Academic literature on the topic 'Electroactive biofilm'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electroactive biofilm.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electroactive biofilm"

1

Kurbanalieva, Saniyat, Vyacheslav Arlyapov, Anna Kharkova, et al. "Electroactive Biofilms of Activated Sludge Microorganisms on a Nanostructured Surface as the Basis for a Highly Sensitive Biochemical Oxygen Demand Biosensor." Sensors 22, no. 16 (2022): 6049. http://dx.doi.org/10.3390/s22166049.

Full text
Abstract:
The possibility of the developing a biochemical oxygen demand (BOD) biosensor based on electroactive biofilms of activated sludge grown on the surface of a graphite-paste electrode modified with carbon nanotubes was studied. A complex of microscopic methods controlled biofilm formation: optical microscopy with phase contrast, scanning electron microscopy, and laser confocal microscopy. The features of charge transfer in the obtained electroactive biofilms were studied using the methods of cyclic voltammetry and electrochemical impedance spectroscopy. The rate constant of the interaction of mic
APA, Harvard, Vancouver, ISO, and other styles
2

Virdis, Bernardino, Diego Millo, Bogdan C. Donose, Yang Lu, Damien J. Batstone, and Jens O. Krömer. "Analysis of electron transfer dynamics in mixed community electroactive microbial biofilms." RSC Advances 6, no. 5 (2016): 3650–60. http://dx.doi.org/10.1039/c5ra15676a.

Full text
Abstract:
Electrochemically active microbial biofilms are capable to produce electric current when grown onto electrodes. This work investigates the dynamics of electron transfer inside the biofilm as well as at the biofilm/electrode interface.
APA, Harvard, Vancouver, ISO, and other styles
3

Jaramillo-Rodríguez, Juan B., Leticia Vega-Alvarado, Luis M. Rodríguez-Torres, Guillermo A. Huerta-Miranda, Alberto Hernández-Eligio, and Katy Juarez. "Global transcriptional analysis of Geobacter sulfurreducens gsu1771 mutant biofilm grown on two different support structures." PLOS ONE 18, no. 10 (2023): e0293359. http://dx.doi.org/10.1371/journal.pone.0293359.

Full text
Abstract:
Electroactive biofilms formation by the metal-reducing bacterium Geobacter sulfurreducens is a step crucial for bioelectricity generation and bioremediation. The transcriptional regulator GSU1771 controls the expression of essential genes involved in electron transfer and biofilm formation in G. sulfurreducens, with GSU1771-deficient producing thicker and more electroactive biofilms. Here, RNA-seq analyses were conducted to compare the global gene expression patterns of wild-type and Δgsu1771 mutant biofilms grown on non-conductive (glass) and conductive (graphite electrode) materials. The Δgs
APA, Harvard, Vancouver, ISO, and other styles
4

Yanuka-Golub, Keren, Leah Reshef, Judith Rishpon, and Uri Gophna. "Specific Desulfuromonas Strains Can Determine Startup Times of Microbial Fuel Cells." Applied Sciences 10, no. 23 (2020): 8570. http://dx.doi.org/10.3390/app10238570.

Full text
Abstract:
Microbial fuel cells (MFCs) can generate electricity simultaneously with wastewater treatment. For MFCs to be considered a cost-effective treatment technology, they should quickly re-establish a stable electroactive microbial community in the case of system failure. In order to shorten startup times, temporal studies of anodic biofilm development are required, however, frequent sampling can reduce the functionality of the system due to electroactive biomass loss; therefore, on-line monitoring of the microbial community without interfering with the system’s stability is essential. Although all
APA, Harvard, Vancouver, ISO, and other styles
5

Beyenal, H., A. Tanyolaç, and Z. Lewandowski. "Measurement of local effective diffusivity in heterogeneous biofilms." Water Science and Technology 38, no. 8-9 (1998): 171–78. http://dx.doi.org/10.2166/wst.1998.0804.

Full text
Abstract:
We have developed a novel technique to measure local effective diffusivity distribution in heterogeneous biofilms. Mobile microelectrodes (tip diameter 10 μm) and the limiting current technique were employed to measure the effective diffusivity of electroactive species introduced to natural and artificial biofilms. We calibrated the microelectrodes in artificial biofilms of known effective diffusivity and known density. In mixed population biofilms, local effective diffusivity varied from one location to another and decreased toward the bottom of the biofilm. We related local effective diffusi
APA, Harvard, Vancouver, ISO, and other styles
6

Godain, Alexiane, Timothy M. Vogel, Pascal Fongarland, and Naoufel Haddour. "Influence of Hydrodynamic Forces on Electroactive Bacterial Adhesion in Microbial Fuel Cell Anodes." Bioengineering 10, no. 12 (2023): 1380. http://dx.doi.org/10.3390/bioengineering10121380.

Full text
Abstract:
This investigation examined the role of shear stress on the dynamic development of microbial communities within anodic biofilms in single-chamber microbial fuel cells (MFCs). Bacterial attachment to surfaces, often regarded as a crucial step in biofilm formation, may significantly contribute to the selection of electroactive bacteria (EAB). It is well established that hydrodynamic forces, particularly shear forces, have a profound influence on bacterial adhesion. This study postulates that shear stress could select EAB on the anode during the adhesion phase by detaching non-EAB. To examine thi
APA, Harvard, Vancouver, ISO, and other styles
7

Godain, Alexiane, Naoufel Haddour, Pascal Fongarland, and Timothy M. Vogel. "Bacterial Competition for the Anode Colonization under Different External Resistances in Microbial Fuel Cells." Catalysts 12, no. 2 (2022): 176. http://dx.doi.org/10.3390/catal12020176.

Full text
Abstract:
This study investigated the effect of external resistance (Rext) on the dynamic evolution of microbial communities in anodic biofilms of single-chamber microbial fuel cells fueled with acetate and inoculated with municipal wastewater. Anodic biofilms developed under different Rext (0, 330 and 1000 ohms, and open circuit condition) were characterized as a function of time during two weeks of growth using 16S rRNA gene sequencing, cyclic voltammetry (CV) and fluorescence microscopy. The results showed a drastic difference in power output of MFCs operated with an open circuit and those operated w
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Xin, Lean Zhou, Lu Lu, et al. "Alternating Current Influences Anaerobic Electroactive Biofilm Activity." Environmental Science & Technology 50, no. 17 (2016): 9169–76. http://dx.doi.org/10.1021/acs.est.6b00813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pinck, Stéphane, Lucila Martínez Ostormujof, Sébastien Teychené, and Benjamin Erable. "Microfluidic Microbial Bioelectrochemical Systems: An Integrated Investigation Platform for a More Fundamental Understanding of Electroactive Bacterial Biofilms." Microorganisms 8, no. 11 (2020): 1841. http://dx.doi.org/10.3390/microorganisms8111841.

Full text
Abstract:
It is the ambition of many researchers to finally be able to close in on the fundamental, coupled phenomena that occur during the formation and expression of electrocatalytic activity in electroactive biofilms. It is because of this desire to understand that bioelectrochemical systems (BESs) have been miniaturized into microBES by taking advantage of the worldwide development of microfluidics. Microfluidics tools applied to bioelectrochemistry permit even more fundamental studies of interactions and coupled phenomena occurring at the microscale, thanks, in particular, to the concomitant combin
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Shuiliang, Fangfang Yang, Chungen Li, et al. "Encapsulation of a living bioelectrode by a hydrogel for bioelectrochemical systems in alkaline media." Journal of Materials Chemistry B 3, no. 23 (2015): 4641–46. http://dx.doi.org/10.1039/c5tb00563a.

Full text
Abstract:
A hydrogel-bioelectrode was fabricated by encapsulating a living electroactive biofilm with a poly(vinyl alcohol) hydrogel through a freezing/thawing process for bioelectrochemical systems in alkaline media.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Electroactive biofilm"

1

Stöckl, Markus [Verfasser]. "Attachment under current – biofilm formation by electroactive bacteria / Markus Stöckl." Aachen : Shaker, 2018. http://d-nb.info/1159835918/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stöckl, Markus [Verfasser], and Wolfgang [Akademischer Betreuer] Sand. "Attachment under current – biofilm formation by electroactive bacteria / Markus Stöckl ; Betreuer: Wolfgang Sand." Duisburg, 2018. http://d-nb.info/1155722590/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Champigneux, Pierre. "Comprendre et optimiser les anodes microbiennes grâce aux technologies microsystèmes." Thesis, Toulouse, INPT, 2018. http://www.theses.fr/2018INPT0051/document.

Full text
Abstract:
De multiples micro-organismes ont la capacité de catalyser l’oxydation électrochimique de matières organiques en s’organisant en biofilm à la surface d’anodes. Ce processus est à la base de procédés électro-microbiens très innovants tels que les piles à combustible microbiennes ou les électrolyseurs microbiens. L’interface biofilm/électrode a été l’objet de nombreuses étudesdont les conclusions restent difficiles à démêler en partie du fait de la diversité des paramètres interfaciaux mis en jeu. L’objet de ce travail de thèse est d’exploiter les technologies microsystèmes pour focaliser l’impa
APA, Harvard, Vancouver, ISO, and other styles
4

Smida, Hassiba. "Modulation de l'interface entre biofilms microbiens électroactifs et surface d'électrode : modifications de surface et effets de milieux." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S135/document.

Full text
Abstract:
Les piles à combustible microbiennes (PCMs) sont des dispositifs bio-électrochimiques qui utilisent des biofilms bactériens électroactifs afin de catalyser des réactions d'oxydoréduction anodique et/ou cathodique pour générer de l'énergie électrique. Afin de promouvoir le développement et la connexion des biofilms, points clé dans les performances des PCM, la surface de l'anode de graphite est fonctionnalisée par des unités pyridine. Celles-ci sont greffées de façon covalente via la réduction électrochimique de cations diazopyridinium, formés in situ à partir de précurseurs amine, en s'inspira
APA, Harvard, Vancouver, ISO, and other styles
5

Kronenberg, Izabel. "Elimination des micropolluants aromatiques et persistants de boues de station d'épuration au cours de la digestion anaérobie assistée par électrolyse microbienne et matériaux conducteurs." Thesis, Montpellier, SupAgro, 2018. http://www.theses.fr/2018NSAM0008.

Full text
Abstract:
L’élimination des micropolluants organiques est devenue aujourd’hui un objectif de santé publique car leur toxicité et bioaccumulation au travers de la chaine trophique sont incontestables. Les hydrocarbures aromatiques polycycliques (HAP) et le nonylphénol (NP) présents en faible concentration dans l’eau usée sont peu éliminés par le traitement. Ces composés hydrophobes se retrouvent fortement sorbés à la matière organique des boues de station d’épuration. Les procédés de traitement de ces boues, comme la digestion anaérobie (DA) jouent un rôle central car ils constituent une des dernières ba
APA, Harvard, Vancouver, ISO, and other styles
6

Pillot, Guillaume. "Biodiversités électroactives issues de sources hydrothermales profondes." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0503/document.

Full text
Abstract:
Les sources hydrothermales profondes sont des édifices géologiques formés par l’infiltration d’eau de mer dans la croûte océanique, formant un fluide chaud (>400 °C), riche en métaux qui précipite pour former des cheminées dans lesquelles circulent un courant électrique. Les travaux de recherche présentés ici avaient pour objectif de révéler la présence de microorganismes capable de participer à la production de ce courant électrique ou d’utiliser cette électricité pour vivre au sein de ces cheminées électriquement conductrices. Nous nous sommes focalisés sur les microorganismes capables de
APA, Harvard, Vancouver, ISO, and other styles
7

Godain, Alexiane. "Étude de l'activité électrocatalytique des biofilms microbiens en fonction des forces d'adhésion pour l'optimisation des performances des biopiles microbiennes." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1064/document.

Full text
Abstract:
Les piles à combustible microbiennes, en tant que biotechnologie potentiellement durable, peuvent assurer la conversion directe de la matière organique en électricité en utilisant des biofilms bactériens comme biocatalyseurs. Dans un context politique où les législations françaises et européennes favorisent et imposent la revalorisation des déchets organiques provenant des industries ou des collectivités territoriales, les biopiles microbiennes semblent un moyen peu couteux et prometteur pour répondre à ce besoin. Cette thèse a pour objectif d'améliorer les connaissances sur la formation des b
APA, Harvard, Vancouver, ISO, and other styles
8

Trigodet, Florian. "Caractérisation électrochimique et moléculaire des biofilms électroactifs sur acier inoxydable en milieu marin." Thesis, Brest, 2019. http://www.theses.fr/2019BRES0029/document.

Full text
Abstract:
Les microorganismes sont capables d'augmenter le potentiel libre des aciers inoxydables en eau de mer via un phénomène que l’on appelle anoblissement. Cette élévation de plusieurs centaines de millivolts du potentiel augmente le risque de corrosion localisé. L’anoblissement a été étudié pendant plus de 40 ans, et malgré son importance, les mécanismes microbiens responsables du phénomène n’ont pas été identifiés. Nous avons combiné l’écologie microbienne et l'électrochimie pour étudier la diversité des bactéries associées à l’anoblissement des aciers inoxydables. La température de l’eau de mer
APA, Harvard, Vancouver, ISO, and other styles
9

PETRONI, GIANLUCA. "Analisi ed ottimizzazione del processo di produzione di energia elettrica mediante una cella a combustibile microbiologica (microbial fuel cell, MFC) alimentata da liquami zootecnici." Doctoral thesis, 2013. http://hdl.handle.net/11573/917638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cordas, Cristina Maria Grade Couto da Silva. "Electrochemical Studies of Electron Transfer Proteins and Electroactive Biofilms." Doctoral thesis, 2007. http://hdl.handle.net/10362/63809.

Full text
Abstract:
Bioelectrochemistry has been recognized as a very important technique to get relevant thermodynamic and kinetic information on diverse complex biological systems. From the determination of redox potentials of metallic centers in small electron carrier proteins to the resolution of more complex mechanisms in highly organised enzymes, and even whole bacteria systems, the application of dynamic electrochemical techniques has proved to be a powerful tool that has allowed to get deeper in the understanding of such systems. In the present thesis electrochemical techniques were used to study d
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electroactive biofilm"

1

Yu, Yang-Yang, Dan-Dan Zhai, and Yang-Chun Yong. "Bioengineering of Microbial Fuel Cells: From Extracellular Electron Transfer Pathway to Electroactive Biofilm." In Emerging Areas in Bioengineering. Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527803293.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schroeder, Uwe, and Falk Harnisch. "Biofilms, Electroactive." In Encyclopedia of Applied Electrochemistry. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Garlapati, Vijay Kumar, Sunandan Naha, Swati Sharma, Pranab Goswami, and Surajbhan Sevda. "Electroactive Biofilms (EAB)." In Microbial Biofilms. CRC Press, 2020. http://dx.doi.org/10.1201/9780367415075-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kebaili, Hakima, Mostefa Kameche, Christophe Innocent, Widya Ernayati Kosimaningrum, and Tewfik Sahraoui. "Growth of Electroactive Biofilm onto Carbon Felt Bioanode in Microbial Fuel Cell: Enhancement of Bioenergy Production." In ICREEC 2019. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5444-5_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kiran, Rashmi, and Sunil A. Patil. "Microbial Electroactive Biofilms." In ACS Symposium Series. American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1323.ch008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pentassuglia, S., V. Agostino, and T. Tommasi. "EAB—Electroactive Biofilm: A Biotechnological Resource." In Encyclopedia of Interfacial Chemistry. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-409547-2.13461-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lahiri, Dibyajit, Moupriya Nag, Sougata Ghosh, Ankita Dey, and Rina Rani Ray. "Electroactive biofilm and electron transfer in MES." In Scaling Up of Microbial Electrochemical Systems. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-90765-1.00006-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Syed, Zainab, Monika Sogani, Jayana Rajvanshi, and Kumar Sonu. "Electroactive biofilm and electron transfer in microbial electrochemical systems." In Scaling Up of Microbial Electrochemical Systems. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-90765-1.00003-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vijay, Ankisha, Jayesh M. Sonawane, and Prakash C. Ghosh. "Electroactive biofilm and electron transfer in the microbial electrochemical system." In Scaling Up of Microbial Electrochemical Systems. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-90765-1.00005-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Zheng, Yanqiong Zeng, Feng Wang, Peng Huang, Jian Li, and Yibin Chen. "Feasibility of nanomaterials to support electroactive microbes in nanobiohybrids." In Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery. IWA Publishing, 2023. http://dx.doi.org/10.2166/9781789063592_0129.

Full text
Abstract:
Abstract Electrochemically active bacteria (EAB) harboring extracellular electron transfer capabilities display great potential for applications in wastewater treatment and energy recovery. However, limited biocatalytic efficiency can curtail their practical engineering applications. Building on the merits of nanomaterials (NMs) that are biocompatible with EAB, engineered nanobiohybrids that are synergistically integrated with specific bacterial components and NMs provide a novel design for engineering an advanced biocatalyst complex. In this chapter, we summarize the efficacy of NMs for their suitability in constructing nanobiohybrids. Favorable engineered nanobiohybrids attributes include high electrical conductivity, large specific surface area, desirable photocatalytic capability, stimulated production of cellular components related to electron transfer, and cytoprotection capabilities. Considering the mechanisms of interfacial electron transport and electron flux generation, the configuration of nanobiohybrids with NMs can be implemented through both endogenous and exogenous bioaugmentation, wherein nanobiohybrids are constructed at a single cell-based or biofilm-based scale with different interfacial connections. Finally, we summarize the current challenges for nanobiohybrid construction and envision the future prospects for nanobiohybrid development and applications.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electroactive biofilm"

1

Fraiwan, Arwa, and Seokheun Choi. "A biomicrosystem for simultaneous optical and electrochemical monitoring of electroactive microbial biofilm." In 2015 IEEE Sensors. IEEE, 2015. http://dx.doi.org/10.1109/icsens.2015.7370212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hu, Wanjun, Xuhui Qiu, Xuejun Zhang, et al. "In-situ detection of electroactive biofilms using an electrochemical surface Plasmon resonance fiber-optic sensor." In Asia-Pacific Optical Sensors Conference. OSA, 2016. http://dx.doi.org/10.1364/apos.2016.w4a.61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!