Academic literature on the topic 'Electrochemical cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrochemical cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electrochemical cells"
Lohrengel, M. M. "Electrochemical capillary cells." Corrosion Engineering, Science and Technology 39, no. 1 (March 2004): 53–58. http://dx.doi.org/10.1179/147842204225016877.
Full textBard, Allen J. "Light-Emitting Electrochemical Cells." Science 270, no. 5237 (November 3, 1995): 718. http://dx.doi.org/10.1126/science.270.5237.718.
Full textSahlin, Eskil, Alexandra ter Halle, Kathleen Schaefer, Jeffery Horn, Matthew Then, and Stephen G. Weber. "Miniaturized Electrochemical Flow Cells." Analytical Chemistry 75, no. 4 (February 2003): 1031–36. http://dx.doi.org/10.1021/ac025970e.
Full textArof, A. K. "Silver molybdovanadate electrochemical cells." Physica Status Solidi (a) 140, no. 2 (December 16, 1993): 491–99. http://dx.doi.org/10.1002/pssa.2211400220.
Full textUtagawa, Yoshinobu, Kosuke Ino, Tatsuki Kumagai, Kaoru Hiramoto, Masahiro Takinoue, Yuji Nashimoto, and Hitoshi Shiku. "Electrochemical Glue for Binding Chitosan–Alginate Hydrogel Fibers for Cell Culture." Micromachines 13, no. 3 (March 8, 2022): 420. http://dx.doi.org/10.3390/mi13030420.
Full textPacześniak, Tomasz, Katarzyna Rydel-Ciszek, Paweł Chmielarz, Maria Charczuk, and Andrzej Sobkowiak. "Electrochemical Reaction Gibbs Energy: Spontaneity in Electrochemical Cells." Journal of Chemical Education 95, no. 10 (July 18, 2018): 1794–800. http://dx.doi.org/10.1021/acs.jchemed.7b00871.
Full textKasahara, Y., T. Nishijima, T. Sato, Y. Takeuchi, J. T. Ye, H. T. Yuan, H. Shimotani, and Y. Iwasa. "Electrostatically and electrochemically induced superconducting state realized in electrochemical cells." Journal of Physics: Conference Series 400, no. 2 (December 17, 2012): 022049. http://dx.doi.org/10.1088/1742-6596/400/2/022049.
Full textKoo, Kyeong-Mo, Chang-Dae Kim, Fu Nan Ju, Huijung Kim, Cheol-Hwi Kim, and Tae-Hyung Kim. "Recent Advances in Electrochemical Biosensors for Monitoring Animal Cell Function and Viability." Biosensors 12, no. 12 (December 13, 2022): 1162. http://dx.doi.org/10.3390/bios12121162.
Full textGasper, Paul, Bryce Knutson, and Nathaniel Sunderlin. "Rapid Electrochemical Diagnosis of Battery Health and Safety from Cells to Modules." ECS Meeting Abstracts MA2023-02, no. 3 (December 22, 2023): 500. http://dx.doi.org/10.1149/ma2023-023500mtgabs.
Full textLin, Tzu-En, Stefania Rapino, Hubert H. Girault, and Andreas Lesch. "Electrochemical imaging of cells and tissues." Chemical Science 9, no. 20 (2018): 4546–54. http://dx.doi.org/10.1039/c8sc01035h.
Full textDissertations / Theses on the topic "Electrochemical cells"
Gilby, S. J. "Novel polymeric materials for electrochemical cells." Thesis, Department of Materials and Applied Science, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/4650.
Full textWesselmark, Maria. "Electrochemical Reactions in Polymer Electrolyte Fuel Cells." Doctoral thesis, KTH, Tillämpad elektrokemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-25267.
Full textPolymerelektrolytbränslecellen omvandlar den kemiska energin i ett bränsle, exv. vätgas eller metanol, och syrgas till elektrisk energi. Den höga verkningsgraden samt möjligheten att använda bränsle från förnyelsebara källor gör dem attraktiva som energiomvandlare i framtida hållbara energisystem. En enorm utveckling har skett under det senaste årtiondet men för att kunna introducera polymerelektrolytbränslecellen på marknaden i en större skala måste livstiden öka och kostnaden minska. Elektroderna har en central del i detta då den platina som används som katalysator står för en stor del av kostnaden för bränslecellen. En stor del av prestandaförsämringen med tiden hos bränslecellen kan också relateras till en degradering av den porösa elektroden och en minskad elektrokemiskt aktiv platinayta. I denna avhandling studeras olika bränslecellsreaktioner samt olika katalysatorer och supportmaterial med målet att undersöka möjligheten att förbättra platinakatalysatorns aktivitet, stabilitet och utnyttjandegrad i bränslecellselektroder. Utbytesströmtätheten, i0, för vätgasoxidationen i bränslecell bestämdes till 770 mA cm-2Pt genom försök med modellelektroderna. Denna var högre än vad som framkommit tidigare i litteratur, vilket visar att de kinetiska förlusterna på anoden är mycket små. Katalysatormängden på anoden borde därför kunna minskas utan några större potentialförluster så länge masstransporten av vätgas är tillräcklig. Den elektrokemiskt aktiva ytan, aktiviteten och stabiliteten hos elektroden visade sig kunna påverkas av supportmaterialet. Platina deponerad på volfram oxid hade en högre aktivitet vid höga potentialer vilket relaterades till den förskjutna oxidbildningen på ytan. Elektroder med platina på volframoxid och iridiumoxid var mer stabila än elektroder med platina på kol. Det var även platina på ett icke grafitiserat kol med låg yta jämfört med platina på grafitiserade kol med en hög yta. Platina på metalloxidskikt av volfram och titan visade en högre elektrokemiskt aktiv yta i de cykliska voltamogrammen än platina på kol, vilket förklarades med att båda metalloxiderna har en bra protonledningsförmåga. CO-stripping gav det säkraste måttet på den elektrokemiskt aktiva ytan i en elektrod i bränslecell. CO-stripping visade sig även vara användbart för karaktärisering av degraderingen av en elektrod. Oxidationen av små organiska föreningar påverkades av borttransporten av intermediärer samt av kloridföroreningar. Pt aoch PtRu påverkades olika vilket gjorde det möjligt att få fram information om reaktionsmekanismer och hastighetsbestämmande steg.
QC 20101014
Mooney, James. "Voltage and pH monitoring of electrochemical cells." Thesis, University of Strathclyde, 2010. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=12406.
Full textThompson, Claire Louise. "Electrochemical routes to thin film solar cells." Thesis, University of Bath, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547634.
Full textAsadpoordarvish, Amir. "Functional and Flexible Light-Emitting Electrochemical Cells." Doctoral thesis, Umeå universitet, Institutionen för fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-102400.
Full textDavis, Yevtte A. "Transient behavior of light-emitting electrochemical cells." Thesis, Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/5648.
Full textRecent prototypes of the individual identification friend or foe (IIFF) patch use a light-emitting electrochemical cell (LEC) as the emitter. This research characterizes the transient behavior of LECs by measuring transient capacitance. The transient capacitance data are important to improve understanding of the underlying physics describing the operation of the LEC. The research goal was to make the first transient measurements of an LEC's capacitance as a function of temperature and bias, while simultaneously measuring the transient light output and current, to monitor in-situ junction formation inside an LEC. Capacitance changes varying from 5-30 nF are measured, depending on applied voltage and device temperature. Strong temperature dependence of the rate of change of capacitance suggests Arrhenius-type behavior associated with ion motion with an activation energy of 1.27 eV. The initial rate of change of capacitance is faster than the rate of change of light and current, suggesting that modification of the field near the contacts plays a key role in controlling free carrier injection. Initially capacitance increases monotonically upon application of bias, however, at longer times decreasing and even oscillating capacitance has been observed. This behavior provides new information on the dynamics of ion motion and carrier injection in LECs.
Larcin, José. "Chemical and electrochemical studies of Leclanché cells." Thesis, Middlesex University, 1991. http://eprints.mdx.ac.uk/13367/.
Full textSalazar, Zarzosa Pablo Felix. "Modeling and experiments to develop thermo-electrochemical cells." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53015.
Full textSubba, Rao Viruru Subbarao. "Electrochemical characterization of direct alcohol fuel cells using in-situ differential electrochemical mass spectrometry." kostenfrei, 2008. http://mediatum2.ub.tum.de/doc/645809/645809.pdf.
Full textRao, Vineet. "Electrochemical characterization of direct alcohol fuel cells using in-situ differential electrochemical mass spectrometry." kostenfrei, 2008. http://mediatum2.ub.tum.de/doc/645809/645809.pdf.
Full textBooks on the topic "Electrochemical cells"
Costa, Rubén D., ed. Light-Emitting Electrochemical Cells. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58613-7.
Full textLi, Genxi, and Peng Miao. Electrochemical Analysis of Proteins and Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34252-3.
Full textAn, Liang, Rong Chen, and Yinshi Li, eds. Flow Cells for Electrochemical Energy Systems. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37271-1.
Full textEuropean, Symposium on Electrical Engineering (3rd 1994 Nancy France). Electrochemical engineering and energy. New York: Plenum Press, 1994.
Find full textYuan, Xiao-Zi, Chaojie Song, Haijiang Wang, and Jiujun Zhang. Electrochemical Impedance Spectroscopy in PEM Fuel Cells. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-846-9.
Full textLarcin, Jose. Chemical and electrochemical studies of Leclanche cells. London: Middlesex Polytechnic, 1991.
Find full textBagot︠s︡kiĭ, V. S. Electrochemical power sources: Batteries, fuel cells, and supercapacitors. Hoboken, New Jersey: John Wiley & Sons, Inc., 2015.
Find full textEklund, Anders. Mass transfer and free convection in electrochemical cells. Stockholm: Dept. of Applied Electrochemistry and Corrosion Science, Royal Institute of Technology, 1991.
Find full textDugan, Duane W. Effects of storage time at various temperatures on capacity of a lithium/sulfur dioxide cell. Moffett Field, Calif: Ames Research Center, 1986.
Find full textDoherty, T. D. Mass transfer effects in electrochemical cells containing porous electrodes. Manchester: UMIST, 1996.
Find full textBook chapters on the topic "Electrochemical cells"
Péra, Marie-Cécile, Daniel Hissel, Hamid Gualous, and Christophe Turpin. "Fuel Cells." In Electrochemical Components, 151–207. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118576892.ch3.
Full textWendt, Hartmut, and Gerhard Kreysa. "Fuel Cells." In Electrochemical Engineering, 370–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03851-2_12.
Full textEmeji, Ikenna Chibuzor, Onoyivwe Monday Ama, Uyiosa Osagie Aigbe, Khotso Khoele, Peter Ogbemudia Osifo, and Suprakas Sinha Ray. "Electrochemical Cells." In Nanostructured Metal-Oxide Electrode Materials for Water Purification, 65–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43346-8_4.
Full textLvov, Serguei N. "Electrochemical Cells." In Introduction to Electrochemical Science and Engineering, 33–56. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315296852-2.
Full textGasteiger, Hubert, Katharina Krischer, and Bruno Scrosati. "Electrochemical Cells: Basics." In Lithium Batteries, 1–19. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118615515.ch1.
Full textMatsumoto, Hajime. "Photoelectrochemical Cells." In Electrochemical Aspects of Ionic Liquids, 221–34. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118003350.ch15.
Full textYoshizawa-Fujita, Masahiro, and Hiroyuki Ohno. "Fuel Cells." In Electrochemical Aspects of Ionic Liquids, 235–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118003350.ch16.
Full textKoper, Marc T. M. "Electrochemical Hydrogen Production." In Fuel Cells and Hydrogen Production, 819–32. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4939-7789-5_862.
Full textDumur, Frédéric. "Light-Emitting Electrochemical Cells." In Luminescence in Electrochemistry, 327–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49137-0_10.
Full textLi, Genxi, and Peng Miao. "Electrochemical Analysis of Cells." In SpringerBriefs in Molecular Science, 43–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34252-3_4.
Full textConference papers on the topic "Electrochemical cells"
Stefan-Cristian, Macovei, Ilas Tudor Alexandru, Drobota Mihai, and Darko Belavic. "Electrochemical techniques used to characterize electrochemical cells." In 2016 International Conference and Exposition on Electrical and Power Engineering (EPE). IEEE, 2016. http://dx.doi.org/10.1109/icepe.2016.7781399.
Full textPei, Qibing, Gang Yu, Chi Zhang, Yang Yang, and Alan J. Heeger. "Polymer Light-Emitting Electrochemical Cells." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.thc.2.
Full textArmstrong, Peter, Craig Grapperhaus, and Thad Druffel. "Hole Transporting Layers in Solar Cells: Stabilizing NiOPerovskite Inks with Organic Capping Agents." In Electrochemical Society, Atlanta, 16 Oct 2019. US DOE, 2019. http://dx.doi.org/10.2172/1923058.
Full textPontes, J., N. Mangiavacchi, G. Rabello dos Anjos, O. E. Barcia, O. R. Mattos, B. Tribollet, and Michail D. Todorov. "Modelling Hydrodynamic Stability in Electrochemical Cells." In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS: Proceedings of the 34th Conference on Applications of Mathematics in Engineering and Economics (AMEE '08). AIP, 2008. http://dx.doi.org/10.1063/1.3030780.
Full textMenzel, S., I. Valov, R. Waser, B. Wolf, S. Tappertzhofen, and U. Bottger. "Statistical modeling of electrochemical metallization memory cells." In 2014 IEEE 6th International Memory Workshop (IMW). IEEE, 2014. http://dx.doi.org/10.1109/imw.2014.6849360.
Full textKAJI, HIROKAZU, MASAHIKO HASHIMOTO, TAKEAKI KAWASHIMA, TAKASHI ABE, and MATSUHIKO NISHIZAWA. "AN ELECTROCHEMICAL MICROSYSTEM FOR MANIPULATING LIVING CELLS." In Proceedings of the Final Symposium of the Tohoku University 21st Century Center of Excellence Program. IMPERIAL COLLEGE PRESS, 2006. http://dx.doi.org/10.1142/9781860948800_0001.
Full textIzenson, Michael G., and Roger W. Hill. "Water and Thermal Balance in PEM Fuel Cells." In ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1756.
Full textHaynes, Comas, William Rooker, Vaughn Melbourne, and Jeffery Jones. "Analogies Between Fuel Cells and Heat Exchangers: From Phenomena to Design Principles." In ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1736.
Full textMoton, Jennie M., Brian D. James, and Whitney G. Colella. "Advances in Electrochemical Compression of Hydrogen." In ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fuelcell2014-6641.
Full textHaynes, Comas, Vaughn Melbourne, and William Rooker. "Advancing Fuel Cells Technology via Analogous Heat Exchanger Design Principles." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33313.
Full textReports on the topic "Electrochemical cells"
Owens, Boone B., and William H. Smyrl. Thin Film Electrochemical Power Cells. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada245176.
Full textSmyrl, W. H., B. B. Owens, and H. S. White. Exploratory cell research and fundamental processes study in solid state electrochemical cells. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6396835.
Full textKatayama, Shingo, Koich Hamamoto, Yoshinobu Fujishiro, and Masanobu Awano. Decomposition of NOx by Electrochemical Cells~Improvement and Low-Temperature Operation of Practical-Sized Cells. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0116.
Full textScott Barnett. Use of High Temperature Electrochemical Cells for Co-Generation of Chemicals and Electricity. Office of Scientific and Technical Information (OSTI), September 2007. http://dx.doi.org/10.2172/924973.
Full textTench, D. Research on electrochemical photovoltaic cells. Final report, 1 July 1982-30 April 1983. Office of Scientific and Technical Information (OSTI), March 1985. http://dx.doi.org/10.2172/5923721.
Full textOsteryoung, Robert A. Electrochemical Studies of Lewis Acid-Base Systems for Use in Thermally Regenerable Fuel Cells. Fort Belvoir, VA: Defense Technical Information Center, February 1992. http://dx.doi.org/10.21236/ada246457.
Full textAuthor, Not Given. 3D CFD Electrochemical and Heat Transfer Model of an Integrated-Planar Solid Oxide Electrolysis Cells. Office of Scientific and Technical Information (OSTI), November 2008. http://dx.doi.org/10.2172/953673.
Full textTomkiewicz, M., I. Ling, W. Parson, R. Silberstein, J. Lyden, P. Bratin, F. Pollak, W. Siripala, R. Garuthara, and M. Hepel. Conversion and storage in electrochemical photovoltaic cells. Final report, 15 September 1979-15 January 1985. Office of Scientific and Technical Information (OSTI), May 1985. http://dx.doi.org/10.2172/5513170.
Full textGlasscott, Matthew, and Jason Ray. Accelerated corrosion of infrastructural seven-strand cables via additively manufactured corrosion flow cells. Engineer Research and Development Center (U.S.), September 2023. http://dx.doi.org/10.21079/11681/47606.
Full textRossi, Ruggero, David Jones, Jaewook Myung, Emily Zikmund, Wulin Yang, Yolanda Alvarez Gallego, Deepak Pant, et al. Evaluating a multi-panel air cathode through electrochemical and biotic tests. Engineer Research and Development Center (U.S.), December 2022. http://dx.doi.org/10.21079/11681/46320.
Full text