To see the other types of publications on this topic, follow the link: Electroanalytical determination.

Journal articles on the topic 'Electroanalytical determination'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Electroanalytical determination.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ağın, Fatma. "Electroanalytical Methods for Determination of Calcium Channel Blockers." Current Analytical Chemistry 15, no. 3 (2019): 207–18. http://dx.doi.org/10.2174/1573411014666180426165750.

Full text
Abstract:
Background:Calcium Channel Blockers (CCBs) are widely used in the treatment of cardiovascular and ischemic heart diseases in recent years. They treat arrhythmias by reducing cardiac cycle contraction and also benefit ischemic heart diseases. Electroanalytical methods are very powerful analytical methods used in the pharmaceutical industry because of the determination of therapeutic agents and/or their metabolites in clinical samples at extremely low concentrations (10-50 ng/ml). The purpose of this review is to gather electroanalytical methods used for the determination of calcium channel bloc
APA, Harvard, Vancouver, ISO, and other styles
2

Nouws, Henri P. A., Cristina Delerue-Matos, Aquiles A. Barros, and José A. Rodrigues. "Electroanalytical determination of paroxetine in pharmaceuticals." Journal of Pharmaceutical and Biomedical Analysis 42, no. 3 (2006): 341–46. http://dx.doi.org/10.1016/j.jpba.2006.04.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Beklova, Miroslava, Ondrej Zitka, Zbynek Gazdik, et al. "Electroanalytical techniques for determination of flavonoids." Toxicology Letters 180 (October 2008): S230. http://dx.doi.org/10.1016/j.toxlet.2008.06.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Trnková, Libuše, Irena Postbieglová, and Miroslav Holik. "Electroanalytical determination of d(GCGAAGC) hairpin." Bioelectrochemistry 63, no. 1-2 (2004): 25–30. http://dx.doi.org/10.1016/j.bioelechem.2003.09.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Naik, Keerti M., and Sharanappa T. Nandibewoor. "Electroanalytical method for the determination of methylparaben." Sensors and Actuators A: Physical 212 (June 2014): 127–32. http://dx.doi.org/10.1016/j.sna.2014.03.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Garrido, Jorge M. P. J., Cristina Delerue-Matos, Fernanda Borges, Tice R. A. Macedo, and A. M. Oliveira-Brett. "ELECTROANALYTICAL DETERMINATION OF CODEINE IN PHARMACEUTICAL PREPARATIONS." Analytical Letters 35, no. 15 (2002): 2487–98. http://dx.doi.org/10.1081/al-120016539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

West, Camilla E, Joanna L Hardcastle, and Richard G Compton. "Sono-Electroanalytical Determination of Lead in Saliva." Electroanalysis 14, no. 21 (2002): 1470–78. http://dx.doi.org/10.1002/1521-4109(200211)14:21<1470::aid-elan1470>3.0.co;2-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Naixing, Pingping Di, Tangdi Yu, Jianmin Chen, and Jiaqi Deng. "Electroanalytical studies of chlorophylls and their determination." Electroanalysis 3, no. 8 (1991): 827–31. http://dx.doi.org/10.1002/elan.1140030817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stojanović, Zorica, Ana Đurović, Snežana Kravić, et al. "A simple and rapid electrochemical sensing method for metribuzin determination in tap and river water samples." Analytical Methods 8, no. 12 (2016): 2698–705. http://dx.doi.org/10.1039/c5ay03243a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ustinova, Elvira M., Eduard Gorchakov, and Alina V. Melkova. "Monitoring the Palladium Contents in the Tailings Using Stripping Voltammetry." Key Engineering Materials 712 (September 2016): 328–31. http://dx.doi.org/10.4028/www.scientific.net/kem.712.328.

Full text
Abstract:
Anodic stripping voltammetry, a classical electroanalytical method has been optimized to analyze trace Pd (II) in tailings. The authors identified the registration conditions in the determination of the analytical signal Pd (II): the composition of background electrolyte and the electrolysis potential. The electroanalytical approaches with an unmodified carbon electrode were used. The use of stripping voltammetry applied to the assessment of the palladium content in geological objects was demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
11

Tiwari, Ida, Monali Singh, Mandakini Gupta, Jonathan P. Metters, and Craig E. Banks. "Design of screen-printed bulk modified electrodes using anthraquinone–cysteamine functionalized gold nanoparticles and their application to the detection of dissolved oxygen." Analytical Methods 7, no. 5 (2015): 2020–27. http://dx.doi.org/10.1039/c4ay02271h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kolliopoulos, Athanasios V., Dimitrios K. Kampouris, and Craig E. Banks. "Indirect electroanalytical detection of phenols." Analyst 140, no. 9 (2015): 3244–50. http://dx.doi.org/10.1039/c4an02374a.

Full text
Abstract:
A novel indirect electrochemical protocol for the electroanalytical detection of phenols is presented for the first time. This methodology is demonstrated with the indirect determination of the target analytes phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol through an electrochemically adapted optical protocol. A critical comparison with the direct electrochemical detection of the phenols is also given.
APA, Harvard, Vancouver, ISO, and other styles
13

Silva, Tiago Almeida, and Orlando Fatibello-Filho. "Square-wave adsorptive anodic stripping voltammetric determination of ramipril using an electrochemical sensor based on nanostructured carbon black." Analytical Methods 9, no. 32 (2017): 4680–87. http://dx.doi.org/10.1039/c7ay01479a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yilmaz, Selehattin, Esra Baltaoglu, Gulsen Saglikoglu, Sultan Yagmur, Kamran Polat, and Murat Sadikoglu. "Electroanalytical determination of metronidazole in tablet dosage form." Journal of the Serbian Chemical Society 78, no. 2 (2013): 295–302. http://dx.doi.org/10.2298/jsc120111069y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sánchez Misiego, A., R. M. García-Moncó Carra, M. P. Ambel Carracedo, and M. T. Guerra Sánchez-Simón. "Electroanalytical Determination and Fractionation of Copper in Wine." Journal of Agricultural and Food Chemistry 52, no. 17 (2004): 5316–21. http://dx.doi.org/10.1021/jf049562i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mokhtari, Bahram, and Kobra Pourabdollah. "Electroanalytical Determination of Disperse Red-13 in Wastewaters." Journal of The Electrochemical Society 160, no. 6 (2013): B67—B72. http://dx.doi.org/10.1149/2.060306jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hagedoorn, Peter L., Petra van't Slot, Herman P. van Leeuwen, and Wilfred R. Hagen. "Electroanalytical Determination of Tungsten and Molybdenum in Proteins." Analytical Biochemistry 297, no. 1 (2001): 71–78. http://dx.doi.org/10.1006/abio.2001.5300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sereno, Silvia del C, Leónides E Sereno, and Juan M Marioli. "Electroanalytical Determination of Enrofloxacin in Reversed Phase HPLC." Electroanalysis 19, no. 24 (2007): 2583–88. http://dx.doi.org/10.1002/elan.200704017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lawrence, Nathan S., James Davis, Richard G. Compton, Li Jiang, Tim G. J. Jones, and Steve N. Davis. "Selective determination of thiols: a novel electroanalytical approach." Analyst 125, no. 4 (2000): 661–63. http://dx.doi.org/10.1039/b000985g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Thapliyal, Neeta, Tirivashe E. Chiwunze, Rajshekhar Karpoormath, Rajendra N. Goyal, Harun Patel, and Srinivasulu Cherukupalli. "Research progress in electroanalytical techniques for determination of antimalarial drugs in pharmaceutical and biological samples." RSC Advances 6, no. 62 (2016): 57580–602. http://dx.doi.org/10.1039/c6ra05025e.

Full text
Abstract:
The review focusses on the role of electroanalytical methods for determination of antimalarial drugs in biological matrices and pharmaceutical formulations with a critical analysis of published voltammetric and potentiometric methods.
APA, Harvard, Vancouver, ISO, and other styles
21

Agustini, Deonir, Márcio F. Bergamini, and Luiz Humberto Marcolino-Junior. "Low cost microfluidic device based on cotton threads for electroanalytical application." Lab on a Chip 16, no. 2 (2016): 345–52. http://dx.doi.org/10.1039/c5lc01348h.

Full text
Abstract:
A microfluidic thread-based electroanalytical device (μTED) was constructed with extremely low cost materials and a manufacturing process free of equipment, for simultaneous determination of electroactive species by multiple pulse amperometry.
APA, Harvard, Vancouver, ISO, and other styles
22

SILVA, L. M. S. da, D. S. S. VIÉGAS, E. P. MARQUES, L. C. M. de AZEVEDO, and A. L. B. MARQUES. "NALYTICAL PROCEDURES FOR DETERMINING METALS IN GASOLINE AFTER PRE-TREATMENT ACID." Periódico Tchê Química 15, no. 30 (2018): 480–88. http://dx.doi.org/10.52571/ptq.v15.n30.2018.483_periodico30_pgs_480_488.pdf.

Full text
Abstract:
The work presents a study through electroanalytical procedures for the determination of metals in gasoline samples. The determination of metals in fuel is an issue of environmental relevance because it believes that these elements can be released into the atmosphere causing damage to the environment and health. Also when present outside the established acceptable limit, the reactivity of these elements may directly imply the quality of the fuels. Thus, the use of low cost and efficient techniques such as electroanalytic are shown as a viable option for this purpose. The access to the metals by
APA, Harvard, Vancouver, ISO, and other styles
23

Thomas. "Electroanalytical Determination of Doripenem using a Screen-Printed Electrode." American Journal of Pharmacology and Toxicology 7, no. 1 (2012): 1–7. http://dx.doi.org/10.3844/ajptsp.2012.1.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Vaz, C. M. P., S. Crestana, S. A. S. Machado, L. H. Mazo, and L. A. Avaca. "Electroanalytical Determination of the Herbicide Atrazine in Natural Waters." International Journal of Environmental Analytical Chemistry 62, no. 1 (1996): 65–76. http://dx.doi.org/10.1080/03067319608027053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zavazalova, Jaroslava, Mariana Emilia Ghica, Karolina Schwarzova-Peckova, Jiri Barek, and Christopher M. A. Brett. "Carbon-Based Electrodes for Sensitive Electroanalytical Determination of Aminonaphthalenes." Electroanalysis 27, no. 7 (2015): 1556–64. http://dx.doi.org/10.1002/elan.201400719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Geraldo, M. Dulce, and M. Irene Montenegro. "Electroanalytical determination of styrene in acrylonitrile-butadiene-styrene copolymers." Electroanalysis 9, no. 11 (1997): 877–79. http://dx.doi.org/10.1002/elan.1140091115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ozkorucuklu, Sabriye Percin, Levent Ozcan, Yucel Sahin, and Guleren Alsancak. "Electroanalytical Determination of Some Sulfonamides on Overoxidized Polypyrrole Electrodes." Australian Journal of Chemistry 64, no. 7 (2011): 965. http://dx.doi.org/10.1071/ch10481.

Full text
Abstract:
The electrochemical behaviours of five sulfonamides (sulfanilamide, sulfadiazine, sulfamerazine, sulfamonomethoxine, sulfamethoxazole) were investigated with overoxidized polypyrrole (OPPy) modified pencil graphite electrodes. The performance of the OPPy electrode was evaluated by differential pulse voltammetry in Britton–Robinson buffer solutions prepared in different ratio of acetonitrile-water binary mixture, between pH 1.5 and 7.0. The highest anodic signals of sulfonamides were obtained in Britton–Robinson buffer solution prepared in 50% (v/v) acetonitrile-water at pH 2.5 and 3.0. The OPP
APA, Harvard, Vancouver, ISO, and other styles
28

Temizer, A. "Electroanalytical determination of vinca alkaloids used in cancer chemotherapy." Talanta 33, no. 10 (1986): 791–94. http://dx.doi.org/10.1016/0039-9140(86)80195-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mazzocchin, G. "Determination of trace amounts of thorium by electroanalytical techniques." Talanta 37, no. 3 (1990): 317–24. http://dx.doi.org/10.1016/0039-9140(90)80060-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Berchmans, Sheela, Touma B. Issa, and Pritam Singh. "Determination of inorganic phosphate by electroanalytical methods: A review." Analytica Chimica Acta 729 (June 2012): 7–20. http://dx.doi.org/10.1016/j.aca.2012.03.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Funk, Max O., Paul Walker, and John C. Andre. "An electroanalytical approach to the determination of lipid peroxides." Bioelectrochemistry and Bioenergetics 18, no. 1-3 (1987): 127–35. http://dx.doi.org/10.1016/0302-4598(87)85014-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Morawska, Kamila, Natalia Festinger, Grażyna Chwatko, Rafał Głowacki, Witold Ciesielski, and Sylwia Smarzewska. "Rapid electroanalytical procedure for sesamol determination in real samples." Food Chemistry 309 (March 2020): 125789. http://dx.doi.org/10.1016/j.foodchem.2019.125789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Crapnell, Robert D., and Craig E. Banks. "Electroanalytical overview: the pungency of chile and chilli products determined via the sensing of capsaicinoids." Analyst 146, no. 9 (2021): 2769–83. http://dx.doi.org/10.1039/d1an00086a.

Full text
Abstract:
We explore the endeavours directed to the development of electrochemical-based sensors for the determination of capsaicin and related compounds, starting from their use in hyphenated laboratory set-ups to their modern use as stand-alone electroanalytical sensors.
APA, Harvard, Vancouver, ISO, and other styles
34

Kulapina, E. G., A. E. Dubasova, and O. I. Kulapina. "Modified solid-contact sensors for determination of cefuroxime and cefalexin in medicines and oral fluid." Industrial laboratory. Diagnostics of materials 85, no. 9 (2019): 5–14. http://dx.doi.org/10.26896/1028-6861-2019-85-9-5-14.

Full text
Abstract:
Cefuroxime, cefuroxime axetil and cefalexin are broad-spectrum pluripotential cephalosporin antibiotics. Their determination in various objects suggests using expensive spectroscopic, chromatographic, electrochemical equipment and organic solvents. Potentiometric sensors can provide rapid detection of cephalosporin antibiotics in a small sample volume without a preliminary sample preparation. The study is aimed at the developing of modified solid-contact potentiometric sensors for determination of cefuroxime and cefalexin in aqueous, biological media, and pharmaceuticals. The electroanalytical
APA, Harvard, Vancouver, ISO, and other styles
35

Alghamdi, Ahmad H. "A Square-Wave Adsorptive Stripping Voltammetric Method for the Determination of Amaranth, a Food Additive Dye." Journal of AOAC INTERNATIONAL 88, no. 3 (2005): 788–93. http://dx.doi.org/10.1093/jaoac/88.3.788.

Full text
Abstract:
Abstract Square-wave adsorptive stripping voltammetric (AdSV) determinations of trace concentrations of the azo coloring agent Amaranth are described. The analytical methodology used was based on the adsorptive preconcentration of the dye on the hanging mercury drop electrode, followed by initiation of a negative sweep. In a pH 10 carbonate supporting electrolyte, Amaranth gave a well-defined and sensitive AdSV peak at −518 mV. The electroanalytical determination of this azo dye was found to be optimal in carbonate buffer (pH 10) under the following experimental conditions: accumulation time,
APA, Harvard, Vancouver, ISO, and other styles
36

Karadurmus, Leyla, Kaan Eşme, Nurgul K. Bakirhan, and Sibel A. Ozkan. "Recent Electrochemical Assays on Cephalosporins." Current Pharmaceutical Analysis 16, no. 4 (2020): 337–49. http://dx.doi.org/10.2174/1573412915666190523120431.

Full text
Abstract:
: Antibiotics are an important class among drugs because they are a significant agent to deal with infections. Cephalosporins are a very important group of antibiotics in the β-lactam class. The cephalosporins are semisynthetic antibiotics derived from products of the fungus Cephalosporium. Cephalosporins are classified as first, second, third, fourth, and advanced generation, based largely on their antibacterial spectrum and stability to β-lactamases. Electrochemical methods have been used for the determination of cephalosporin just as used in the determination of many antibiotic drugs. Elect
APA, Harvard, Vancouver, ISO, and other styles
37

Honeychurch. "Review of Electroanalytical-Based Approaches for the Determination of Benzodiazepines." Biosensors 9, no. 4 (2019): 130. http://dx.doi.org/10.3390/bios9040130.

Full text
Abstract:
The benzodiazepine class of drugs are characterised by a readily electrochemically reducible azomethine group. A number are also substituted by other electrochemically active nitro, N-oxide, and carbonyl groups, making them readily accessible to electrochemical determination. Techniques such as polarography, voltammetry, and potentiometry have been employed for pharmaceutical and biomedical samples, requiring little sample preparation. This review describes current developments in the design and applications of electrochemical-based approaches for the determination of the benzodiazepine class
APA, Harvard, Vancouver, ISO, and other styles
38

Eisele, Ana Paula Pires, Camila Farinha Valezi, and Elen Romão Sartori. "Exploiting the high oxidation potential of carisoprodol on a boron-doped diamond electrode: an improved method for its simultaneous determination with acetaminophen and caffeine." Analyst 142, no. 18 (2017): 3514–21. http://dx.doi.org/10.1039/c7an01074e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Karadurmus, Leyla, Duru Kır, Sevinc Kurbanoglu, and Sibel A. Ozkan. "Electrochemical Analysis of Antipsychotics." Current Pharmaceutical Analysis 15, no. 5 (2019): 413–28. http://dx.doi.org/10.2174/1573412914666180710114458.

Full text
Abstract:
Introduction:Schizophrenia is seizures accompanied by severe psychotic symptoms, and a steady state of continuation in the form of periods of stagnation. Antipsychotics are now the basis of treatment for schizophrenia and there is no other molecule that is antipsychotic priority in treatment. Antipsychotics can be classified into two groups; dopamine receptor antagonists such as promazine, fluphenazine etc. and serotonin-dopamine antagonists including risperidone, olanzapine, ziprasidone, aripiprazole etc.Materials and Methods:Electrochemical methods have been used for the determination of ant
APA, Harvard, Vancouver, ISO, and other styles
40

Škugor Rončević, Ivana, Marijo Buzuk, Maša Buljac, and Nives Vladislavić. "The Preparation, Morphological Characterization and Possible Electroanalytical Application of a Hydroxyapatite-Modified Glassy Carbon Electrode." Crystals 11, no. 7 (2021): 772. http://dx.doi.org/10.3390/cryst11070772.

Full text
Abstract:
By simple modification of a GC electrode with biofunctional material, hydroxyapatite (HAp), an efficient electroanalytical tool, was designed and constructed. Modification of the GC surface includes two steps in synthesis: electrochemical deposition and chemical conversion. The properties, structure, and morphology of a nanosized material formed on a surface and absorbability were studied by electrochemical impedance spectroscopy, Fourier-transform infrared spectroscopy and scanning electron microscopy with energy-dispersive spectroscopy analysis. Numerous methods in this work confirmed that t
APA, Harvard, Vancouver, ISO, and other styles
41

Agin, Fatma, Nurgul Karadas, Bengi Uslu, and Sibel A. Ozkan. "Electroanalytical Characterization of Levodropropizine and its Voltammetric Determination in Pharmaceuticals." Current Pharmaceutical Analysis 9, no. 3 (2013): 299–309. http://dx.doi.org/10.2174/1573412911309030008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

HASEBE, Kiyoshi, Satoshi HIKIMA, Teiji KAKIZAKI, and Hitoshi YOSHIDA. "Electroanalytical aspects of pulse polarography for determination of germanium(IV)." Analytical Sciences 5, no. 2 (1989): 225–26. http://dx.doi.org/10.2116/analsci.5.225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ceballos, Claudio, and Héctor Fernández. "The Electroanalytical Determination of Antioxidants in Corn Oil Using Ultramicroelectrodes." Journal Of The Brazilian Chemical Society 6, no. 1 (1995): 1–5. http://dx.doi.org/10.5935/0103-5053.19950001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Calvo-Marzal, Percy, Simone S. Rosatto, Paulo A. Granjeiro, Hiroshi Aoyama, and Lauro T. Kubota. "Electroanalytical determination of acid phosphatase activity by monitoring p-nitrophenol." Analytica Chimica Acta 441, no. 2 (2001): 207–14. http://dx.doi.org/10.1016/s0003-2670(01)01120-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Villagrán, Constanza, Craig E. Banks, Christopher Hardacre, and Richard G. Compton. "Electroanalytical Determination of Trace Chloride in Room-Temperature Ionic Liquids." Analytical Chemistry 76, no. 7 (2004): 1998–2003. http://dx.doi.org/10.1021/ac030375d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Djurovic, Ana, Zorica Stojanovic, Snezana Kravic, Tijana Zeremski, Nada Grahovac, and Tanja Brezo-Borjan. "Determination of metribuzin content in pesticide formulations using electroanalytical methodology." Acta Periodica Technologica, no. 49 (2018): 43–51. http://dx.doi.org/10.2298/apt1849043d.

Full text
Abstract:
The work presents results of the determination of metribuzin content in commercial pesticide formulations by applying chronopotentiometry with thin film mercury electrode as an electrochemical sensor. In the analyzed pesticide formulations, a single well defined reduction peak of metribuzin is observed at the potential around -880 mV. The content of the herbicide in commercial formulations is determined using the calibration curve method, by applying the initial potential of -0.21 V, and the final potential of -1.10 V. Recovery values based on the declared and found content of the active ingre
APA, Harvard, Vancouver, ISO, and other styles
47

Júnior, J. B. G., T. A. Araujo, M. A. G. Trindade, and V. S. Ferreira. "Electroanalytical determination of the sunscreen agent octocrylene in cosmetic products." International Journal of Cosmetic Science 34, no. 1 (2011): 91–96. http://dx.doi.org/10.1111/j.1468-2494.2011.00686.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Damle, Madhura S., Laura A. A. Newton, Maria Marti Villalba, Ray Leslie, and James Davis. "Plumbagin: A New Route to the Electroanalytical Determination of Cystine." Electroanalysis 22, no. 21 (2010): 2491–95. http://dx.doi.org/10.1002/elan.201000198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kawde, Abdel-Nasser, Mohamed A. Morsy, Nurudeen Odewunmi, and Wael Mahfouz. "From Electrode Surface Fouling to Sensitive Electroanalytical Determination of Phenols." Electroanalysis 25, no. 6 (2013): 1547–55. http://dx.doi.org/10.1002/elan.201300101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kulys, Juozas, Alma Drungiliene, Ulla Wollenberger, Kastis Krikstopaitis, and Frieder Scheller. "Electroanalytical determination of peroxidases and laccases on carbon paste electrodes." Electroanalysis 9, no. 3 (1997): 213–18. http://dx.doi.org/10.1002/elan.1140090305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!