacteria would be able to reduce oxygen with électron drawn from the stainless steel passivation film, hence influencing the open circuit potential and therefore the ennoblement
APA, Harvard, Vancouver, ISO, and other styles
4

Godain, Alexiane. "Étude de l'activité électrocatalytique des biofilms microbiens en fonction des forces d'adhésion pour l'optimisation des performances des biopiles microbiennes." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1064/document.

Full text
Abstract:
Les piles à combustible microbiennes, en tant que biotechnologie potentiellement durable, peuvent assurer la conversion directe de la matière organique en électricité en utilisant des biofilms bactériens comme biocatalyseurs. Dans un context politique où les législations françaises et européennes favorisent et imposent la revalorisation des déchets organiques provenant des industries ou des collectivités territoriales, les biopiles microbiennes semblent un moyen peu couteux et prometteur pour répondre à ce besoin. Cette thèse a pour objectif d'améliorer les connaissances sur la formation des biofilms électroactifs à la surface de l'anode, et de comprendre les mécanismes impliqués dans la compétition entre les bactéries électroactives et les autres communautés bactériennes dans le but d'améliorer la sélection des bactéries électroactives dans le biofilm anodique. Une attention particulière sera portée sur les forces de cisaillement comme un outil de control de la formation des biofilms anodiques. Ces recherches ont pour but à long terme d'améliorer la production d’électricité produite par les biopiles microbiennes, et plus particulièrement d’améliorer les performances du compartiment anodique, en vue d’appliquer cette technologie dans les stations d’épurations pour la réduction du coût énergétique du traitement des eaux usées. A travers cette thèse, différents points sur la dynamique des communautés bactériennes lors de la formation du biofilm ont été mis en évidence. La formation du biofilm est divisée en deux étapes. Dans un premier temps, les bactéries électroactives (EAB) non spécifiques se développent dans toutes les biopiles, produisant ou non de l'électricité et dans le milieu liquide comme sur l’anode. Les EAB spécifiques deviennent ensuite plus compétitives et prédominantes mais seulement dans les biopiles produisant de l'électricité et seulement dans le biofilm anodique. Cette deuxième étape correspond à une augmentation exponentielle de la production d'électricité. A partir de ces résultats, nous émettons l'hypothèse qu'une inhibition de la première étape devrait diminuer la compétition entre les EAB non spécifiques et spécifiques au cours de la colonisation anodique, et favoriser la croissance des EAB spécifiques dans le biofilm. Nous proposons d'utiliser la contrainte de cisaillement pour sélectionner les EAB spécifiques pendant l'étape d'adhésion en détachant les EAB non spécifiques. Dans un premier temps, pour cette étude, des biopiles avec une configuration de chambre à écoulement de cisaillement ont été conçues, construites et mises en place. Les résultats démontrent que sous une contrainte de cisaillement élevée, l'abondance des EAB spécifiques telle que Geobacter était très élevée, jusqu'à 30,14% en opposition à une contrainte de cisaillement faible où l'abondance relative était inférieure à 1%. En outre, la contrainte de cisaillement diminue le pourcentage de couverture de la surface anodique, ce qui montre que la sélection des EAB spécifiques se produit en détachant d'autres bactéries. Ainsi, la contrainte de cisaillement pourrait être utilisée pour sélectionner les EAB spécifiques durant les premières étapes d’adhésion. Enfin, l'effet de la contrainte de cisaillement sur la sélection microbienne au cours de la croissance du biofilm a été étudié. Ces résultats confirment les conclusions précédentes: les EAB spécifiques sont sélectionnées lorsque les contraintes de cisaillement sont plus élevées. Ce travail démontre le rôle majeur des contraintes de cisaillement dans la formation du biofilm L'utilisation de contraintes de cisaillement pourrait être un moyen de contrôler la sélection des EAB et la quantité de matières mortes dans les biofilms anodiques. C’est un facteur qui devrait être pris en compte dans l’architecture et la mise en place des réacteurs
Microbial fuel cells (MFCs), as a potentially sustainable biotechnology, can directly convert organic matter into electricity by using bacterial biofilms as biocatalysts. In a political context where European legislation favors and imposes the revalorization of organic waste from industries, MFC seems an inexpensive and promising technology to meet this need. The aim of this thesis is to improve knowledge of the formation of electroactive biofilms on the anodic surface, and to understand the mechanisms involved in the competition between electroactive bacteria (EAB) and other bacteria. Special attention will be paid to shear force as a tool to control the formation of anodic biofilms. First, bacterial successions have been studied under stationary conditions and in standard laboratory configurations. The results show that the formation of the biofilm is divided in two stages. At first, non-specific EAB grow in all MFCs, producing or not electricity. Then, specific EAB become predominant only in MFCs producing electricity and is associated to an exponential increase of electricity. From these results, we hypothesize that inhibition of the first step should decrease the competition between nonspecific and specific EAB. We propose to use the shear stress to select specific EAB during the adhesion. First, MFCs with a shear stress flow chamber configuration were designed, constructed and set up. The results show that the proportion of specific EAB such as Geobacter was higher, up to 30.14% as opposed to a lower shear stress (less than 1%). Then, the effect of shear stress on microbial selection during biofilm growth was studied. These results confirm the previous conclusions: specific EAB are selected when shear stress is higher. This work demonstrates the major role of shear stress in biofilm formation and could be a way to control the selection of EAB. This factor should be taken into account in the architecture and implementation of the reactors
APA, Harvard, Vancouver, ISO, and other styles
5

Champigneux, Pierre. "Comprendre et optimiser les anodes microbiennes grâce aux technologies microsystèmes." Thesis, Toulouse, INPT, 2018. http://www.theses.fr/2018INPT0051/document.

Full text
Abstract:
De multiples micro-organismes ont la capacité de catalyser l’oxydation électrochimique de matières organiques en s’organisant en biofilm à la surface d’anodes. Ce processus est à la base de procédés électro-microbiens très innovants tels que les piles à combustible microbiennes ou les électrolyseurs microbiens. L’interface biofilm/électrode a été l’objet de nombreuses étudesdont les conclusions restent difficiles à démêler en partie du fait de la diversité des paramètres interfaciaux mis en jeu. L’objet de ce travail de thèse est d’exploiter les technologies microsystèmes pour focaliser l’impact de la topographie de surface des électrodes sur le développement du biofilm et sur ses performances électro-catalytiques. La formation de biofilmsélectroactifs de Geobacter sulfurreducens a été étudiée sur des électrodes d’or présentant des topographies bien contrôlées, sous la forme de rugosité, porosité, réseau de piliers, à des échellesallant du nanomètre à quelques centaines de micromètres. La présence de microrugosité a permis d’accroitre les densités de courant d’un facteur 8 par rapport à une surface lisse et son effet a étéquantifié à l’aide du paramètre Sa. Nous avons tenté de distinguer les effets des différentes échelles de rugosité sur le développement du biofilm et la vitesse des transferts électroniques.L’intérêt de la microporosité a été discuté. L’accroissement de surface active par la présence de micro-piliers s’est avéré très efficace et une approche théorique a donné des clés de compréhension et d’optimisation. Les connaissances acquises dans les conditions de culture pure ont finalement été confrontées avec la mise en oeuvre de biofilms multi-espèces issus d’un inoculum complexe provenant de sédiments marins
Many microorganisms have the ability to catalyze the electrochemical oxidation of organic matterby self-organizing into biofilm on the surface of anodes. This process is the basis of highlyinnovative electro-microbial processes such as microbial fuel cells or microbial electrolysis cells.The biofilm/electrode interface has been the subject of numerous studies whose conclusionsremain difficult to disentangle partly because of the diversity of the interfacial parameters involved.The purpose of this thesis work is to exploit microsystem technologies to focus the impact ofelectrode surface topography on biofilm development and electro-catalytic performance. Theformation of electroactive biofilms of Geobacter sulfurreducens was studied on gold electrodespresenting well-controlled topographies, in the form of roughness, porosity, pillar networks, atscales ranging from nanometer to a few hundred micrometers. The presence of micro-roughnessincreased the current densities by a factor of 8 compared to a smooth surface and its effect wasquantified using the Sa parameter. We have tried to distinguish the effects of different roughnessscales on biofilm development and electron transfer rates. The suitability of micro-porosity wasdiscussed. The increase of active surface area by the presence of micro-pillars has proved veryeffective and a theoretical approach has given keys to understanding and optimization. Theknowledge acquired under pure culture conditions was finally confronted with the use of multispeciesbiofilms formed from a complex inoculum coming from marine sediments
APA, Harvard, Vancouver, ISO, and other styles
6

Shaw, Dario Rangel. "Extracellular electron transfer-dependent metabolism of anaerobic ammonium oxidation (Anammox) bacteria." Diss., 2020. http://hdl.handle.net/10754/666479.

Full text
Abstract:
Anaerobic ammonium oxidation (anammox) by anammox bacteria contributes significantly to the global nitrogen cycle and plays a major role in sustainable wastewater treatment. To date, autotrophic nitrogen removal by anammox bacteria is the most efficient and environmentally friendly process for the treatment of ammonium in wastewaters; its application can save up to 60% of the energy input, nearly 100% elimination of carbon demand and 80% decrease in excess sludge compared to conventional nitrification/denitrification process. In the anammox process, ammonium (NH4+) is directly oxidized to dinitrogen gas (N2) using intracellular electron acceptors such as nitrite (NO2–) or nitric oxide (NO). In the absence of NO2– or NO, anammox bacteria can couple formate oxidation to the reduction of metal oxides such as Fe(III) or Mn(IV). Their genomes contain homologs of Geobacter and Shewanella cytochromes involved in extracellular electron transfer (EET). However, it is still unknown whether anammox bacteria have EET capability and can couple the oxidation of NH4+ with transfer of electrons to extracellular electron acceptors. In this dissertation, I discovered by using complementary approaches that in the absence of NO2–, freshwater and marine anammox bacteria couple the oxidation of NH4+ with transfer of electrons to carbon-based insoluble extracellular electron acceptors such as graphene oxide (GO) or electrodes poised at a certain potential in microbial electrolysis cells (MECs). Metagenomics, fluorescence in-situ hybridization and electrochemical analyses coupled with MEC performance confirmed that anammox electrode biofilms were responsible for current generation through EET-dependent oxidation of NH4+. 15N-labelling experiments revealed the molecular mechanism of the EET-dependent anammox process. NH4+ was oxidized to N2 via hydroxylamine (NH2OH) as intermediate when electrode was used as the terminal electron acceptor. Comparative transcriptomics analysis supported isotope labelling experiments and revealed an alternative pathway for NH4+ oxidation coupled to EET when electrode was used as electron acceptor. The results presented in my dissertation provide the first experimental evidence that marine and freshwater anammox bacteria can couple NH4+ oxidation with EET, which is a significant breakthrough that is promising in the context of implementing EET-dependent anammox process for energy-efficient treatment of nitrogen using bioelectrochemical systems.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electroactive bacteria"

1

Wang, Fan, Sunghoon Cho, Eunpyo Choi, Jong-Oh Park, and Sukho Park. "Ecofriendly electroactive polymer actuator using highly porous carboxylated bacterial cellulose." In 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE, 2017. http://dx.doi.org/10.1109/ecticon.2017.8096216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mutlu, Rahim, Gursel Alici, and Weihua Li. "Kinematic modeling for artificial flagellum of a robotic bacterium based on electroactive polymer actuators." In 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2011. http://dx.doi.org/10.1109/aim.2011.6027074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography