Journal articles on the topic 'Electroactive bacteria'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Electroactive bacteria.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cordas, Cristina M., L. Tiago Guerra, Catarina Xavier, and José J. G. Moura. "Electroactive biofilms of sulphate reducing bacteria." Electrochimica Acta 54, no. 1 (December 2008): 29–34. http://dx.doi.org/10.1016/j.electacta.2008.02.041.
Full textSydow, Anne, Thomas Krieg, Florian Mayer, Jens Schrader, and Dirk Holtmann. "Electroactive bacteria—molecular mechanisms and genetic tools." Applied Microbiology and Biotechnology 98, no. 20 (August 20, 2014): 8481–95. http://dx.doi.org/10.1007/s00253-014-6005-z.
Full textCatania, Chelsea, Amruta A. Karbelkar, and Ariel L. Furst. "Engineering the interface between electroactive bacteria and electrodes." Joule 5, no. 4 (April 2021): 743–47. http://dx.doi.org/10.1016/j.joule.2021.02.001.
Full textGaffney, Erin M., Olja Simoska, and Shelley D. Minteer. "The Use of Electroactive Halophilic Bacteria for Improvements and Advancements in Environmental High Saline Biosensing." Biosensors 11, no. 2 (February 12, 2021): 48. http://dx.doi.org/10.3390/bios11020048.
Full textZhang, Chun-Lian, Yang-Yang Yu, Zhen Fang, Saraschandra Naraginti, Yunhai Zhang, and Yang-Chun Yong. "Recent advances in nitroaromatic pollutants bioreduction by electroactive bacteria." Process Biochemistry 70 (July 2018): 129–35. http://dx.doi.org/10.1016/j.procbio.2018.04.019.
Full textLi, Nan, Yuxuan Wan, and Xin Wang. "Nutrient conversion and recovery from wastewater using electroactive bacteria." Science of The Total Environment 706 (March 2020): 135690. http://dx.doi.org/10.1016/j.scitotenv.2019.135690.
Full textYates, Matthew D., Lina J. Bird, Brian J. Eddie, Elizabeth L. Onderko, Christopher A. Voigt, and Sarah M. Glaven. "Nanoliter scale electrochemistry of natural and engineered electroactive bacteria." Bioelectrochemistry 137 (February 2021): 107644. http://dx.doi.org/10.1016/j.bioelechem.2020.107644.
Full textAguirre-Sierra, A., T. Bacchetti-De Gregoris, A. Berná, J. J. Salas, C. Aragón, and A. Esteve-Núñez. "Microbial electrochemical systems outperform fixed-bed biofilters in cleaning up urban wastewater." Environmental Science: Water Research & Technology 2, no. 6 (2016): 984–93. http://dx.doi.org/10.1039/c6ew00172f.
Full textWibowo, Arie, Gusti U. N. Tajalla, Maradhana A. Marsudi, Glen Cooper, Lia A. T. W. Asri, Fengyuan Liu, Husaini Ardy, and Paulo J. D. S. Bartolo. "Green Synthesis of Silver Nanoparticles Using Extract of Cilembu Sweet Potatoes (Ipomoea batatas L var. Rancing) as Potential Filler for 3D Printed Electroactive and Anti-Infection Scaffolds." Molecules 26, no. 7 (April 2, 2021): 2042. http://dx.doi.org/10.3390/molecules26072042.
Full textSanchez, Jérémie-Luc, and Christel Laberty-Robert. "A novel microbial fuel cell electrode design: prototyping a self-standing one-step bacteria-encapsulating bioanode with electrospinning." Journal of Materials Chemistry B 9, no. 21 (2021): 4309–18. http://dx.doi.org/10.1039/d1tb00680k.
Full textLi, Tian, Fan Chen, Qixing Zhou, Xin Wang, Chengmei Liao, Lean Zhou, Lili Wan, Jingkun An, Yuxuan Wan, and Nan Li. "Unignorable toxicity of formaldehyde on electroactive bacteria in bioelectrochemical systems." Environmental Research 183 (April 2020): 109143. http://dx.doi.org/10.1016/j.envres.2020.109143.
Full textFernandes, Tomás M., Leonor Morgado, David L. Turner, and Carlos A. Salgueiro. "Protein Engineering of Electron Transfer Components from Electroactive Geobacter Bacteria." Antioxidants 10, no. 6 (May 25, 2021): 844. http://dx.doi.org/10.3390/antiox10060844.
Full textLi, Shan-Wei, Xing Zhang, and Guo-Ping Sheng. "Silver nanoparticles formation by extracellular polymeric substances (EPS) from electroactive bacteria." Environmental Science and Pollution Research 23, no. 9 (January 22, 2016): 8627–33. http://dx.doi.org/10.1007/s11356-016-6105-7.
Full textJamlus, N. I. I. M., M. N. Masri, S. K. Wee, and N. F. Shoparwe. "Electricity Generation by Locally Isolated Electroactive Bacteria in Microbial Fuel Cell." IOP Conference Series: Earth and Environmental Science 765, no. 1 (May 1, 2021): 012115. http://dx.doi.org/10.1088/1755-1315/765/1/012115.
Full textGEHRING, ANDREW G., and SHU-I. TU. "Enzyme-Linked Immunomagnetic Electrochemical Detection of Live Escherichia coli O157:H7 in Apple Juice†." Journal of Food Protection 68, no. 1 (January 1, 2005): 146–49. http://dx.doi.org/10.4315/0362-028x-68.1.146.
Full textPinck, Stéphane, Lucila Martínez Ostormujof, Sébastien Teychené, and Benjamin Erable. "Microfluidic Microbial Bioelectrochemical Systems: An Integrated Investigation Platform for a More Fundamental Understanding of Electroactive Bacterial Biofilms." Microorganisms 8, no. 11 (November 23, 2020): 1841. http://dx.doi.org/10.3390/microorganisms8111841.
Full textFang, Xin, Shafeer Kalathil, Giorgio Divitini, Qian Wang, and Erwin Reisner. "A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis." Proceedings of the National Academy of Sciences 117, no. 9 (February 12, 2020): 5074–80. http://dx.doi.org/10.1073/pnas.1913463117.
Full textJoicy, Anna, Young-Chae Song, Jun Li, Sang-Eun Oh, Seong-Ho Jang, and Yongtae Ahn. "Effect of Electrostatic Field Strength on Bioelectrochemical Nitrogen Removal from Nitrogen-Rich Wastewater." Energies 13, no. 12 (June 21, 2020): 3218. http://dx.doi.org/10.3390/en13123218.
Full textLebègue, Estelle, Nazua L. Costa, Ricardo O. Louro, and Frédéric Barrière. "Communication—Electrochemical Single Nano-Impacts of Electroactive Shewanella Oneidensis Bacteria onto Carbon Ultramicroelectrode." Journal of The Electrochemical Society 167, no. 10 (June 25, 2020): 105501. http://dx.doi.org/10.1149/1945-7111/ab9e39.
Full textMoghiseh, Zohreh, and Abbas Rezaee. "Removal of aspirin from aqueous solution using electroactive bacteria induced by alternating current." Environmental Science and Pollution Research 28, no. 20 (January 16, 2021): 25327–38. http://dx.doi.org/10.1007/s11356-020-11365-z.
Full textRamírez-Vargas, Carlos, Amanda Prado, Carlos Arias, Pedro Carvalho, Abraham Esteve-Núñez, and Hans Brix. "Microbial Electrochemical Technologies for Wastewater Treatment: Principles and Evolution from Microbial Fuel Cells to Bioelectrochemical-Based Constructed Wetlands." Water 10, no. 9 (August 24, 2018): 1128. http://dx.doi.org/10.3390/w10091128.
Full textFaustino, Marisa M., Bruno M. Fonseca, Nazua L. Costa, Diana Lousa, Ricardo O. Louro, and Catarina M. Paquete. "Crossing the Wall: Characterization of the Multiheme Cytochromes Involved in the Extracellular Electron Transfer Pathway of Thermincola ferriacetica." Microorganisms 9, no. 2 (January 31, 2021): 293. http://dx.doi.org/10.3390/microorganisms9020293.
Full textAngulo-Pineda, Carolina, Kasama Srirussamee, Patricia Palma, Victor M. Fuenzalida, Sarah H. Cartmell, and Humberto Palza. "Electroactive 3D Printed Scaffolds Based on Percolated Composites of Polycaprolactone with Thermally Reduced Graphene Oxide for Antibacterial and Tissue Engineering Applications." Nanomaterials 10, no. 3 (February 28, 2020): 428. http://dx.doi.org/10.3390/nano10030428.
Full textDi Domenico, Enea Gino, Gianluca Petroni, Daniele Mancini, Alberto Geri, Luca Di Palma, and Fiorentina Ascenzioni. "Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells." BioMed Research International 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/351014.
Full textAn, Zhengkai, Qing Feng, Rusong Zhao, and Xiaoli Wang. "Bioelectrochemical Methane Production from Food Waste in Anaerobic Digestion Using a Carbon-Modified Copper Foam Electrode." Processes 8, no. 4 (April 1, 2020): 416. http://dx.doi.org/10.3390/pr8040416.
Full textYan, Yuqing, Xin Wang, Anis Askari, and Hyung-Sool Lee. "A modelling study of the spatially heterogeneous mutualism between electroactive biofilm and planktonic bacteria." Science of The Total Environment 759 (March 2021): 143537. http://dx.doi.org/10.1016/j.scitotenv.2020.143537.
Full textYu, Lin, Jizhou Duan, Xiangqian Du, Yanliang Huang, and Baorong Hou. "Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry." Electrochemistry Communications 26 (January 2013): 101–4. http://dx.doi.org/10.1016/j.elecom.2012.10.022.
Full textEaktasang, Numfon, Christina S. Kang, Song Jung Ryu, Yanasinee Suma, and Han S. Kim. "Enhanced Current Production by Electroactive Biofilm of Sulfate-Reducing Bacteria in the Microbial Fuel Cell." Environmental Engineering Research 18, no. 4 (December 30, 2013): 277–81. http://dx.doi.org/10.4491/eer.2013.18.4.277.
Full textEaktasang, Numfon, Christina S. Kang, Song Jung Ryu, Yanasinee Suma, and Han S. Kim. "Erratum : Enhanced Current Production by Electroactive Biofilm of Sulfate-Reducing Bacteria in the Microbial Fuel Cell." Environmental Engineering Research 19, no. 1 (March 30, 2014): 115. http://dx.doi.org/10.4491/eer.2014.19.1.115.
Full textYuvraj, C., and V. Aranganathan. "MFC—An Approach in Enhancing Electricity Generation Using Electroactive Biofilm of Dissimilatory Iron-Reducing (DIR) Bacteria." Arabian Journal for Science and Engineering 42, no. 6 (April 25, 2017): 2341–47. http://dx.doi.org/10.1007/s13369-017-2529-8.
Full textLiu, Lecheng, Guangfei Liu, Jiti Zhou, and Ruofei Jin. "Energy Taxis toward Redox-Active Surfaces Decreases the Transport of Electroactive Bacteria in Saturated Porous Media." Environmental Science & Technology 55, no. 8 (March 17, 2021): 5559–68. http://dx.doi.org/10.1021/acs.est.0c08355.
Full textPicioreanu, C., K. P. Katuri, I. M. Head, M. C. M. van Loosdrecht, and K. Scott. "Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion." Water Science and Technology 57, no. 7 (April 1, 2008): 965–71. http://dx.doi.org/10.2166/wst.2008.095.
Full textElgiddawy, Nada, Shiwei Ren, Wadih Ghattas, Waleed M. A. El Rouby, Ahmed O. El-Gendy, Ahmed A. Farghali, Abderrahim Yassar, and Hafsa Korri-Youssoufi. "Antimicrobial Activity of Cationic Poly(3-hexylthiophene) Nanoparticles Coupled with Dual Fluorescent and Electrochemical Sensing: Theragnostic Prospect." Sensors 21, no. 5 (March 2, 2021): 1715. http://dx.doi.org/10.3390/s21051715.
Full textKumar, Amit, Krishna Katuri, Piet Lens, and Dónal Leech. "Does bioelectrochemical cell configuration and anode potential affect biofilm response?" Biochemical Society Transactions 40, no. 6 (November 21, 2012): 1308–14. http://dx.doi.org/10.1042/bst20120130.
Full textStricker, Laura, Isabella Guido, Thomas Breithaupt, Marco G. Mazza, and Jürgen Vollmer. "Hybrid sideways/longitudinal swimming in the monoflagellate Shewanella oneidensis : from aerotactic band to biofilm." Journal of The Royal Society Interface 17, no. 171 (October 2020): 20200559. http://dx.doi.org/10.1098/rsif.2020.0559.
Full textMarkelova, Ekaterina, Christopher T. Parsons, Raoul-Marie Couture, Christina M. Smeaton, Benoit Madé, Laurent Charlet, and Philippe Van Cappellen. "Deconstructing the redox cascade: what role do microbial exudates (flavins) play?" Environmental Chemistry 14, no. 8 (2017): 515. http://dx.doi.org/10.1071/en17158.
Full textTan, Bin, ShaoFeng Zhou, Yi Wang, BeiPing Zhang, LiHua Zhou, and Yong Yuan. "Molecular insight into electron transfer properties of extracellular polymeric substances of electroactive bacteria by surface-enhanced Raman spectroscopy." Science China Technological Sciences 62, no. 10 (June 18, 2019): 1679–87. http://dx.doi.org/10.1007/s11431-018-9437-0.
Full textLi, Feng-He, Qiang Tang, Yang-Yang Fan, Yang Li, Jie Li, Jing-Hang Wu, Chen-Fei Luo, Hong Sun, Wen-Wei Li, and Han-Qing Yu. "Developing a population-state decision system for intelligently reprogramming extracellular electron transfer in Shewanella oneidensis." Proceedings of the National Academy of Sciences 117, no. 37 (August 27, 2020): 23001–10. http://dx.doi.org/10.1073/pnas.2006534117.
Full textGuo, Fei, Yuan Liu, and Hong Liu. "Hibernations of electroactive bacteria provide insights into the flexible and robust BOD detection using microbial fuel cell-based biosensors." Science of The Total Environment 753 (January 2021): 142244. http://dx.doi.org/10.1016/j.scitotenv.2020.142244.
Full textYang, Yuan, Zhen Fang, Yang-Yang Yu, Yan-Zhai Wang, Saraschandra Naraginti, and Yang-Chun Yong. "A mediator-free whole-cell electrochemical biosensing system for sensitive assessment of heavy metal toxicity in water." Water Science and Technology 79, no. 6 (March 15, 2019): 1071–80. http://dx.doi.org/10.2166/wst.2019.101.
Full textAli, Jafar, Aaqib Sohail, Lei Wang, Muhammad Rizwan Haider, Shahi Mulk, and Gang Pan. "Electro-Microbiology as a Promising Approach Towards Renewable Energy and Environmental Sustainability." Energies 11, no. 7 (July 12, 2018): 1822. http://dx.doi.org/10.3390/en11071822.
Full textMuñoz, Vanesa, Joaquín Inchaurrondo, Juan Pablo Busalmen, and María Victoria Ordoñez. "Transmission Electron Microscopy As A Relevant Tool In The Characterization Of Hybrid Nanostructures Of Au Bio-Mineralization By Electroactive Bacteria." Microscopy and Microanalysis 26, S1 (March 2020): 189–90. http://dx.doi.org/10.1017/s1431927620001166.
Full textWang, Deng, Ying Wang, Jing Yang, Xiu He, Rui-Jie Wang, Zhi-Song Lu, and Yan Qiao. "Cellulose Aerogel Derived Hierarchical Porous Carbon for Enhancing Flavin-Based Interfacial Electron Transfer in Microbial Fuel Cells." Polymers 12, no. 3 (March 17, 2020): 664. http://dx.doi.org/10.3390/polym12030664.
Full textPavón, Esperanza, Rosa Martín-Rodríguez, Ana C. Perdigón, and María D. Alba. "New Trends in Nanoclay-Modified Sensors." Inorganics 9, no. 6 (June 2, 2021): 43. http://dx.doi.org/10.3390/inorganics9060043.
Full textSathish-Kumar, K., Omar Solorza-Feria, Gerardo Vázquez-Huerta, J. P. Luna-Arias, and Héctor M. Poggi-Varaldo. "Electrical Stress-directed Evolution of Biocatalysts Community Sampled from A Sodic-saline Soil for Microbial Fuel Cells." Journal of New Materials for Electrochemical Systems 15, no. 3 (April 2, 2012): 181–86. http://dx.doi.org/10.14447/jnmes.v15i3.63.
Full textPeñacoba-Antona, Lorena, Montserrat Gómez-Delgado, and Abraham Esteve-Núñez. "Multi-Criteria Evaluation and Sensitivity Analysis for the Optimal Location of Constructed Wetlands (METland) at Oceanic and Mediterranean Areas." International Journal of Environmental Research and Public Health 18, no. 10 (May 19, 2021): 5415. http://dx.doi.org/10.3390/ijerph18105415.
Full textDíaz-Rullo Edreira, Sara, Silvia Barba, Ioanna A. Vasiliadou, Raúl Molina, Juan Antonio Melero, Juan José Espada, Daniel Puyol, and Fernando Martínez. "Assessment of Voltage Influence in Carbon Dioxide Fixation Process by a Photo-Bioelectrochemical System under Photoheterotrophy." Microorganisms 9, no. 3 (February 25, 2021): 474. http://dx.doi.org/10.3390/microorganisms9030474.
Full textVeerubhotla, Ramya. "Self-assembled electroactive bacterial network." Materials Today 29 (October 2019): 86–87. http://dx.doi.org/10.1016/j.mattod.2019.08.006.
Full textTelichowska, Aleksandra, Joanna Kobus-Cisowska, Marta Ligaj, Kinga Stuper-Szablewska, Daria Szymanowska, Mariusz Tichoniuk, and Piotr Szulc. "Polyphenol content and antioxidant activities of Prunus padus L. and Prunus serotina L. leaves: Electrochemical and spectrophotometric approach and their antimicrobial properties." Open Chemistry 18, no. 1 (September 8, 2020): 1125–35. http://dx.doi.org/10.1515/chem-2020-0121.
Full textKim, Soo Hyeon, Takatoki Yamamoto, Dominique Fourmy, and Teruo Fujii. "An electroactive microwell array for trapping and lysing single-bacterial cells." Biomicrofluidics 5, no. 2 (June 2011): 024114. http://dx.doi.org/10.1063/1.3605508.
Full text