Journal articles on the topic 'Electrocatalytic hydrogen production'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Electrocatalytic hydrogen production.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Aydemir, Mehmet, Duygu Akyüz, Burag Agopcan, et al. "Photocatalytic–electrocatalytic dual hydrogen production system." International Journal of Hydrogen Energy 41, no. 19 (2016): 8209–20. http://dx.doi.org/10.1016/j.ijhydene.2015.12.085.
Full textAlenezi, Khalaf M., and Hamed Alshammari. "Electrocatalytic Production of Hydrogen Using Iron Sulfur Cluster." International Journal of Chemistry 9, no. 2 (2017): 52. http://dx.doi.org/10.5539/ijc.v9n2p52.
Full textWang, Cheng, Hongyuan Shang, Liujun Jin, Hui Xu, and Yukou Du. "Advances in hydrogen production from electrocatalytic seawater splitting." Nanoscale 13, no. 17 (2021): 7897–912. http://dx.doi.org/10.1039/d1nr00784j.
Full textEl-Deab, M. "Electrocatalytic production of hydrogen on reticulated vitreous carbon." International Journal of Hydrogen Energy 28, no. 11 (2003): 1199–206. http://dx.doi.org/10.1016/s0360-3199(03)00002-8.
Full textSubramanya, B., Y. Ullal, S. U. Shenoy, D. K. Bhat, and A. C. Hegde. "Novel Co–Ni–graphene composite electrodes for hydrogen production." RSC Advances 5, no. 59 (2015): 47398–407. http://dx.doi.org/10.1039/c5ra07627g.
Full textWatanabe, Motonori, Kenta Goto, Takaaki Miyazaki, et al. "Electrocatalytic hydrogen production using [FeFe]-hydrogenase mimics based on tetracene derivatives." New Journal of Chemistry 43, no. 35 (2019): 13810–15. http://dx.doi.org/10.1039/c9nj02790d.
Full textQi, Jing, Tianli Wu, Mengyao Xu, Dan Zhou, and Zhubing Xiao. "Electronic Structure and d-Band Center Control Engineering over Ni-Doped CoP3 Nanowall Arrays for Boosting Hydrogen Production." Nanomaterials 11, no. 6 (2021): 1595. http://dx.doi.org/10.3390/nano11061595.
Full textZhang, Jian, Tao Wang, Pan Liu, et al. "Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production." Energy & Environmental Science 9, no. 9 (2016): 2789–93. http://dx.doi.org/10.1039/c6ee01786j.
Full textLuca, Oana R., Steven J. Konezny, James D. Blakemore, et al. "A tridentate Ni pincer for aqueous electrocatalytic hydrogen production." New Journal of Chemistry 36, no. 5 (2012): 1149. http://dx.doi.org/10.1039/c2nj20912h.
Full textBalun Kayan, Didem, Derya Koçak, and Merve İlhan. "Electrocatalytic hydrogen production on GCE/RGO/Au hybrid electrode." International Journal of Hydrogen Energy 43, no. 23 (2018): 10562–68. http://dx.doi.org/10.1016/j.ijhydene.2018.01.077.
Full textJyothirmayee Aravind, S. S., Kandalam Ramanujachary, Amos Mugweru, and Timothy D. Vaden. "Molybdenum phosphide-graphite nanomaterials for efficient electrocatalytic hydrogen production." Applied Catalysis A: General 490 (January 2015): 101–7. http://dx.doi.org/10.1016/j.apcata.2014.11.003.
Full textKayan, Didem Balun, Derya Koçak, Merve İlhan, and Atıf Koca. "Electrocatalytic hydrogen production on a modified pencil graphite electrode." International Journal of Hydrogen Energy 42, no. 4 (2017): 2457–63. http://dx.doi.org/10.1016/j.ijhydene.2016.04.190.
Full textMargarit, Charles G., Naomi G. Asimow, Agnes E. Thorarinsdottir, Cyrille Costentin, and Daniel G. Nocera. "Impactful Role of Cocatalysts on Molecular Electrocatalytic Hydrogen Production." ACS Catalysis 11, no. 8 (2021): 4561–67. http://dx.doi.org/10.1021/acscatal.1c00253.
Full textXie, Junfeng, Jindi Qi, Fengcai Lei, and Yi Xie. "Modulation of electronic structures in two-dimensional electrocatalysts for the hydrogen evolution reaction." Chemical Communications 56, no. 80 (2020): 11910–30. http://dx.doi.org/10.1039/d0cc05272h.
Full textPal, Raja, Joseph A. Laureanti, Thomas L. Groy, Anne K. Jones, and Ryan J. Trovitch. "Hydrogen production from water using a bis(imino)pyridine molybdenum electrocatalyst." Chemical Communications 52, no. 77 (2016): 11555–58. http://dx.doi.org/10.1039/c6cc04946j.
Full textKwak, Kyuju, Woojun Choi, Qing Tang, De-en Jiang, and Dongil Lee. "Rationally designed metal nanocluster for electrocatalytic hydrogen production from water." Journal of Materials Chemistry A 6, no. 40 (2018): 19495–501. http://dx.doi.org/10.1039/c8ta06306k.
Full textGao, Jian, Zhihua Cheng, Changxiang Shao, Yang Zhao, Zhipan Zhang, and Liangti Qu. "A 2D free-standing film-inspired electrocatalyst for highly efficient hydrogen production." Journal of Materials Chemistry A 5, no. 24 (2017): 12027–33. http://dx.doi.org/10.1039/c7ta03228e.
Full textBullock, R. Morris, Aaron M. Appel, and Monte L. Helm. "Production of hydrogen by electrocatalysis: making the H–H bond by combining protons and hydrides." Chem. Commun. 50, no. 24 (2014): 3125–43. http://dx.doi.org/10.1039/c3cc46135a.
Full textXia, Jiawei, Kapil Dhaka, Michael Volokh, et al. "Nickel phosphide decorated with trace amount of platinum as an efficient electrocatalyst for the alkaline hydrogen evolution reaction." Sustainable Energy & Fuels 3, no. 8 (2019): 2006–14. http://dx.doi.org/10.1039/c9se00221a.
Full textZHOU, MAO, and YUQING MIAO. "ELECTROCATALYSIS OF THE NEEDLE-LIKE NiMoO4 CRYSTAL TOWARD UREA OXIDATION COUPLED WITH H2 PRODUCTION." Surface Review and Letters 25, no. 02 (2018): 1850061. http://dx.doi.org/10.1142/s0218625x18500610.
Full textQi, Hong Xue, Yuan Qiang Song, Zhong Ping Liu, Lan Xiang Ji, and Jian Guo Deng. "Facile Synthesis of CoSe2 Nanoparticles and their Electrocatalytic Performance for Hydrogen Evolution Reaction." Materials Science Forum 852 (April 2016): 916–20. http://dx.doi.org/10.4028/www.scientific.net/msf.852.916.
Full textLuca, Oana R., James D. Blakemore, Steven J. Konezny, et al. "Organometallic Ni Pincer Complexes for the Electrocatalytic Production of Hydrogen." Inorganic Chemistry 51, no. 16 (2012): 8704–9. http://dx.doi.org/10.1021/ic300009a.
Full textLiu, Shan, Yingxuan Li, Wenchao Shangguan, Chuanyi Wang, Danping Hui, and Yunqing Zhu. "Visible-light-enhanced electrocatalytic hydrogen production on semimetal bismuth nanorods." Applied Surface Science 494 (November 2019): 293–300. http://dx.doi.org/10.1016/j.apsusc.2019.07.104.
Full textVillano, Marianna, Luca De Bonis, Simona Rossetti, Federico Aulenta, and Mauro Majone. "Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents." Bioresource Technology 102, no. 3 (2011): 3193–99. http://dx.doi.org/10.1016/j.biortech.2010.10.146.
Full textKang, Wen‐Jing, Chuan‐Qi Cheng, Zhe Li, Yi Feng, Gu‐Rong Shen, and Xi‐Wen Du. "Ultrafine Ag Nanoparticles as Active Catalyst for Electrocatalytic Hydrogen Production." ChemCatChem 11, no. 24 (2019): 5976–81. http://dx.doi.org/10.1002/cctc.201901364.
Full textMitraka, Evangelia, Maciej Gryszel, Mikhail Vagin, et al. "Electrocatalytic Production of Hydrogen Peroxide with Poly(3,4-ethylenedioxythiophene) Electrodes." Advanced Sustainable Systems 3, no. 2 (2018): 1800110. http://dx.doi.org/10.1002/adsu.201800110.
Full textZhang, Linfei, Jingting Zhu, Zhuo Wang, and Wenjing Zhang. "2D MoSe2/CoP intercalated nanosheets for efficient electrocatalytic hydrogen production." International Journal of Hydrogen Energy 45, no. 38 (2020): 19246–56. http://dx.doi.org/10.1016/j.ijhydene.2020.05.059.
Full textFIORI, G., and C. MARI. "Comparison and evaluation of electrocatalytic materials in electrochemical hydrogen production." International Journal of Hydrogen Energy 12, no. 3 (1987): 159–64. http://dx.doi.org/10.1016/0360-3199(87)90148-0.
Full textRatlamwala, T. A. H., and I. Dincer. "Experimental study of a hybrid photo-electrocatalytic hydrogen production reactor." International Journal of Hydrogen Energy 41, no. 19 (2016): 7904–18. http://dx.doi.org/10.1016/j.ijhydene.2015.10.090.
Full textYang, Zhou, Runmiao Yang, Guanxiu Dong, et al. "Biochar Nanocomposite Derived from Watermelon Peels for Electrocatalytic Hydrogen Production." ACS Omega 6, no. 3 (2021): 2066–73. http://dx.doi.org/10.1021/acsomega.0c05018.
Full textPeriasamy, Arun Prakash, Pavithra Sriram, Yu-Wen Chen, Chien-Wei Wu, Ta-Jen Yen, and Huan-Tsung Chang. "Porous aluminum electrodes with 3D channels and zig-zag edges for efficient hydrogen evolution." Chemical Communications 55, no. 38 (2019): 5447–50. http://dx.doi.org/10.1039/c9cc01667h.
Full textAnsovini, Davide, Coryl Jing Jun Lee, Chin Sheng Chua, et al. "A highly active hydrogen evolution electrocatalyst based on a cobalt–nickel sulfide composite electrode." Journal of Materials Chemistry A 4, no. 25 (2016): 9744–49. http://dx.doi.org/10.1039/c6ta00540c.
Full textFei, Huilong, Yang Yang, Xiujun Fan, Gunuk Wang, Gedeng Ruan, and James M. Tour. "Tungsten-based porous thin-films for electrocatalytic hydrogen generation." Journal of Materials Chemistry A 3, no. 11 (2015): 5798–804. http://dx.doi.org/10.1039/c4ta06938b.
Full textMoradpour, Ali, Ali Ghaffarinejad, Ali Maleki, Vahid Eskandarpour, and Ali Motaharian. "Low loaded palladium nanoparticles on ethylenediamine-functionalized cellulose as an efficient catalyst for electrochemical hydrogen production." RSC Advances 5, no. 86 (2015): 70668–74. http://dx.doi.org/10.1039/c5ra14394b.
Full textChen, Lizhu, Amir Khadivi, Manpreet Singh, and Jonah W. Jurss. "Synthesis of a pentadentate, polypyrazine ligand and its application in cobalt-catalyzed hydrogen production." Inorganic Chemistry Frontiers 4, no. 10 (2017): 1649–53. http://dx.doi.org/10.1039/c7qi00362e.
Full textMonga, Divya, and Soumen Basu. "Tuning the photocatalytic/electrocatalytic properties of MoS2/MoSe2 heterostructures by varying the weight ratios for enhanced wastewater treatment and hydrogen production." RSC Advances 11, no. 37 (2021): 22585–97. http://dx.doi.org/10.1039/d1ra01760h.
Full textWang, Haiqing, Xiaobin Xu, Bing Ni, Haoyi Li, Wei Bian, and Xun Wang. "3D self-assembly of ultrafine molybdenum carbide confined in N-doped carbon nanosheets for efficient hydrogen production." Nanoscale 9, no. 41 (2017): 15895–900. http://dx.doi.org/10.1039/c7nr05500e.
Full textYou, Bo, Guanqun Han, and Yujie Sun. "Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation." Chemical Communications 54, no. 47 (2018): 5943–55. http://dx.doi.org/10.1039/c8cc01830h.
Full textLiu, Meihuan, Hui Zhang, Yuanli Li, et al. "Crystallinity dependence for high-selectivity electrochemical oxygen reduction to hydrogen peroxide." Chemical Communications 56, no. 39 (2020): 5299–302. http://dx.doi.org/10.1039/d0cc00139b.
Full textGonzález-Cobos, Jesús, Víctor J. Rico, Agustı́n R. González-Elipe, José Luis Valverde, and Antonio de Lucas-Consuegra. "Electrocatalytic System for the Simultaneous Hydrogen Production and Storage from Methanol." ACS Catalysis 6, no. 3 (2016): 1942–51. http://dx.doi.org/10.1021/acscatal.5b02844.
Full textChebanenko, M. I., A. A. Lobinsky, V. N. Nevedomskiy, and V. I. Popkov. "NiO-decorated graphitic carbon nitride toward electrocatalytic hydrogen production from ethanol." Dalton Transactions 49, no. 34 (2020): 12088–97. http://dx.doi.org/10.1039/d0dt01602k.
Full textWiedner, Eric S., and R. Morris Bullock. "Electrochemical Detection of Transient Cobalt Hydride Intermediates of Electrocatalytic Hydrogen Production." Journal of the American Chemical Society 138, no. 26 (2016): 8309–18. http://dx.doi.org/10.1021/jacs.6b04779.
Full textSmith, Alexander J., Yung-Huang Chang, Kalyan Raidongia, Tzu-Yin Chen, Lain-Jong Li, and Jiaxing Huang. "Molybdenum Sulfide Supported on Crumpled Graphene Balls for Electrocatalytic Hydrogen Production." Advanced Energy Materials 4, no. 14 (2014): 1400398. http://dx.doi.org/10.1002/aenm.201400398.
Full textWilken, Mona, and Inke Siewert. "Electrocatalytic Hydrogen Production with a Molecular Cobalt Complex in Aqueous Solution." ChemElectroChem 7, no. 1 (2020): 217–21. http://dx.doi.org/10.1002/celc.201901913.
Full textPerra, Alessandro, E. Stephen Davies, Jason R. Hyde, Qiang Wang, Jonathan McMaster, and Martin Schröder. "Electrocatalytic production of hydrogen by a synthetic model of [NiFe] hydrogenases." Chemical Communications, no. 10 (2006): 1103. http://dx.doi.org/10.1039/b516613f.
Full textSOLER, L., J. MACANAS, M. MUNOZ, and J. CASADO. "Electrocatalytic production of hydrogen boosted by organic pollutants and visible light." International Journal of Hydrogen Energy 31, no. 1 (2006): 129–39. http://dx.doi.org/10.1016/j.ijhydene.2004.11.001.
Full textOSMANBAS, O., A. KOCA, M. KANDAZ, and F. KARACA. "Electrocatalytic activity of phthalocyanines bearing thiophenes for hydrogen production from water." International Journal of Hydrogen Energy 33, no. 13 (2008): 3281–88. http://dx.doi.org/10.1016/j.ijhydene.2008.04.018.
Full textGuo, Yu, Qing Xu, Shuai Yang, Zheng Jiang, Chengbing Yu, and Gaofeng Zeng. "Precise Design of Covalent Organic Frameworks for Electrocatalytic Hydrogen Peroxide Production." Chemistry – An Asian Journal 16, no. 5 (2021): 498–502. http://dx.doi.org/10.1002/asia.202100030.
Full textLiang, Jie, Yuanyuan Wang, Qian Liu, et al. "Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS2 nanosheets." Journal of Materials Chemistry A 9, no. 10 (2021): 6117–22. http://dx.doi.org/10.1039/d0ta12008a.
Full textYin, Xuguang, Cuibo Liu, Sifei Zhuo, You Xu, and Bin Zhang. "A water-soluble glucose-functionalized cobalt(iii) complex as an efficient electrocatalyst for hydrogen evolution under neutral conditions." Dalton Transactions 44, no. 4 (2015): 1526–29. http://dx.doi.org/10.1039/c4dt02951h.
Full text