Academic literature on the topic 'Electrocardiograms modelling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrocardiograms modelling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electrocardiograms modelling"

1

DOERSCHUK, PETER C., ROBERT R. TENNEY, and ALAN S. WILLSKY. "Modelling electrocardiograms using interacting Markov chains." International Journal of Systems Science 21, no. 2 (February 1990): 257–83. http://dx.doi.org/10.1080/00207729008910361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Malík, Marek, and Thomas Cochrane. "A discrete simulation model of electrocardiograms." SIMULATION 45, no. 5 (November 1985): 242–50. http://dx.doi.org/10.1177/003754978504500503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hurtado, Daniel E., and Ellen Kuhl. "Computational modelling of electrocardiograms: repolarisation and T-wave polarity in the human heart." Computer Methods in Biomechanics and Biomedical Engineering 17, no. 9 (October 31, 2012): 986–96. http://dx.doi.org/10.1080/10255842.2012.729582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, C. C., C. M. Chen, I. F. Yang, and T. F. Yang. "Automatic optimum order selection of parametric modelling for the evaluation of abnormal intra-QRS signals in signal-averaged electrocardiograms." Medical & Biological Engineering & Computing 43, no. 2 (April 2005): 218–24. http://dx.doi.org/10.1007/bf02345958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Arini, Pedro David, Sergio Liberczuk, Javier Gustavo Mendieta, Martín Santa María, and Guillermo Claudio Bertrán. "Electrocardiogram Delineation in a Wistar Rat Experimental Model." Computational and Mathematical Methods in Medicine 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/2185378.

Full text
Abstract:
Background and Objectives. The extensive use of electrocardiogram (ECG) recordings during experimental protocols using small rodents requires an automatic delineation technique in the ECG with high performance. It has been shown that the wavelet transform (WT) based ECG delineator is a suitable tool to delineate electrocardiographic waveforms. The aim of this work is to implement and evaluate the ECG waves delineation in Wistar rats applying WT. We also describe the ECG signal of the Wistar rats giving the characteristics of its spectrum among other useful information. Methods. We evaluated a delineator based on WT in a Wistar rat electrocardiograms database which was annotated manually by experienced observers. Results. The delineation showed an “overall performance” such as sensitivity and a positive predictive value of 99.2% and 83.9% for P-wave, 100% and 99.9% for QRS complex, and 100% and 99.8% for T-wave, respectively. We also compared temporal analysis based ECG delineator with the WT based ECG delineator in RR interval, QRS duration, QT interval, and T-wave peak-to-end duration. The results showed that WT outperforms the temporal delineation technique in all parameters analyzed. Conclusions. Finally, we propose a WT based ECG delineator as a methodology to implement in a wide diversity of experimental ECG analyses using Wistar rats.
APA, Harvard, Vancouver, ISO, and other styles
6

OSAKA, MOTOHISA. "A MODIFIED CHUA CIRCUIT SIMULATES A V-SHAPED TROUGH IN AUTONOMIC ACTIVITY AS A PRECURSOR OF SUDDEN CARDIAC DEATH." International Journal of Bifurcation and Chaos 21, no. 09 (September 2011): 2713–22. http://dx.doi.org/10.1142/s0218127411030040.

Full text
Abstract:
Recently we have reported that a previously unidentified V-trough of sympathetic nerve activity (SNA) is a potential precursor of lethal cardiac events by examining 24-hour ambulatory electrocardiograms in which such an event was recorded by chance. The V-trough was marked by three consecutive compartments: a small variation lasting two hours, an abrupt descent lasting 30 min and a sharp ascent for 40 min. We reported that the hemodynamics consisting of heart rate, SNA and blood pressure (BP) is modeled excellently by the modification of a known chaotic electrical circuit, Chua circuit. A V-trough of SNA appears by increasing the resistive element between SNA and BP in the circuit, which corresponds to the impaired regulation of BP by SNA. This finding is consistent with an acknowledged finding that the depressed baroreflex (reflex of BP by SNA) may trigger a lethal arrhythmia.
APA, Harvard, Vancouver, ISO, and other styles
7

KARAMANOS, K., S. NIKOLOPOULOS, K. HIZANIDIS, G. MANIS, A. ALEXANDRIDI, and S. NIKOLAKEAS. "BLOCK ENTROPY ANALYSIS OF HEART RATE VARIABILITY SIGNALS." International Journal of Bifurcation and Chaos 16, no. 07 (July 2006): 2093–101. http://dx.doi.org/10.1142/s0218127406015933.

