Academic literature on the topic 'Electrocardiograms modelling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrocardiograms modelling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electrocardiograms modelling"
DOERSCHUK, PETER C., ROBERT R. TENNEY, and ALAN S. WILLSKY. "Modelling electrocardiograms using interacting Markov chains." International Journal of Systems Science 21, no. 2 (February 1990): 257–83. http://dx.doi.org/10.1080/00207729008910361.
Full textMalík, Marek, and Thomas Cochrane. "A discrete simulation model of electrocardiograms." SIMULATION 45, no. 5 (November 1985): 242–50. http://dx.doi.org/10.1177/003754978504500503.
Full textHurtado, Daniel E., and Ellen Kuhl. "Computational modelling of electrocardiograms: repolarisation and T-wave polarity in the human heart." Computer Methods in Biomechanics and Biomedical Engineering 17, no. 9 (October 31, 2012): 986–96. http://dx.doi.org/10.1080/10255842.2012.729582.
Full textLin, C. C., C. M. Chen, I. F. Yang, and T. F. Yang. "Automatic optimum order selection of parametric modelling for the evaluation of abnormal intra-QRS signals in signal-averaged electrocardiograms." Medical & Biological Engineering & Computing 43, no. 2 (April 2005): 218–24. http://dx.doi.org/10.1007/bf02345958.
Full textArini, Pedro David, Sergio Liberczuk, Javier Gustavo Mendieta, Martín Santa María, and Guillermo Claudio Bertrán. "Electrocardiogram Delineation in a Wistar Rat Experimental Model." Computational and Mathematical Methods in Medicine 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/2185378.
Full textOSAKA, MOTOHISA. "A MODIFIED CHUA CIRCUIT SIMULATES A V-SHAPED TROUGH IN AUTONOMIC ACTIVITY AS A PRECURSOR OF SUDDEN CARDIAC DEATH." International Journal of Bifurcation and Chaos 21, no. 09 (September 2011): 2713–22. http://dx.doi.org/10.1142/s0218127411030040.
Full textKARAMANOS, K., S. NIKOLOPOULOS, K. HIZANIDIS, G. MANIS, A. ALEXANDRIDI, and S. NIKOLAKEAS. "BLOCK ENTROPY ANALYSIS OF HEART RATE VARIABILITY SIGNALS." International Journal of Bifurcation and Chaos 16, no. 07 (July 2006): 2093–101. http://dx.doi.org/10.1142/s0218127406015933.
Full textŢarălungă, Dragoş-Daniel, Georgeta-Mihaela Ungureanu, Ilinca Gussi, Rodica Strungaru, and Werner Wolf. "Fetal ECG Extraction from Abdominal Signals: A Review on Suppression of Fundamental Power Line Interference Component and Its Harmonics." Computational and Mathematical Methods in Medicine 2014 (2014): 1–15. http://dx.doi.org/10.1155/2014/239060.
Full textOlier, Ivan, Sandra Ortega-Martorell, Mark Pieroni, and Gregory Y. H. Lip. "How machine learning is impacting research in atrial fibrillation: implications for risk prediction and future management." Cardiovascular Research 117, no. 7 (May 12, 2021): 1700–1717. http://dx.doi.org/10.1093/cvr/cvab169.
Full textAugustyniak, Piotr. "Time–frequency modelling and discrimination of noise in the electrocardiogram." Physiological Measurement 24, no. 3 (July 2, 2003): 753–67. http://dx.doi.org/10.1088/0967-3334/24/3/311.
Full textDissertations / Theses on the topic "Electrocardiograms modelling"
di, Bernardo Diego. "Computer modelling of cardiac repolarisation for the analysis of the electrocardiogram." Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364809.
Full textBrennan, Thomas Patrick. "Signal processing methods for characterisation of ventricular repolarisation using the surface electrocardiogram." Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:39ae285a-b8dd-4aae-b60e-36f95fb84f37.
Full textZemzemi, Nejib. "Étude théorique et numérique de l'activité électrique du cœur: Applications aux électrocardiogrammes." Phd thesis, Université Paris Sud - Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00470375.
Full textMarín, Morales Javier. "Modelling human emotions using immersive virtual reality, physiological signals and behavioural responses." Doctoral thesis, 2020. http://hdl.handle.net/10251/148717.
Full text[EN] In recent years the scientific community has significantly increased its use of virtual reality (VR) technologies in human behaviour research. In particular, the use of immersive VR has grown due to the introduction of affordable, high performance head mounted displays (HMDs). Among the fields that has strongly emerged in the last decade is affective computing, which combines psychophysiology, computer science, biomedical engineering and artificial intelligence in the development of systems that can automatically recognize emotions. The progress of affective computing is especially important in human behaviour research due to the central role that emotions play in many background processes, such as perception, decision-making, creativity, memory and social interaction. Several studies have tried to develop a reliable methodology to evoke and automatically identify emotional states using objective physiological measures and machine learning methods. However, the majority of previous studies used images, audio or video to elicit emotional statements; to the best of our knowledge, no previous research has developed an emotion recognition system using immersive VR. Although some previous studies analysed physiological responses in immersive VR, they did not use machine learning techniques for biosignal processing and classification. Moreover, a crucial concept when using VR for human behaviour research is validity: the capacity to evoke a response from the user in a simulated environment similar to the response that might be evoked in a physical environment. Although some previous studies have used psychological and cognitive dimensions to compare responses in real and virtual environments, few have extended this research to analyse physiological or behavioural responses. Moreover, to our knowledge, this is the first study to compare VR scenarios with their real-world equivalents using physiological measures coupled with machine learning algorithms, and to analyse the ability of VR to transfer and extrapolate insights obtained from VR environments to real environments. The main objective of this thesis is, using psycho-physiological and behavioural responses in combination with machine learning methods, and by performing a direct comparison between a real and virtual environment, to validate immersive VR as an emotion elicitation tool. To do so we develop an experimental protocol involving emotional 360º environments, an art exhibition in a real museum, and a highly-realistic 3D virtualization of the same art exhibition. This thesis provides novel contributions to the use of immersive VR in human behaviour research, particularly in relation to emotions. VR can help in the application of methodologies designed to present more realistic stimuli in the assessment of daily-life environments and situations, thus overcoming the current limitations of affective elicitation, which classically uses images, audio and video. Moreover, it analyses the validity of VR by performing a direct comparison using highly-realistic simulation. We believe that immersive VR will revolutionize laboratory-based emotion elicitation methods. Moreover, its synergy with physiological measurement and machine learning techniques will impact transversely in many other research areas, such as architecture, health, assessment, training, education, driving and marketing, and thus open new opportunities for the scientific community. The present dissertation aims to contribute to this progress.
[CA] L'ús de la realitat virtual (RV) s'ha incrementat notablement en la comunitat científica per a la recerca del comportament humà. En particular, la RV immersiva ha crescut a causa de la democratització de les ulleres de realitat virtual o head mounted displays (HMD), que ofereixen un alt rendiment amb una reduïda inversió econòmica. Un dels camps que ha emergit amb força en l'última dècada és el Affective Computing, que combina psicofisiologia, informàtica, enginyeria biomèdica i intel·ligència artificial, desenvolupant sistemes que puguen reconéixer emocions automàticament. El seu progrés és especialment important en el camp de la recerca del comportament humà, a causa del paper fonamental que les emocions juguen en molts processos psicològics com la percepció, la presa de decisions, la creativitat, la memòria i la interacció social. Molts estudis s'han centrat en intentar obtenir una metodologia fiable per a evocar i automàticament identificar estats emocionals, utilitzant mesures fisiològiques objectives i mètodes d'aprenentatge automàtic. No obstant això, la major part dels estudis previs utilitzen imatges, àudios o vídeos per a generar els estats emocionals i, fins on arriba el nostre coneixement, cap d'ells ha desenvolupat un sistema de reconeixement emocional mitjançant l'ús de la RV immersiva. Encara que alguns treballs anteriors sí que analitzen les respostes fisiològiques en RV immersives, aquests no presenten models d'aprenentatge automàtic per a processament i classificació automàtica de biosenyals. A més, un concepte crucial quan s'utilitza la RV en la recerca del comportament humà és la validesa: la capacitat d'evocar respostes similars en un entorn virtual a les evocades per l'espai físic. Encara que alguns estudis previs han utilitzat dimensions psicològiques i cognitives per a comparar respostes entre entorns reals i virtuals, les recerques que analitzen respostes fisiològiques o comportamentals estan molt menys esteses. Segons els nostres coneixements, aquest és el primer treball que compara entorns físics amb la seua rèplica en RV, emprant respostes fisiològiques i algorismes d'aprenentatge automàtic i analitzant la capacitat de la RV de transferir i extrapolar les conclusions obtingudes a l'entorn real que s'està simulant. L'objectiu principal de la tesi és validar l'ús de la RV immersiva com una eina d'estimulació emocional usant respostes psicofisiològiques i comportamentals en combinació amb algorismes d'aprenentatge automàtic, així com realitzar una comparació directa entre un entorn real i virtual. Per a això, s'ha desenvolupat un protocol experimental que inclou entorns emocionals 360º, un museu real i una virtualització 3D altament realista del mateix museu. La tesi presenta noves contribucions de l'ús de la RV immersiva en la recerca del comportament humà, en particular quant a l'estudi de les emocions. Aquesta ajudarà a aplicar metodologies a estímuls més realistes per a avaluar entorns i situacions de la vida diària, superant les actuals limitacions de l'estimulació emocional que clàssicament ha inclòs imatges, àudios o vídeos. A més, en ella s'analitza la validesa de la RV realitzant una comparació directa usant una simulació altament realista. Creiem que la RV immersiva revolucionarà els mètodes d'estimulació emocional en entorns de laboratori. A més, la seua sinergia al costat de les mesures fisiològiques i les tècniques d'aprenentatge automàtic, impactaran transversalment en moltes àrees de recerca com l'arquitectura, la salut, l'avaluació psicològica, l'entrenament, l'educació, la conducció o el màrqueting, obrint un nou horitzó d'oportunitats per a la comunitat científica. La present tesi espera contribuir a caminar en aquesta senda.
Marín Morales, J. (2020). Modelling human emotions using immersive virtual reality, physiological signals and behavioural responses [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/148717
TESIS
Book chapters on the topic "Electrocardiograms modelling"
Cömert, Zafer, Yaman Akbulut, Muhammed H. Akpinar, Ömer F. Alçin, Ümit Budak, Muzaffer Aslan, and Abdulkadir Şengür. "Electrocardiogram beat classification using deep convolutional neural network techniques." In Modelling and Analysis of Active Biopotential Signals in Healthcare, Volume 1. IOP Publishing, 2020. http://dx.doi.org/10.1088/978-0-7503-3279-8ch12.
Full textKumar, Ranjeet. "Statistical measures and analysis in electrocardiogram (ECG) signal processing." In Modelling and Analysis of Active Biopotential Signals in Healthcare, Volume 1. IOP Publishing, 2020. http://dx.doi.org/10.1088/978-0-7503-3279-8ch14.
Full textConference papers on the topic "Electrocardiograms modelling"
Nazarpour, Kianoush, Siamak Ebadi, and Saeid Sanei. "Fetal Electrocardiogram Signal Modelling Using Genetic Algorithm." In 2007 IEEE International Workshop on Medical Measurements and Applications. IEEE, 2007. http://dx.doi.org/10.1109/memea.2007.4285156.
Full textOkai, Takayuki, Hidetoshi Oya, Yoshikatsu Hoshi, Yoshihiro Ogino, Kazushi Nakano, Yoshihiro Yamaguchi, and Hiroshi Miyauchi. "A Recognition Algorithm for Electrocardiogram Based on Wavelet Transform and Feature Selection." In Modelling, Identification and Control. Calgary,AB,Canada: ACTAPRESS, 2017. http://dx.doi.org/10.2316/p.2017.848-042.
Full textIngole, D. T., Kishore Kulat, and M. D. Ingole. "Wavelet Preprocessed Electrocardiogram Potentials and Automated Fault Diagnosis of Heart." In 2009 11th International Conference on Computer Modelling and Simulation. IEEE, 2009. http://dx.doi.org/10.1109/uksim.2009.45.
Full textValupadasu, Rama, and B. Rama Rao Chunduri. "Identification of Cardiac Ischemia Using Spectral Domain Analysis of Electrocardiogram." In 2012 UKSim 14th International Conference on Computer Modelling and Simulation (UKSim). IEEE, 2012. http://dx.doi.org/10.1109/uksim.2012.22.
Full textDargie, Waltenegus. "Motion Artefacts Modelling in the Application of a Wireless Electrocardiogram." In 2018 21st International Conference on Information Fusion (FUSION 2018). IEEE, 2018. http://dx.doi.org/10.23919/icif.2018.8455335.
Full textOthman, Mohd Afzan, Norlaili Mat Safri, and Rubita Sudirman. "Characterization of Ventricular Arrhythmias in Electrocardiogram Signal Using Semantic Mining Algorithm." In 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation. IEEE, 2010. http://dx.doi.org/10.1109/ams.2010.68.
Full textOya, Hidetoshi, Yuki Nishida, Yoshihide Onishi, Yoshihiro Ogino, Kazushi Nakano, Yoshihiro Yamaguchi, Hiroshi Miyauchi, and Takayuki Okai. "A New Detection Algorithm Based on Spectrum Features for Electrocardiogram." In Modelling, Identification and Control / 834: Parallel and Distributed Computing and Networks / 835: Software Engineering. Calgary,AB,Canada: ACTAPRESS, 2016. http://dx.doi.org/10.2316/p.2016.830-034.
Full textSrinivasan, Aravind, Zhang Haihong, Lin Zhiping, Jit Biswas, and Chen Zhihao. "Towards numerical temporal-frequency system modelling of associations between electrocardiogram and ballistocardiogram." In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015. http://dx.doi.org/10.1109/embc.2015.7318382.
Full textAnnamma George, Rashmi, and R. Periyasamy. "Modelling of Electrocardiogram Using Autoregressive Moving Average Model and Linear Predictive Coefficient A Comparative Study." In 2021 Seventh International conference on Bio Signals, Images, and Instrumentation (ICBSII). IEEE, 2021. http://dx.doi.org/10.1109/icbsii51839.2021.9445142.
Full text