Full text
Abstract:
In this paper we present a novel approach to the analysis of Heat Rate Variability (HRV) data, by coarse-graining analysis using the estimation of Block Entropies with the technique of lumping. HRV time series are generated from long recordings of Electrocardiograms (ECGs) and are then filtered in order to produce a coarse-grained symbolic dynamics. Block Entropy analysis is applied to these dynamics in order to examine its coarse-grained statistics. Our data set is comprised of two subsets, one of healthy subjects and another of Coronary Artery Disease (CAD) patients. It is found that Entropy analysis provides a quick and efficient tool for the differentiation of these series according to subject category. Healthy subjects provided more complex statistics compared to patients; specifically, the healthy data files provided higher values of block Entropies compared to patient ones. We also compare these results with the Correlation Dimension Estimation in order to establish coherency. We believe that this analysis may provide a useful statistical method towards the better understanding of the human cardiac system.
APA, Harvard, Vancouver, ISO, and other styles
8

Ţarălungă, Dragoş-Daniel, Georgeta-Mihaela Ungureanu, Ilinca Gussi, Rodica Strungaru, and Werner Wolf. "Fetal ECG Extraction from Abdominal Signals: A Review on Suppression of Fundamental Power Line Interference Component and Its Harmonics." Computational and Mathematical Methods in Medicine 2014 (2014): 1–15. http://dx.doi.org/10.1155/2014/239060.

Full text
Abstract:
Interference of power line (PLI) (fundamental frequency and its harmonics) is usually present in biopotential measurements. Despite all countermeasures, the PLI still corrupts physiological signals, for example, electromyograms (EMG), electroencephalograms (EEG), and electrocardiograms (ECG). When analyzing the fetal ECG (fECG) recorded on the maternal abdomen, the PLI represents a particular strong noise component, being sometimes 10 times greater than the fECG signal, and thus impairing the extraction of any useful information regarding the fetal health state. Many signal processing methods for cancelling the PLI from biopotentials are available in the literature. In this review study, six different principles are analyzed and discussed, and their performance is evaluated on simulated data (three different scenarios), based on five quantitative performance indices.
APA, Harvard, Vancouver, ISO, and other styles
9

Olier, Ivan, Sandra Ortega-Martorell, Mark Pieroni, and Gregory Y. H. Lip. "How machine learning is impacting research in atrial fibrillation: implications for risk prediction and future management." Cardiovascular Research 117, no. 7 (May 12, 2021): 1700–1717. http://dx.doi.org/10.1093/cvr/cvab169.

Full text
Abstract:
Abstract There has been an exponential growth of artificial intelligence (AI) and machine learning (ML) publications aimed at advancing our understanding of atrial fibrillation (AF), which has been mainly driven by the confluence of two factors: the advances in deep neural networks (DeepNNs) and the availability of large, open access databases. It is observed that most of the attention has centred on applying ML for dvsetecting AF, particularly using electrocardiograms (ECGs) as the main data modality. Nearly a third of them used DeepNNs to minimize or eliminate the need for transforming the ECGs to extract features prior to ML modelling; however, we did not observe a significant advantage in following this approach. We also found a fraction of studies using other data modalities, and others centred in aims, such as risk prediction, AF management, and others. From the clinical perspective, AI/ML can help expand the utility of AF detection and risk prediction, especially for patients with additional comorbidities. The use of AI/ML for detection and risk prediction into applications and smart mobile health (mHealth) technology would enable ‘real time’ dynamic assessments. AI/ML could also adapt to treatment changes over time, as well as incident risk factors. Incorporation of a dynamic AI/ML model into mHealth technology would facilitate ‘real time’ assessment of stroke risk, facilitating mitigation of modifiable risk factors (e.g. blood pressure control). Overall, this would lead to an improvement in clinical care for patients with AF.
APA, Harvard, Vancouver, ISO, and other styles
10

Augustyniak, Piotr. "Time–frequency modelling and discrimination of noise in the electrocardiogram." Physiological Measurement 24, no. 3 (July 2, 2003): 753–67. http://dx.doi.org/10.1088/0967-3334/24/3/311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Electrocardiograms modelling"

1

di, Bernardo Diego. "Computer modelling of cardiac repolarisation for the analysis of the electrocardiogram." Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brennan, Thomas Patrick. "Signal processing methods for characterisation of ventricular repolarisation using the surface electrocardiogram." Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:39ae285a-b8dd-4aae-b60e-36f95fb84f37.

Full text
Abstract:
This thesis investigates the mechanisms underlying drug-induced arrhythmia and pro- poses a new approach for the automated analysis of the electrocardiogram (ECG). The current method of assessing the cardiac safety of new drugs in clinical trials is by the measurement and analysis of the QT interval. However, the sensitivity and specificity of the QT interval has been questioned and alternative biomarkers based on T-wave mor- phology have been proposed in the literature. The mechanisms underlying drug effects on T-wave morphology are not clearly understood. Therefore, a combined approach of for- ward cardiac modelling and inverse ECG analysis is adopted to investigate the effects of sotalol, a compound known to have pro-arrhythmic effects, on ventricular repolarisation. A computational model of sotalol and IKr, an ion channel that plays a critical role in ventricular repolarisation, was developed. This model was incorporated into a model of the human ventricular myocyte, and subsequently arranged in a 1-D fibre model of 200 cells. The model was used to assess the effect of sotalol on IKr, action potential duration and biomarkers of ventricular repolarisation derived from the simulated ECG. In parallel, an automated ECG analysis method based on machine learning, signal processing and time-frequency analysis is developed to identify a number of fiducial points in ECG waveforms so that timing intervals and a smooth T-wave segment can be extracted for morphology analysis. The approach is to train a hidden Markov model (HMM) using a data set of ECG waveforms and the corresponding expert annotations. The signal is first encoded using the undecimated wavelet transform (UWT). The UWT coefficients are used for R-peak detection, signal encoding for the HMM and a wavelet de-noising procedure. Using the Viterbi algorithm, the trained HMM is then applied to a subset of the ECG signal to infer the fiducial points for each heart beat. Furthermore, a method for deriving a confidence measure based on the trained HMM is implemented so that a level of confidence can be associated with the automated annotations. Finally, the T-wave segment is extracted from the de-noised ECG signal for morphology characterisation. This thesis contributes to the literature on automated characterisation of drug ef- fects on ventricular repolarisation in three different ways. Firstly, it investigates the mechanisms underlying the effects of drug inhibition of IKr on ventricular repolarisation as captured by the simulated ECG signal. Secondly, it shows how the combination of UWT encoding and HMM inference can be effectively used to segment 24-hour Holter ECG recordings. Evaluation of the segmentation algorithm on a clinical ECG data set demonstrates the ability of the algorithm to overcome problems associated with existing automated systems, and hence provide a more robust analysis of ECG signals. Finally, the thesis provides insight into the drug effects of sotalol on ventricular repolarisation as captured by biomarkers extracted from the surface ECG.
APA, Harvard, Vancouver, ISO, and other styles
3

Zemzemi, Nejib. "Étude théorique et numérique de l'activité électrique du cœur: Applications aux électrocardiogrammes." Phd thesis, Université Paris Sud - Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00470375.

Full text
Abstract:
La modélisation du vivant, en particulier la modélisation de l'activité cardiaque, est devenue un défi scientifique majeur. Le but de cette thématique est de mieux comprendre les phénomènes physiologiques et donc d'apporter des solutions à des problèmes cliniques. Nous nous intéressons dans cette thèse à la modélisation et à l'étude numérique de l'activité électrique du cœur, en particulier l'étude des électrocardiogrammes (ECGs). L'onde électrique dans le cœur est gouvernée par un système d'équations de réaction-diffusion appelé modèle bidomaine ce système est couplé à une EDO représentant l'activité cellulaire. Afin simuler des ECGs, nous tenons en compte la propagation de l'onde électrique dans le thorax qui est décrite par une équation de diffusion. Nous commençons par une démonstrer l'existence d'une solution faible du système couplé cœur-thorax pour une classe de modèles ioniques phénoménologiques. Nous prouvons ensuite l'unicité de cette solution sous certaines conditions. Le plus grand apport de cette thèse est l'étude et la simulation numérique du couplage électrique cœur-thorax. Les résultats de simulations sont représentés à l'aide des ECGs. Dans une première partie, nous produisons des simulations pour un cas normal et pour des cas pathologiques (blocs de branche gauche et droit et des arhythmies). Nous étudions également l'impact de certaines hypothèses de modélisation sur les ECGs (couplage faible, utilisation du modèle monodomaine, isotropie, homogénéité cellulaire, comportement résistance-condensateur du péricarde,. . . ). Nous étudions à la fin de cette partie la sensibilité des ECGs par apport aux paramètres du modèle. En deuxième partie, nous effectuons l'analyse numérique de schémas du premier ordre en temps découplant les calculs du potentiel d'action et du potentiel extérieur. Puis, nous combinons ces schémas en temps avec un traîtement explicite du type Robin-Robin des conditions de couplage entre le cœur et le thorax. Nous proposons une analyse de stabilité de ces schémas et nous illustrons les résultats avec des simulations numériques d'ECGs. La dernière partie est consacrée à trois applications. Nous commençons par l'estimation de certains paramètres du modèle (conductivité du thorax et paramètres ioniques). Dans la deuxième application, qui est d'originie industrielle, nous utilisons des méthodes d'apprentissage statistique pour reconstruire des ECGs à partir de mesures ('électrogrammes). Enfin, nous présentons des simulations électro-mécaniques du coeur sur une géométrie réelle dans diverses situations physiologiques et pathologiques. Les indicateurs cliniques, électriques et mécaniques, calculés à partir de ces simulations sont très similaires à ceux observés en réalité.
APA, Harvard, Vancouver, ISO, and other styles
4

Marín, Morales Javier. "Modelling human emotions using immersive virtual reality, physiological signals and behavioural responses." Doctoral thesis, 2020. http://hdl.handle.net/10251/148717.

Full text
Abstract:
[ES] El uso de la realidad virtual (RV) se ha incrementado notablemente en la comunidad científica para la investigación del comportamiento humano. En particular, la RV inmersiva ha crecido debido a la democratización de las gafas de realidad virtual o head mounted displays (HMD), que ofrecen un alto rendimiento con una inversión económica. Uno de los campos que ha emergido con fuerza en la última década es el Affective Computing, que combina psicofisiología, informática, ingeniería biomédica e inteligencia artificial, desarrollando sistemas que puedan reconocer emociones automáticamente. Su progreso es especialmente importante en el campo de la investigación del comportamiento humano, debido al papel fundamental que las emociones juegan en muchos procesos psicológicos como la percepción, la toma de decisiones, la creatividad, la memoria y la interacción social. Muchos estudios se han centrado en intentar obtener una metodología fiable para evocar y automáticamente identificar estados emocionales, usando medidas fisiológicas objetivas y métodos de aprendizaje automático. Sin embargo, la mayoría de los estudios previos utilizan imágenes, audios o vídeos para generar los estados emocionales y, hasta donde llega nuestro conocimiento, ninguno de ellos ha desarrollado un sistema de reconocimiento emocional usando RV inmersiva. Aunque algunos trabajos anteriores sí analizan las respuestas fisiológicas en RV inmersivas, estos no presentan modelos de aprendizaje automático para procesamiento y clasificación automática de bioseñales. Además, un concepto crucial cuando se usa la RV en investigación del comportamiento humano es la validez: la capacidad de evocar respuestas similares en un entorno virtual a las evocadas por el espacio físico. Aunque algunos estudios previos han usado dimensiones psicológicas y cognitivas para comparar respuestas entre entornos reales y virtuales, las investigaciones que analizan respuestas fisiológicas o comportamentales están mucho menos extendidas. Según nuestros conocimientos, este es el primer trabajo que compara entornos físicos con su réplica en RV, empleando respuestas fisiológicas y algoritmos de aprendizaje automático y analizando la capacidad de la RV de transferir y extrapolar las conclusiones obtenidas al entorno real que se está simulando. El objetivo principal de la tesis es validar el uso de la RV inmersiva como una herramienta de estimulación emocional usando respuestas psicofisiológicas y comportamentales en combinación con algoritmos de aprendizaje automático, así como realizar una comparación directa entre un entorno real y virtual. Para ello, se ha desarrollado un protocolo experimental que incluye entornos emocionales 360º, un museo real y una virtualización 3D altamente realista del mismo museo. La tesis presenta novedosas contribuciones del uso de la RV inmersiva en la investigación del comportamiento humano, en particular en lo relativo al estudio de las emociones. Esta ayudará a aplicar metodologías a estímulos más realistas para evaluar entornos y situaciones de la vida diaria, superando las actuales limitaciones de la estimulación emocional que clásicamente ha incluido imágenes, audios o vídeos. Además, en ella se analiza la validez de la RV realizando una comparación directa usando una simulación altamente realista. Creemos que la RV inmersiva va a revolucionar los métodos de estimulación emocional en entornos de laboratorio. Además, su sinergia junto a las medidas fisiológicas y las técnicas de aprendizaje automático, impactarán transversalmente en muchas áreas de investigación como la arquitectura, la salud, la evaluación psicológica, el entrenamiento, la educación, la conducción o el marketing, abriendo un nuevo horizonte de oportunidades para la comunidad científica. La presente tesis espera contribuir a caminar en esa senda.
[EN] In recent years the scientific community has significantly increased its use of virtual reality (VR) technologies in human behaviour research. In particular, the use of immersive VR has grown due to the introduction of affordable, high performance head mounted displays (HMDs). Among the fields that has strongly emerged in the last decade is affective computing, which combines psychophysiology, computer science, biomedical engineering and artificial intelligence in the development of systems that can automatically recognize emotions. The progress of affective computing is especially important in human behaviour research due to the central role that emotions play in many background processes, such as perception, decision-making, creativity, memory and social interaction. Several studies have tried to develop a reliable methodology to evoke and automatically identify emotional states using objective physiological measures and machine learning methods. However, the majority of previous studies used images, audio or video to elicit emotional statements; to the best of our knowledge, no previous research has developed an emotion recognition system using immersive VR. Although some previous studies analysed physiological responses in immersive VR, they did not use machine learning techniques for biosignal processing and classification. Moreover, a crucial concept when using VR for human behaviour research is validity: the capacity to evoke a response from the user in a simulated environment similar to the response that might be evoked in a physical environment. Although some previous studies have used psychological and cognitive dimensions to compare responses in real and virtual environments, few have extended this research to analyse physiological or behavioural responses. Moreover, to our knowledge, this is the first study to compare VR scenarios with their real-world equivalents using physiological measures coupled with machine learning algorithms, and to analyse the ability of VR to transfer and extrapolate insights obtained from VR environments to real environments. The main objective of this thesis is, using psycho-physiological and behavioural responses in combination with machine learning methods, and by performing a direct comparison between a real and virtual environment, to validate immersive VR as an emotion elicitation tool. To do so we develop an experimental protocol involving emotional 360º environments, an art exhibition in a real museum, and a highly-realistic 3D virtualization of the same art exhibition. This thesis provides novel contributions to the use of immersive VR in human behaviour research, particularly in relation to emotions. VR can help in the application of methodologies designed to present more realistic stimuli in the assessment of daily-life environments and situations, thus overcoming the current limitations of affective elicitation, which classically uses images, audio and video. Moreover, it analyses the validity of VR by performing a direct comparison using highly-realistic simulation. We believe that immersive VR will revolutionize laboratory-based emotion elicitation methods. Moreover, its synergy with physiological measurement and machine learning techniques will impact transversely in many other research areas, such as architecture, health, assessment, training, education, driving and marketing, and thus open new opportunities for the scientific community. The present dissertation aims to contribute to this progress.
[CA] L'ús de la realitat virtual (RV) s'ha incrementat notablement en la comunitat científica per a la recerca del comportament humà. En particular, la RV immersiva ha crescut a causa de la democratització de les ulleres de realitat virtual o head mounted displays (HMD), que ofereixen un alt rendiment amb una reduïda inversió econòmica. Un dels camps que ha emergit amb força en l'última dècada és el Affective Computing, que combina psicofisiologia, informàtica, enginyeria biomèdica i intel·ligència artificial, desenvolupant sistemes que puguen reconéixer emocions automàticament. El seu progrés és especialment important en el camp de la recerca del comportament humà, a causa del paper fonamental que les emocions juguen en molts processos psicològics com la percepció, la presa de decisions, la creativitat, la memòria i la interacció social. Molts estudis s'han centrat en intentar obtenir una metodologia fiable per a evocar i automàticament identificar estats emocionals, utilitzant mesures fisiològiques objectives i mètodes d'aprenentatge automàtic. No obstant això, la major part dels estudis previs utilitzen imatges, àudios o vídeos per a generar els estats emocionals i, fins on arriba el nostre coneixement, cap d'ells ha desenvolupat un sistema de reconeixement emocional mitjançant l'ús de la RV immersiva. Encara que alguns treballs anteriors sí que analitzen les respostes fisiològiques en RV immersives, aquests no presenten models d'aprenentatge automàtic per a processament i classificació automàtica de biosenyals. A més, un concepte crucial quan s'utilitza la RV en la recerca del comportament humà és la validesa: la capacitat d'evocar respostes similars en un entorn virtual a les evocades per l'espai físic. Encara que alguns estudis previs han utilitzat dimensions psicològiques i cognitives per a comparar respostes entre entorns reals i virtuals, les recerques que analitzen respostes fisiològiques o comportamentals estan molt menys esteses. Segons els nostres coneixements, aquest és el primer treball que compara entorns físics amb la seua rèplica en RV, emprant respostes fisiològiques i algorismes d'aprenentatge automàtic i analitzant la capacitat de la RV de transferir i extrapolar les conclusions obtingudes a l'entorn real que s'està simulant. L'objectiu principal de la tesi és validar l'ús de la RV immersiva com una eina d'estimulació emocional usant respostes psicofisiològiques i comportamentals en combinació amb algorismes d'aprenentatge automàtic, així com realitzar una comparació directa entre un entorn real i virtual. Per a això, s'ha desenvolupat un protocol experimental que inclou entorns emocionals 360º, un museu real i una virtualització 3D altament realista del mateix museu. La tesi presenta noves contribucions de l'ús de la RV immersiva en la recerca del comportament humà, en particular quant a l'estudi de les emocions. Aquesta ajudarà a aplicar metodologies a estímuls més realistes per a avaluar entorns i situacions de la vida diària, superant les actuals limitacions de l'estimulació emocional que clàssicament ha inclòs imatges, àudios o vídeos. A més, en ella s'analitza la validesa de la RV realitzant una comparació directa usant una simulació altament realista. Creiem que la RV immersiva revolucionarà els mètodes d'estimulació emocional en entorns de laboratori. A més, la seua sinergia al costat de les mesures fisiològiques i les tècniques d'aprenentatge automàtic, impactaran transversalment en moltes àrees de recerca com l'arquitectura, la salut, l'avaluació psicològica, l'entrenament, l'educació, la conducció o el màrqueting, obrint un nou horitzó d'oportunitats per a la comunitat científica. La present tesi espera contribuir a caminar en aquesta senda.
Marín Morales, J. (2020). Modelling human emotions using immersive virtual reality, physiological signals and behavioural responses [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/148717
TESIS
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electrocardiograms modelling"

1

Cömert, Zafer, Yaman Akbulut, Muhammed H. Akpinar, Ömer F. Alçin, Ümit Budak, Muzaffer Aslan, and Abdulkadir Şengür. "Electrocardiogram beat classification using deep convolutional neural network techniques." In Modelling and Analysis of Active Biopotential Signals in Healthcare, Volume 1. IOP Publishing, 2020. http://dx.doi.org/10.1088/978-0-7503-3279-8ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kumar, Ranjeet. "Statistical measures and analysis in electrocardiogram (ECG) signal processing." In Modelling and Analysis of Active Biopotential Signals in Healthcare, Volume 1. IOP Publishing, 2020. http://dx.doi.org/10.1088/978-0-7503-3279-8ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electrocardiograms modelling"

1

Nazarpour, Kianoush, Siamak Ebadi, and Saeid Sanei. "Fetal Electrocardiogram Signal Modelling Using Genetic Algorithm." In 2007 IEEE International Workshop on Medical Measurements and Applications. IEEE, 2007. http://dx.doi.org/10.1109/memea.2007.4285156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Okai, Takayuki, Hidetoshi Oya, Yoshikatsu Hoshi, Yoshihiro Ogino, Kazushi Nakano, Yoshihiro Yamaguchi, and Hiroshi Miyauchi. "A Recognition Algorithm for Electrocardiogram Based on Wavelet Transform and Feature Selection." In Modelling, Identification and Control. Calgary,AB,Canada: ACTAPRESS, 2017. http://dx.doi.org/10.2316/p.2017.848-042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ingole, D. T., Kishore Kulat, and M. D. Ingole. "Wavelet Preprocessed Electrocardiogram Potentials and Automated Fault Diagnosis of Heart." In 2009 11th International Conference on Computer Modelling and Simulation. IEEE, 2009. http://dx.doi.org/10.1109/uksim.2009.45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Valupadasu, Rama, and B. Rama Rao Chunduri. "Identification of Cardiac Ischemia Using Spectral Domain Analysis of Electrocardiogram." In 2012 UKSim 14th International Conference on Computer Modelling and Simulation (UKSim). IEEE, 2012. http://dx.doi.org/10.1109/uksim.2012.22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dargie, Waltenegus. "Motion Artefacts Modelling in the Application of a Wireless Electrocardiogram." In 2018 21st International Conference on Information Fusion (FUSION 2018). IEEE, 2018. http://dx.doi.org/10.23919/icif.2018.8455335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Othman, Mohd Afzan, Norlaili Mat Safri, and Rubita Sudirman. "Characterization of Ventricular Arrhythmias in Electrocardiogram Signal Using Semantic Mining Algorithm." In 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation. IEEE, 2010. http://dx.doi.org/10.1109/ams.2010.68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Oya, Hidetoshi, Yuki Nishida, Yoshihide Onishi, Yoshihiro Ogino, Kazushi Nakano, Yoshihiro Yamaguchi, Hiroshi Miyauchi, and Takayuki Okai. "A New Detection Algorithm Based on Spectrum Features for Electrocardiogram." In Modelling, Identification and Control / 834: Parallel and Distributed Computing and Networks / 835: Software Engineering. Calgary,AB,Canada: ACTAPRESS, 2016. http://dx.doi.org/10.2316/p.2016.830-034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Srinivasan, Aravind, Zhang Haihong, Lin Zhiping, Jit Biswas, and Chen Zhihao. "Towards numerical temporal-frequency system modelling of associations between electrocardiogram and ballistocardiogram." In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015. http://dx.doi.org/10.1109/embc.2015.7318382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Annamma George, Rashmi, and R. Periyasamy. "Modelling of Electrocardiogram Using Autoregressive Moving Average Model and Linear Predictive Coefficient A Comparative Study." In 2021 Seventh International conference on Bio Signals, Images, and Instrumentation (ICBSII). IEEE, 2021. http://dx.doi.org/10.1109/icbsii51839.2021.9445142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography