To see the other types of publications on this topic, follow the link: Electrochemical Supercapacitor.

Dissertations / Theses on the topic 'Electrochemical Supercapacitor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Electrochemical Supercapacitor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Beidaghi, Majid. "Design, Fabrication, and Evaluation of On-chip Micro-supercapacitors." FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/660.

Full text
Abstract:
Due to the increasing demand for high power and reliable miniaturized energy storage devices, the development of micro-supercapacitors or electrochemical micro-capacitors have attracted much attention in recent years. This dissertation investigates several strategies to develop on-chip micro-supercapacitors with high power and energy density. Micro-supercapacitors based on interdigitated carbon micro-electrode arrays are fabricated through carbon microelectromechanical systems (C-MEMS) technique which is based on carbonization of patterned photoresist. To improve the capacitive behavior, electrochemical activation is performed on carbon micro-electrode arrays. The developed micro-supercapacitors show specific capacitances as high as 75 mFcm-2 at a scan rate of 5 mVs-1 after electrochemical activation for 30 minutes. The capacitance loss is less than 13% after 1000 cyclic voltammetry (CV) cycles. These results indicate that electrochemically activated C-MEMS micro-electrode arrays are promising candidates for on-chip electrochemical micro-capacitor applications. The energy density of micro-supercapacitors was further improved by conformal coating of polypyrrole (PPy) on C-MEMS structures. In these types of micro-devices the three dimensional (3D) carbon microstructures serve as current collectors for high energy density PPy electrodes. The electrochemical characterizations of these micro-supercapacitors show that they can deliver a specific capacitance of about 162.07 mFcm-2 and a specific power of 1.62mWcm-2 at a 20 mVs-1 scan rate. Addressing the need for high power micro-supercapacitors, the application of graphene as electrode materials for micro-supercapacitor was also investigated. The present study suggests a novel method to fabricate graphene-based micro-supercapacitors with thin film or in-plane interdigital electrodes. The fabricated micro-supercapacitors show exceptional frequency response and power handling performance and could effectively charge and discharge at rates as high as 50 Vs-1. CV measurements show that the specific capacitance of the micro-supercapacitor based on reduced graphene oxide and carbon nanotube composites is 6.1 mFcm-2 at scan rate of 0.01Vs-1. At a very high scan rate of 50 Vs-1, a specific capacitance of 2.8 mFcm-2 (stack capacitance of 3.1 Fcm-3) is recorded. This unprecedented performance can potentially broaden the future applications of micro-supercapacitors.
APA, Harvard, Vancouver, ISO, and other styles
2

Zou, Yuqin. "Investigation of the electrochemical properties of graphene." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/investigation-of-the-electrochemical-properties-of-graphene(25ebcbc3-2a23-4db2-8aed-814eca01af79).html.

Full text
Abstract:
In this thesis, the synthesis and characterization of nitrogen-doped graphene (NG) and NG-Co3O4 composites are described. Moreover, the effect of airborne contamination and nitrogen doping on the capacitance of graphene was investigated. Firstly, nitrogen-doped thermally expanded graphene oxide (NtGO) was prepared by a facile thermal expansion and hydrothermal doping process. The thermal expansion process plays a vital role in improving the electrochemical performance of N-doped graphene by preventing its aggregation and improving its conductivity. The specific capacitance of NtGO is 270 F g-1 at a discharge current density of 1 A g-1 and the capacitance retention is 97 % after 2000 cycles at this current density. Secondly, a hierarchical electrode structure, consisting of cobalt oxide and nitrogen-doped graphene foam (NGF), has been fabricated with the aim of achieving enhanced charge storage performance. The Co3O4/NGF electrode shows an enhanced charge-storage performance, attributed to the 3D hierarchical structure and the synergistic effect of Co3O4 and NGF. The present study shows that specific capacitances as high as 451 F g-1 can be obtained, indicating that high-performance electrochemical capacitors can be made using electrode materials with advanced structures. Thirdly, a study of the differences between the capacitance of freshly exfoliated highly ordered pyrolytic graphite (HOPG, sample denoted FEG), HOPG aged in air (denoted AAG) and aged in an inert atmosphere (hereafter IAG) is presented in this work. Electrochemical impedance spectroscopy shows the FEG possesses a higher intrinsic capacitance (6.0 µF cm-2 at the potential of minimum capacitance) than AAG (4.3 µF cm-2) and IAG (4.7 µF cm-2). This change in capacitance is correlated with other physical changes of the sample, and attributed to contamination due to airborne hydrocarbons. Finally, the effect of N-doping of graphene prepared by chemical vapour deposition is investigated. The differential capacitance of PG and NG was measured by a microinjection-micromanipulator system. The quantum capacitance of PG and NG was calculated and discussed. The increase in differential capacitance with nitrogen-doping and the growth of the quantum capacitance of NG suggest that the increased capacitance of many electrodes of electrochemical capacitors is primarily due to the modification of the electronic structure of the graphene by the N dopant.
APA, Harvard, Vancouver, ISO, and other styles
3

Nelson, Phillip A. "Mesoporous nickel : an odyssey through synthesis, characterisation and application to electrochemical power devices." Thesis, University of Southampton, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Chongfu. "Carbon Nanotube Based Electrochemical Supercapacitors." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19747.

Full text
Abstract:
Several approaches have been used to develop carbon nanotube (CNT) based electrochemical supercapacitors. These approaches include the following: (a) stabilization and carbonization of ternary composites of polyacrylonitrile (PAN), poly (styrene co-acrylonitrile) (SAN) copolymer, and single wall carbon nanotubes (SWNTs); (b) SWNT membranes functionalized with aryl chloride, sodium sulfonate, aryl sulfonic acid, bis(3,5-di-tert-butylphenyl)5-aminobenzene-1,3-dioate, and 4,4 -methylenedianiline; and (c) pyrrole treated SWNTs. In addition nitric acid functionalized and heat-treated SWNT membranes have been studied. The electrochemical supercapacitor behavior of these membrane electrodes has been characterized by cyclic voltammetry, constant current charging-discharging, and impedance analysis in aqueous and ionic liquid electrolytes. Long term performance of selected electrodes has been evaluated. The surface area and pore size distribution was quantified by N2 gas adsorption/desorption and correlated with capacitance performance. The surface functional groups have been characterized by X-ray photoelectron spectroscopy. CNT electrode/electrolyte interaction has been characterized using contact angle measurements. Electrolyte absorption by the electrodes has also been characterized. Carbonized PAN/SAN/SWNT ternary composites exhibit double layer capacity of over 200 μF/cm2. By comparison, the double layer capacity of classical meso-porous carbons is in the range of 10-50 μF/cm2. The capacitance of functionalized SWNTs is up to 2 times that of the control bucky paper made from unfunctionalized SWNTs. Energy density of functionalized electrodes when evaluated in an ionic liquid is as high as 28 kJ/kg. High capacitance (up to 350 F/g) was obtained for pyrrole-treated functionalized SWNT membranes in 6 M KOH. This value is almost seven times that of the control bucky paper. Correlating the capacitance with surface area and pore size distribution, it was observed that macropores (pore width greater than 50 nm) play an important role for achieving high capacitance.
APA, Harvard, Vancouver, ISO, and other styles
5

Gautam, Dushyant. "Electrochemical Study of Barium Cuprate System for Super Capacitor Electrode Applications." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1448275117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zelinskyi, S. A., Y. A. Maletin, N. G. Stryzhakova, S. A. Tychyna, and D. M. Drobny. "Electrochemical Behavior of Carbon Electrodes as a Key to Supercapacitor Optimization." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35501.

Full text
Abstract:
The paper describes the electrochemical behavior of supercapacitor electrodes in both positive and negative ranges. This study has become possible due to development of a special reference electrode, which is stable in aprotic electrolytes like, e.g., 1.3 M Et3MeNBF4 in acetonitrile. Three-electrode measurements have enabled us to find the boundary potentials for various nanoporous carbon materials to be then used in the supercapacitor technology. This article describes how the electrode size can be optimized to get the maximum charge value in the double electric layer at the electrode-electrolyte interface. Besides, we illustrate how the supercapacitor rated voltage can be increased up to 2.9 V as compared with the typical value of 2.7 V. This provides the 15 % increase in energy and power. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35501
APA, Harvard, Vancouver, ISO, and other styles
7

Vaidyanathan, Siddharth. "Electrochemical Characteristics of Conductive Polymer Composite based Supercapacitors." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1336413099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Megharaj, Prabhu. "Electrochemical Study of Ceramic (BaTiO3 based)/ Polymer Composite electrodes for Supercapacitor applications." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1353156033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Xiaoyi. "Novel Conjugated Polymer Prepared by Electrochemical Polymerization as Active Material in Supercapacitor." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1428325817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Hao. "Graphene-based Materials for Electrochemical Energy Storage." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1512095146429831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rodriguez-Silva, Allen A. "Graphene Oxide-based Novel Supercapacitor Immunosensors for Physiological Biomarkers Detection." Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1458922749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hayes, William I. "Enhancement of electrochemical activity from modified graphenic materials for fuel cell and supercapacitor applications." Thesis, University of Ulster, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627734.

Full text
Abstract:
This thesis is focused on investigating the potential of two novel types of graphene nanomaterials for use as electrode coatings in the next generation of fuel cell and energy storage systems. In particular the development of nitrogenated graphene nanoplatelets (NGPs) as metal-free oxygen reduction reaction (ORR) catalysts for cathodes in alkaline fuel cells is presented. Additionally hydrothermally reduced graphene oxide (rGO) as an ORR catalyst and power storage material have also been investigated.
APA, Harvard, Vancouver, ISO, and other styles
13

Elgmati, Rugia Ali. "Electrochemical in-situ polymerization of graphene oxide/conducting star copolymer nanocomposite as supercapacitor electrode." University of the Western Cape, 2017. http://hdl.handle.net/11394/5479.

Full text
Abstract:
>Magister Scientiae - MSc
These days there are deep concerns over the environmental consequences of the rate of consumption of energy from non-renewable sources because of the accelerated increase in greenhouse effect. There is, therefore, increasing interest in research activities on renewable energy systems (e.g., supercapacitors, batteries, fuel cells and photovoltaic cells) and their materials. Supercapacitor materials have attracted much attention because of their high energy storage capacity, large surface area, high specific power density (watts/kg) and low cost. The development of advanced supercapacitor devices requires active electrode materials with high storage capacity and dispensability. Graphene oxide-dendritic star copolymer nanocomposites are fascinating as electrode materials, both scientifically and technologically, due to their exceptional properties, including light weight and high potential.
2020-08-31
APA, Harvard, Vancouver, ISO, and other styles
14

Wells, Thomas. "Determining the voltage range of a carbon-based supercapacitor." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-91805.

Full text
Abstract:
The focus of this thesis has been to determine the usable voltage range of carbon-based supercapacitors (SC). Supercapacitors are a relatively new type of capacitors with a vast increase in capacitance compared to capacitors which utilize a dielectric as charge separator. A SC consists of two electrodes and an electrolyte separating the electrodes. The charges are stored by electrostatic forces in the interface between the electrode and the electrolyte, forming the so called electrochemical double-layer (EDL). With porous electrodes the effective surface area of the interfacial zone can be made very large, giving SCs a large storage capacity. The limiting factors of a SC is the decomposition potential of the electrolyte and the decomposition of the electrodes. For commercially manufactured SCs the electrolyte is usually an organic solvent, which has a decomposition potential of up to 2.7-2.8 V. Compared to aqueous electrolytes with a thermodynamic limit of 1.23 V. The drawback of using non-aqueous electrolytes is that they are not environmentally friendly, and they increase the production cost. It is claimed that the voltage range can be up to 1.9 V using aqueous electrolytes. Some researchers have focused on aqueous electrolytes for these reasons. In this thesis two different electrolytes were tested to determine if the voltage range could be extended. The experiments were conducted using a three electrode cell and performing cyclic voltammogram measurements (CV). The carbon electrodes were made of  two different sources of grahite, battery graphite or exfoliated graphite, and nano fibrilated cellulose was added to increase the mechanical stability. The results show that the oxidation potential of the carbon electrode was the positive limit. A usable potential of about 1 V was shown. However, when cycling the electrodes to potentials below the decomposition limit, for hydrogen evolution, interesting effects were seen. A decrease in reaction kinetics, indicating a type of conditioning of the electrode was observed. An increase in charge storage capacitance was also observed when comparing the initial measurements with the final, probably corresponding to an increase in porosity.
KEPS projekt Sundsvall Mitt Universitet
APA, Harvard, Vancouver, ISO, and other styles
15

Tevi, Tete. "Enhancement of Supercapacitor Energy Storage by Leakage Reduction and Electrode Modification." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6148.

Full text
Abstract:
Supercapacitors have emerged in recent years as a promising energy storage technology. The main mechanism of energy storage is based on electrostatic separation of charges in a region at the electrode-electrolyte interface called double layer. Various electrode materials including carbon and conducting polymers have been used in supercapacitors. Also, supercapacitors offer high life cycle and high power density among electrochemical energy storage devices. Despite their interesting features, supercapacitors present some disadvantages that limit their competitivity with other storage devices in some applications. One of those drawbacks is high self-discharge or leakage. The leakage occurs when electrons cross the double layer to be involved in electrochemical reactions in the supercapacitor’s electrolyte. In this work, the first research project demonstrates that the addition of a very thin blocking layer to a supercapacitor electrode, can improve the energy storage capability of the device by reducing the leakage. However, the downside of adding a blocking layer is the reduction of the capacitance. A second project developed a mathematical model to study how the thickness of the blocking layer affects the capacitance and the energy density. The model combines electrochemical and quantum mechanical effects on the electrons transfer responsible of the leakage. Based on the model, a computational code is developed to simulate and study the self-discharge and the energy loss in hypothetical devices with different thicknesses of the blocking layer. The third research project identified the optimal amount of a surfactant (Triton-X 100) that had a significant effect on the double layer capacitance and conductivity of a spin-coated PEDOT:PSS (poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)) electrode. The effect of the concentration of the surfactant was investigated by measuring the electrochemical properties and the conductivity of different electrodes. The electrodes were fabricated with different concentrations of the surfactant. Scanning electron microscopy characterizations confirmed the structural change in the PEDOT:PSS that contributed to the capacitance and conductivity enhancement. A final research project proposed an approach on how to utilize the modified PEDOT:PSS added to different photoactive dyes to design a photoactive supercapacitor. The new approach showed the possibility of using a supercapacitor device as an energy harvesting as well as a storage device.
APA, Harvard, Vancouver, ISO, and other styles
16

Carvalho, Lucas Lodovico de. "Construção e caracterização eletroquímica de eletrodos baseados em grafeno." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/46/46136/tde-30092014-132359/.

Full text
Abstract:
A demanda crescente por meios de armazenar eficientemente energia elétrica tem incentivado a busca de materiais que melhorem o desempenho específico de dispositivos armazenadores de carga elétrica. Dentre os materiais a base de carbono, destaca-se o grafeno e seus derivados como tendo grande potencial para aumentar o desempenho de tais. Nesse trabalho, estudam-se duas abordagens para a imobilização de grafeno sobre condutores metálicos e o efeito que essas tem na eletroquímica dos sistemas. De maneira geral, evitou-se a utilização de polímeros como aglutinantes na construção de eletrodos, visto que esses podem interferir negativamente na eletroquímica do sistema (além de não serem condutores elétricos, não têm nenhum benefício em relação a aumento de capacitância do eletrodo). As metodologias estudadas podem ser separadas em duas categorias, sendo essas a de eletrodos obtidos por deposição eletroforética de derivados de grafeno e imobilização de grafeno sobre condutores metálicos pelo uso de camadas orgânicas, que servem de ponto de ancoragem para os derivados de grafeno. Os eletrodos foram então caracterizados eletroquimicamente, visando principalmente seu uso em capacitores eletroquímicos. Dentre as técnicas utilizadas para tal, destacam-se o uso de voltametria cíclica e espectroscopia de impedância eletroquímica, além de técnicas não eletroquímicas como espectroscopia Raman, microscopia eletrônica de varredura, microscopia de força atômica e microbalança de cristal de quartzo. De modo geral, pode-se observar que a deposição eletroforética é uma maneira simples de obter eletrodos modificados, e apresenta alta reprodutibilidade. O fato de não possuírem outros compostos químicos que não o grafeno, além de serem altamente rugosos, mostrou que esses eletrodos tem desempenho capacitivo muito bom, sendo o método de obtenção do grafeno e a maneira escolhida para deposição diretamente responsáveis pela morfologia obtida. A construção de eletrodos pela ancoragem de grafeno foi feita com base na (eletro)química de sais de diazônio, que se mostrou bastante promissora quanto a capacidade de se obter uma ligação química estável entre as folhas de grafeno e o metal. A alta reatividade dos sais de diazônio, no entanto, se mostrou danosa a eletroquímica do grafeno, sendo que tais eletrodos não apresentaram nenhuma característica que justificasse seu uso em capacitores eletroquímicos. Assim, os avanços e desafios restantes em relação a essas abordagens na construção capacitores eletroquímicos com alto desempenho específico encontram-se aqui detalhados.
The increasing demand for efficient electrical energy storage devices has pushed research towards materials with potential to increase the specific performance of such devices. Among the carbon-based materials, one that has been heavily studied as a potential candidate to accomplish such feat is graphene and its chemical derivatives. In this work, two methodologies to accomplish graphene immobilization over metallic current collectors are approached, as well as the effects that such approaches have on the electrochemistry of the resulting electrodes. As a general guideline, the usage of polymeric binders as ways of keeping good mechanical stability are avoided, due to their tendency to negatively impact the system\'s electrochemistry (not only they\'re normally electrical in sulators, they also don\'t usually possess any intrinsic electroactivity that could enhance the electrode\'s capacitance). The methodologies in study can be separated into two categories, namely, electrophoretic deposition and usage of organic molecules as anchoring points to attach graphene sheets to the surface. Such electrodes were characterized by a number of electrochemical technics, most prominently cyclic voltammetry and electrochemical impedance spectroscopy in the group of electrochemical technics, and Raman spectroscopy, atomic force microscopy, scanning electron microscopy and quartz crystal microbalance in the group of non-electrochemical technics. Electrophoretic deposition of graphene is proved to be a very straightforward and reproducible way to obtain modified electrodes. Since no chemical compound other than the graphene derivatives are necessary, and that the final electrodes have very rough surfaces, such electrodes have very high capacitance, and those characteristics are direct consequence of the chosen method. Anchoring graphene derivatives on the surface of metallic conductors by the (electro)-chemistry of diazonium salts is shown to be a promising method to achieve strongly bound graphene sheets to a surface. The high reactivity of diazonium salts, though, hampers the electrochemical activity of graphene, and no electrodes suitable to be used in electrochemical capacitors were obtained. In summary, the advances and remaining challenges towards the use of such methodologies in the construction of electrochemical capacitors are presented here.
APA, Harvard, Vancouver, ISO, and other styles
17

Falola, Bamidele Daniel. "TRANSITION METAL COATINGS FOR ENERGY CONVERSION AND STORAGE; ELECTROCHEMICAL AND HIGH TEMPERATURE APPLICATIONS." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/dissertations/1354.

Full text
Abstract:
Energy storage provides sustainability when coupled with renewable but intermittent energy sources such as solar, wave and wind power, and electrochemical supercapacitors represent a new storage technology with high power and energy density. For inclusion in supercapacitors, transition metal oxide and sulfide electrodes such as RuO2, IrO2, TiS2, and MoS2 exhibit rapid faradaic electron–transfer reactions combined with low resistance. The pseudocapacitance of RuO2 is about 720 F/g, and is 100 times greater than double-layer capacitance of activated carbon electrodes. Due to the two-dimensional layered structure of MoS2, it has proven to be an excellent electrode material for electrochemical supercapacitors. Cathodic electrodeposition of MoS2 onto glassy carbon electrodes is obtained from electrolytes containing (NH4)2MoS4 and KCl. Annealing the as-deposited Mo sulfide deposit improves the capacitance by a factor of 40x, with a maximum value of 360 F/g for 50 nm thick MoS2 films. The effects of different annealing conditions were investigated by XRD, AFM and charge storage measurements. The specific capacitance measured by cyclic voltammetry is highest for MoS2 thin films annealed at 500°C for 3h and much lower for films annealed at 700°C for 1 h. Inclusion of copper as a dopant element into electrodeposited MoS2 thin films for reducing iR drop during film charge/discharge is also studied. Thin films of Cu-doped MoS2 are deposited from aqueous electrolytes containing SCN-, which acts as a complexing agent to shift the cathodic Cu deposition potential, which is much more anodic than that of MoS2. Annealed, Cu-doped MoS2 films exhibit enhanced charge storage capability about 5x higher than undoped MoS2 films. Coal combustion is currently the largest single anthropogenic source of CO2 emissions, and due to the growing concerns about climate change, several new technologies have been developed to mitigate the problem, including oxyfuel coal combustion, which makes CO2 sequestration easier. One complication of oxyfuel coal combustion is that corrosion problems can be exacerbated due to flue gas recycling, which is employed to dilute the pure O2 feed and reduce the flame temperature. Refractory metal diffusion coatings of Ti and Zr atop P91 steel were created and tested for their ability to prevent corrosion in an oxidizing atmosphere at elevated temperature. Using pack cementation, diffusion coatings of thickness approximately 12 and 20 µm are obtained for Ti and Zr, respectively. The effects of heating to 950°C for 24 hr in 5% O2 in He are studied in situ by thermogravimetric analyses (TGA), and ex situ by SEM analyses and depth profiling by EDX. For Ti-coated, Zr-coated and uncoated P91 samples, extended heating in an oxidizing environment causes relatively thick oxide growth, but extensive oxygen penetration greater than 2.7 mm below the sample surface, and eventual oxide exfoliation, are observed only for the uncoated P91 sample. For the Ti- and Zr-coated samples, oxygen penetrates approximately 16 and 56 µm, respectively, below the surface. In situ TGA verifies that Ti-and Zr-coated P91 samples undergo far smaller mass changes during corrosion than uncoated samples, reaching close to steady state mass after approximately four hours.
APA, Harvard, Vancouver, ISO, and other styles
18

Abass, Monsuru A. "Boron nitride nanotube-modified silicon oxycarbide ceramic composite: synthesis, characterization and applications in electrochemical energy storage." Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/35423.

Full text
Abstract:
Master of Science
Department of Mechanical and Nuclear Engineering
Gurpreet Singh
Polymer-derived ceramics (PDCs) such as silicon oxycarbide (SiOC) have shown promise as an electrode material for rechargeable Li-ion batteries (LIBs) owing to the synergy between its disordered carbon phase and hybrid bonds of silicon with oxygen and carbon. In addition to their unique structure, PDCs are known for their high surface area (~822.7 m² g⁻¹), which makes them potential candidates for supercapacitor applications. However, low electrical conductivity, voltage hysteresis, and first cycle lithium irreversibility have hindered their introduction into commercial devices. One approach to improving charge storage capacity is by interfacing the preceramic polymer with boron or aluminium prior pyrolysis. Recent research has shown that chemical interfacing with elemental boron, bulk boron powders and even exfoliated sheets of boron nitride leads to enhancements in thermal and electronic properties of the ceramic. This thesis reports the synthesis of a new type of PDC composite comprising of SiOC embedded with boron nitride nanotubes (BNNTs). This was achieved through the introduction of BNNT in SiOC pre-ceramic polymer at varying wt.% loading (0.25, 0.5 and 2.0 wt.%) followed by thermolysis at high temperature. Electron microscopy and a range of spectroscopy techniques were employed to confirm the polymer-to-ceramic transformation and presence of disordered carbon phase. Transmission electron microscopy confirmed the tubular morphology of BNNT in the composite. To test the material for electrochemical applications, the powders were then made into free-standing paper-like electrodes with reduced graphene oxide (rGO) acting as support material. The synthesized free-standing electrodes were characterized and tested as electrochemical energy storage materials for LIBs and symmetric supercapacitor applications. Among the SiOC-BNNT composite paper tested as anode materials for LIBs, the 0.25 wt.% BNNT composite paper demonstrated the highest first cycle lithiation capacity corresponding to 812 mAh g⁻¹ (at a current density of 100 mA g⁻¹) with a stable charge capacity of 238 mAh g⁻¹ when asymmetrically cycled after 25 cycles. On the contrary, the 0.5 wt.% BNNT composite paper demonstrated the highest specific capacitance corresponding to 78.93 F g⁻¹ at a current density of 1 A g⁻¹ and a cyclic retention of 86% after 185 cycles. This study shows that the free carbon content of SiOC-BNNT ceramic composite can be rationally modified by varying the wt.% of BNNT. As such, the paper composite can be used as an electrode material for electrochemical energy storage.
APA, Harvard, Vancouver, ISO, and other styles
19

Cakici, Murat. "Highly flexible carbon fibre fabric based nanostructured hybrids for high performance energy storage systems." Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/18123.

Full text
Abstract:
Electrochemical supercapacitors (ES), or ultracapacitors, store energy using either reversible adsorption of electrolyte ions (electrochemical double layer capacitors) or fast surface redox reactions on its electrodes (pseuodocapacitors). Currently, they are used together with batteries or fuel cells when high-power delivery or uptake is required. They have exceptional features such as high power density, high cycle efficiency, fast charging-discharging rate, long lifecycle, and safe operation. Therefore, they have attracted tremendous interest as next generation energy conversion and storage systems, ranging from portable wearable electronics to hybrid electric vehicles. However, low energy density is the main drawback to use ES as a stand-alone energy storage system. Thus, their performance should be improved to fulfil the requirements of ever-growing energy demands of progressing global economy and industry. In addition, most of the ES electrodes are fabricated from powders which makes them unsuitable for their potential use as wearable lightweight flexible devices in the future. Considering the requirements of future industrial applications of ES, this thesis focuses on synthesizing high performance, flexible, mechanically stable, lightweight, eco-friendly, and low cost ES electrodes using green, scalable, and inexpensive fabrication methods. To develop highly efficient electrode materials suitable for practical applications in a flexible design, novel synthesis procedures were explored to incorporate pseudocapacitive materials (metal oxides and electrically conductive polymers) into three-dimensional and flexible conductive carbon materials to obtain multicomponent hybrid materials. Therefore, hybrid materials reported in this thesis are binder-/conductive agent-free and also have enhanced three-dimensional nanostructures which promote energy storage. Simplicity of the fabrication methods also enable large scale and economical production of flexible and mechanically stable materials which can be directly used as ES electrodes. First, electrode materials with a unique nanostructure was developed for supercapacitor applications based on carbon fibre fabric (CFF) / MnO2 hybrid materials, in which MnO2 was uniformly coated on the surface of CFF. A green hydrothermal method was used to functionalize CFF with coral-like MnO2 nanostructures to improve the electrochemical performance of the hybrid composites. The morphological, structural, and crystalline properties of composites were analysed by using various techniques to confirm the deposition of coral-like MnO2 on CFF. The electrochemical performance was examined in a three-electrode system and cyclic voltammetry results reveal the superior specific capacitance of 467 F g-1 at a scan rate of 5 mV s-1. The cycling performance test revealed that the capacitance retention was 99.7% and the coulombic efficiency remained as high as 99.3% after 5000 cycles, demonstrating an outstanding electrochemical stability of the coral-like MnO2/CFF composite electrode. Second, synthesis method used in the first study was optimised to obtain three novel nanostructured MnO2 layers on flexible CFF substrates. It was observed that different morphologies of MnO2 could be grown on carbon fibres by adjusting the concentration of precursor solution. The morphological, structural, and crystalline properties of the composites were analysed by using various techniques to confirm that MnO2 nanostructures were successfully anchored on CFF. The electrochemical performances of the nanostructured MnO2/CFF composites were examined in two-electrode symmetric cell configuration in 1 M Na2SO4 electrolyte. Among three different morphologies, nanoplate type MnO2/CFF electrode had the best electrochemical performance (528 F g-1 at 0.5 A g-1 current density). In addition, binder and conductive agent free, flexible MnO2/CFF composite electrode had excellent cycling stability and coulombic efficiency. Finally, activated CFF (ACFF) / reduced graphene oxide (RGO)/polyaniline (PANI) composite flexible electrodes were prepared by in-situ polymerization method. Polymerization of aniline was optimized by adjusting aniline concentration to obtain PANI nanowire arrays on the three-dimensional flexible carbon based substrate. Electrochemical performance of ACFF/RGO/PANI composite was compared with ACFF and ACFF/RGO electrodes in two-electrode symmetrical cell configuration in 1 M H2SO4 electrolyte. The results indicated that ACFF/RGO/PANI exhibited outstanding area normalized capacitance due to synergistic effect between ACFF, RGO, and PANI. The facile synthesis method of the composite electrode using textile based substrate enables the possibility for fabrication of high-performance flexible energy storage devices.
APA, Harvard, Vancouver, ISO, and other styles
20

Borgohain, Rituraj. "PHYSICOCHEMICAL MODIFICATIONS AND APPLICATIONS OF CARBON NANO-ONIONS FOR ELECTROCHEMICAL ENERGY STORAGE." UKnowledge, 2013. http://uknowledge.uky.edu/chemistry_etds/24.

Full text
Abstract:
Carbon nano-onions (CNOs), concentrically multilayered fullerenes, are prepared by several different methods. We are studying the properties of two specific CNOs: A-CNOs and N-CNOs. A-CNOs are synthesized by underwater arc discharge, and N-CNOs are synthesized by high-temperature graphitization of commercial nanodiamond. In this study the synthesis of A-CNOs are optimized by designing an arc discharge aparatus to control the arc plasma. Moreover other synthesis parameters such as arc power, duty cycles, temperature, graphitic and metal impurities are controlled for optimum production of A-CNOs. Also, a very efficient purification method is developed to screen out A-CNOs from carboneseous and metal impurities. In general, A-CNOs are larger than N-CNOs (ca. 30 nm vs. 7 nm diameter). The high surface area, appropriate mesoporosity, high thermal stability and high electrical conductivity of CNOs make them a promising material for various applications. These hydrophobic materials are functionalized with organic groups on their outer layers to study their surface chemistry and to decorate with metal oxide nanoparticles. Both CNOs and CNO nanocomposites are investigated for application in electrochemical capacitors (ECs). The influences of pH, concentration and additives on the performance of the composites are studied. Electrochemical measurements demonstrate high specific capacitance and high cycling stability with high energy and power density of the composite materials in aqueous electrolyte.
APA, Harvard, Vancouver, ISO, and other styles
21

Yang, Hao. "Graphene-based Supercapacitors for Energy Storage Applications." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1376918924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Korenblit, Yair. "Zeolite templated carbons: investigations in extreme temperature electrochemical capacitors and lead-acid batteries." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/47643.

Full text
Abstract:
Porous carbons are versatile materials with applications in different fields. They are used in filtration, separation and sequestration of fluids and gases, as conductive additives in many energy storage materials, as coloring agents, as pharmaceutical and food additives, and in many other vital technologies. Porous carbons produced by pyrolysis and activation of organic precursors commonly suffer from poorly controlled morphology, microstructure, chemistry, and pore structure. In addition, the poorly controlled parameters of porous carbons make it challenging to elucidate the underlying key physical parameters controlling their performance in energy storage devices, including electrochemical capacitors (ECs) and lead-acid batteries (LABs). Zeolite-templated carbons (ZTCs) are a novel class of porous carbon materials with uniform and controllable pore size, microstructure, morphology, and chemistry. In spite of their attractive properties, they have never been explored for use in LABs and their studies for ECs have been very limited. Here I report a systematic study of ZTCs applications in ECs operating at temperatures as low as - 70 C and in LABs. Greatly improved power and energy performance, compared to state of the art devices, has been demonstrated in the investigated ECs. Moreover, the application of ZTCs in LABs has resulted in a dramatic enhancement of their cycle life and power and energy densities.
APA, Harvard, Vancouver, ISO, and other styles
23

Alvi, Farah. "Synthesis and Characterization of Nanocomposites for Electrochemical Capacitors." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/3948.

Full text
Abstract:
Presently there are deep concerns over the environmental consequences and the consumption of non-renewable energy sources, with the accelerated greenhouse effect, triggered enormous interest in the use of renewable energy sources e.g., solar, hydropower, wind and geothermal. However the intermittent nature of harvesting renewable energy sources has recently gained considerable attention in the alternative reliable, cost effective, and environmentally friendly energy storage devices. The supercapacitor and lithium ion batteries are considered more efficient electrical energy storage devices than conventional energy storage systems. Both devices have many useful and important applications; they could be an excellent source for high power and high energy density, especially in portable electronic devices and Electrical Vehicles (EVs) or Hybrid Electrical Vehicles (HEVs). In order to make the efficient usage of these stationary energy storage devices, state of the art research on new and advanced electrode materials is highly needed. The aim of this dissertation is to investigate the scope of graphene/metal oxide-conducting polymer nanocomposites electrodes for light weight, high power density and wider voltage window supercapacitor devices. The facile chemical polymerization approach was used to synthesize the aromatic and heterocyclic conducting polymer nanocomposites. For aromatic nanocomposites, several materials were synthesized includes ZnO-PANI, ZnO/G-PANI,RuO2-PANI and G-PANI. Subsequently these materials have been characterized by physical, structural techniques e.g Raman Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Xray-Diffraction (XRD), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). In addition to material characterization the prepared material was also characterized by electrochemical measurements using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chrono potentiometry for supercapacitor electrodes. Since graphene is a two-dimensional single-atom-thick sp2 hybridized carbon structure due to its extraordinary characteristic, high electrical conductivity, chemical stability and large theoretical surface area (over 2600 m2 g−1) has gained immense interest in the future generation of renewable energy devices. Therefore, among all aromatic based nanocomposites, the Graphene-Polyaniline (G-PANI) rendered promisingly high specific capacitance around 440 F/g with the excellent cyclic stability. The higher specific capacitance of G-PANI might be due to the high conductivity and superior electrochemical properties of graphene in G-PANI nanocomposites. However, besides the G-PANI, other aromatic nanocomposites e.g., RuO2-PANI, ZnO-PANI and G/ZnO-PANI also showed the potential of low cost and flexible supercapacitor electrodes with the reasonably good specific capacitance as 360 F/g, 300 F/g, and 275 F/g. We have further investigated the role of conductivity by adding different amount of graphene in G-PANI nanocomposites to optimize device performance with the specific capacitance and columbic efficiency of 440 F/g and 90% respectively.Further the other important parameters, relate with the electrode thickness, type of electrolytes, concentration of electrolytes and the effect of the solvent has also been studied to achieve the overall performance and reliability of the device. Moreover, in order to have the comprehensive study of conducting polymer besides the aromatic conducting polymer the heterocyclic polymers e.g., polythiophene and poly (3, 4-ethylenedioxythiophenes) (PEDOT) nanocomposites were studied at length to evaluate their role for the cost effective, large surface area and flexible green energy storage devices and has shown great prospects for commercial application. Therefore, G-Cps nanocomposites have proved to be a promising electrode material choice to facilitate the ionic diffusion and contact of the electrolytes to improve the specific capacitance and performance of the device.
APA, Harvard, Vancouver, ISO, and other styles
24

Khawaja, Mohamad. "Synthesis and Fabrication of Graphene/Conducting Polymer/Metal Oxide Nanocomposite Materials for Supercapacitor Applications." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5715.

Full text
Abstract:
The rising energy consumption worldwide is leading to significant increases in energy production with fossil fuels being the major energy source. The negative environmental impact of fossil fuel use and its finite nature requires the use of alternative sources of energy. Solar energy is a clean alternative energy source; however, its intermittent nature is a major impediment that needs to be reduced or eliminated by the development of cost effective energy storage. Thermal storage in tanks filled typically with molten salt at elevated temperatures is widely used in concentrating solar power plants to generate electricity during periods of low daytime solar radiation or night time. Similarly, electrical storage in batteries, etc. is used in conjunction with photovoltaic solar power plants. Electrochemical supercapacitors can be effectively used for electrical storage, either alone or in a hybrid configuration with batteries, for large scale energy storage as well as in electric vehicles and portable electronics. Unlike batteries’, supercapacitor electrodes can be made of materials that are either less toxic or biodegradable and can provide almost instantaneous power due to their unique charge storage mechanism similar to conventional capacitors found in most electronics. Unfortunately, the same storage mechanism prevents supercapacitors from having high energy density. The purpose of this dissertation is to investigate organic and inorganic electrode materials that can increase the specific capacitance and energy density of supercapacitors. Additionally, certain types of supercapacitor electrode materials store the charges at the electrode/electrolyte interface preventing any deformation of the material and thus increasing its cycle life by two to three orders of magnitude. Transition metal oxides, layered transition metal chalcogenides, and their composites with graphene and conducting polymers have been synthesized, characterized, and their electrochemical performances evaluated for suitability as electrode materials for supercapacitor applications. Morphology and crystalline structure characterization methods used, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR), were used throughout this work. Electrochemical characterization involved cyclic voltammetry (CV), constant current charge and discharge (CCCD), and electrochemical impedance spectroscopy (EIS) in two and three electrode configuration using aqueous and organic electrolytes. Ruthenium oxide-graphene (RuO2-G) electrodes were tested in the two-electrode cell configuration and exhibit an areal capacitance of 187.5 mF cm-2 in 2M H2SO4 at a RuO2:G ratio of 10:1. Due to RuO2 high toxicity, scarcity, and high cost, manganese oxide-graphene (MnO-G) was used as an alternative but its low specific capacitance remains a major stumbling block. The electrodes’ mass loading was studied in detail to understand the effects of thickness on the measured specific capacitance. Layered transition metal chalcogenides are structurally similar to graphene but possess different characteristics. Molybdenum sulfide (MoS2) is a two-dimensional material that has lower conductivity than graphene but larger sheet spacing making it easy for other materials to intercalate and form composites such as molybdenum sulfide-polyaniline (MoS2-PANI). MoS2-PANI electrodes, with different thicknesses, were measure in a three-electrode cell configuration resulting in gravimetric capacitance of 203 F g-1 for the thinnest electrode and areal capacitance of 358 mF cm-2 for the thickest electrode; all measurements performed using 1M H2SO4 aqueous electrolyte. Attempts were also made to reduce the supercapacitor self-discharge by depositing on the electrode a blocking thin layer of barium strontium titanate (BST). The results were rather inconclusive because of the large thickness of the deposited BST layer. However, they strongly suggest that a very thin BST layer could improve the overall capacitance because of the very large dielectric constant of the BST material. Additional work is required to determine its effects on self-discharge.
APA, Harvard, Vancouver, ISO, and other styles
25

Weber, Christian [Verfasser], Jens [Gutachter] Pflaum, and Jean [Gutachter] Geurts. "Electrochemical Energy Storage: Carbon Xerogel-Manganese Oxide Composites as Supercapacitor Electrode Materials / Christian Weber. Gutachter: Jens Pflaum ; Jean Geurts." Würzburg : Universität Würzburg, 2016. http://d-nb.info/1111785198/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Si, Wenping. "Designing Electrochemical Energy Storage Microdevices: Li-Ion Batteries and Flexible Supercapacitors." Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-160049.

Full text
Abstract:
Die Menschheit steht vor der großen Herausforderung der Energieversorgung des 21. Jahrhundert. Nirgendwo ist diese noch dringlicher geworden als im Bereich der Energiespeicherung und Umwandlung. Konventionelle Energie kommt hauptsächlich aus fossilen Brennstoffen, die auf der Erde nur begrenzt vorhanden sind, und hat zu einer starken Belastung der Umwelt geführt. Zusätzlich nimmt der Energieverbrauch weiter zu, insbesondere durch die rasante Verbreitung von Fahrzeugen und verschiedener Kundenelektronik wie PCs und Mobiltelefone. Alternative Energiequellen sollten vor einer Energiekrise entwickelt werden. Die Gewinnung erneuerbarer Energie aus Sonne und Wind sind auf jeden Fall sehr wichtig, aber diese Energien sind oft nicht gleichmäßig und andauernd vorhanden. Energiespeichervorrichtungen sind daher von großer Bedeutung, weil sie für eine Stabilisierung der umgewandelten Energie sorgen. Darüber hinaus ist es eine enttäuschende Tatsache, dass der Akku eines Smartphones jeglichen Herstellers heute gerade einen Tag lang ausreicht, und die Nutzer einen zusätzlichen Akku zur Hand haben müssen. Die tragbare Elektronik benötigt dringend Hochleistungsenergiespeicher mit höherer Energiedichte. Der erste Teil der vorliegenden Arbeit beinhaltet Lithium-Ionen-Batterien unter Verwendung von einzelnen aufgerollten Siliziumstrukturen als Anoden, die durch nanotechnologische Methoden hergestellt werden. Eine Lab-on-Chip-Plattform wird für die Untersuchung der elektrochemischen Kinetik, der elektrischen Eigenschaften und die von dem Lithium verursachten strukturellen Veränderungen von einzelnen Siliziumrohrchen als Anoden in einer Lithium-Ionen-Batterie vorgestellt. In dem zweiten Teil wird ein neues Design und die Herstellung von flexiblen on-Chip, Festkörper Mikrosuperkondensatoren auf Basis von MnOx/Au-Multischichten vorgestellt, die mit aktueller Mikroelektronik kompatibel sind. Der Mikrosuperkondensator erzielt eine maximale Energiedichte von 1,75 mW h cm-3 und eine maximale Leistungsdichte von 3,44 W cm-3. Weiterhin wird ein flexibler und faserartig verwebter Superkondensator mit einem Cu-Draht als Substrat vorgestellt. Diese Dissertation wurde im Rahmen des Forschungsprojekts GRK 1215 "Rolled-up Nanotechnologie für on-Chip Energiespeicherung" 2010-2013, finanziell unterstützt von der International Research Training Group (IRTG), und dem PAKT Projekt "Elektrochemische Energiespeicherung in autonomen Systemen, no. 49004401" 2013-2014, angefertigt. Das Ziel der Projekte war die Entwicklung von fortschrittlichen Energiespeichermaterialien für die nächste Generation von Akkus und von flexiblen Superkondensatoren, um das Problem der Energiespeicherung zu addressieren. Hier bedanke ich mich sehr, dass IRTG mir die Möglichkeit angebotet hat, die Forschung in Deutschland stattzufinden
Human beings are facing the grand energy challenge in the 21st century. Nowhere has this become more urgent than in the area of energy storage and conversion. Conventional energy is based on fossil fuels which are limited on the earth, and has caused extensive environmental pollutions. Additionally, the consumptions of energy are still increasing, especially with the rapid proliferation of vehicles and various consumer electronics like PCs and cell phones. We cannot rely on the earth’s limited legacy forever. Alternative energy resources should be developed before an energy crisis. The developments of renewable conversion energy from solar and wind are very important but these energies are often not even and continuous. Therefore, energy storage devices are of significant importance since they are the one stabilizing the converted energy. In addition, it is a disappointing fact that nowadays a smart phone, no matter of which brand, runs out of power in one day, and users have to carry an extra mobile power pack. Portable electronics demands urgently high-performance energy storage devices with higher energy density. The first part of this work involves lithium-ion micro-batteries utilizing single silicon rolled-up tubes as anodes, which are fabricated by the rolled-up nanotechnology approach. A lab-on-chip electrochemical device platform is presented for probing the electrochemical kinetics, electrical properties and lithium-driven structural changes of a single silicon rolled-up tube as an anode in lithium ion batteries. The second part introduces the new design and fabrication of on chip, all solid-state and flexible micro-supercapacitors based on MnOx/Au multilayers, which are compatible with current microelectronics. The micro-supercapacitor exhibits a maximum energy density of 1.75 mW h cm-3 and a maximum power density of 3.44 W cm-3. Furthermore, a flexible and weavable fiber-like supercapacitor is also demonstrated using Cu wire as substrate. This dissertation was written based on the research project supported by the International Research Training Group (IRTG) GRK 1215 "Rolled-up nanotech for on-chip energy storage" from the year 2010 to 2013 and PAKT project "Electrochemical energy storage in autonomous systems, no. 49004401" from 2013 to 2014. The aim of the projects was to design advanced energy storage materials for next-generation rechargeable batteries and flexible supercapacitors in order to address the energy issue. Here, I am deeply indebted to IRTG for giving me an opportunity to carry out the research project in Germany. September 2014, IFW Dresden, Germany Wenping Si
APA, Harvard, Vancouver, ISO, and other styles
27

Zhao, Xueyan [Verfasser], Brigitte [Gutachter] Voit, and Xinliang [Gutachter] Feng. "Modification of the Electrochemical Properties of Graphite-based Polyaniline Composite for Supercapacitor Application / Xueyan Zhao ; Gutachter: Brigitte Voit, Xinliang Feng." Dresden : Technische Universität Dresden, 2019. http://d-nb.info/1226899099/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Phuakkong, Oranit. "Design of carbon based structures for electrochemical applications." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0305/document.

Full text
Abstract:
Dans cette thèse nous avons étudié la mise en forme de matériaux carbonés par des méthodes électrochimiques pour des applications dans les domaines des capteurs et de l’énergie. Dans la première partie, l’électrochimie bipolaire, qui permet de réaliser des réactions électrochimiques sur un objet conducteur présent dans une solution et soumise à un champ électrique, a été utilisée pour générer des objets de type Janus. Ces objets asymétriques ont été modifiés à une extrémité par du poly(N-isopropylacrylamide (pNIPAM), un hydrogel sensible à la température, et par une peinture électrophorétique à l’autre extrémité. En contrôlant l’intensité du champ électrique ainsi que son temps d’application il a été possible de varier la longueur ainsi que l’épaisseur de l’hydrogel. Ces objets sensibles à la température, émettant de la lumière, ont des applications potentielles dans le domaine des capteurs ou dans le milieu médical.Dans la seconde partie, la mise en forme de carbone poreux pour des applications électrochimiques a été étudiée. La carbonisation de polymères contenant du zinc a été utilisé pour synthétiser du carbone micro/mésoporeux possédant ainsi une grande surface spécifique. Les polymères contenant du zinc ont été préparés à partir de différents types de ligands d’acide dicarboxylique par une méthode solvothermique. Ils ont ensuite été carbonisés pour obtenir des matériaux poreux avec des caractéristiques et des propriétés particulières. Ils ont été utilisés comme matériaux d’électrode pour des supercondensateurs, montrant des capacités élevées. De plus ils possèdent également une activité électrocatalytique à la réaction de réduction de l’oxygène
In this thesis, the design of advanced carbon materials via electrochemical techniques and for electrochemical applications have been studied. In the first part, the concept of bipolar electrochemistry, which allows carrying out electrochemical reactions on a free-standing conductive object in an electric field, was employed to generate Janus-type objects. These objects are modified with a thermoresponsive hydrogel of poly(N-isopropylacrylamide) (pNIPAM) on one side and an electrophoretic deposition paint (EDP) on the other side. The results show that the length and the thickness of the hydrogel can be controlled by varying the electric field and the time of the experiment. The concept can be further generalized to other micro- and nanometer-sized objects, thus opening up perspectives for various applications.In the second part, the design of porous carbon structures for electrochemical applications was studied. The direct carbonization of non-porous zinc containing polymers was used to synthesize micro/mesoporous carbons with high surface area, pore volume. Non-porous zinc containing polymers with various types of dicarboxylic acid ligands prepared by solvothermal method were used as templates and starting materials. After carbonization porous carbons with various characteristics and properties were obtained. The synthesized porous carbon samples showed good electrochemical performance with high capacitance values. In addition, the derived materials exhibit excellent electrocatalytic activity with respect to the oxygen reduction reaction (ORR)
APA, Harvard, Vancouver, ISO, and other styles
29

Bolisetty, Venkata Priyanka. "Novel Approach of Using Polyvinylidene Fluoride Langmuir-Schaefer Film on Graphene-Polyaniline Nanocomposite for Supercapacitor Applications." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4443.

Full text
Abstract:
Supercapacitors are well known for their improvised power density compared to batteries. Ongoing research is mainly focused on improving the energy density of supercapacitors by using different electrode material nanocomposites. The recent research has revealed that graphene (G)-polyaniline (PANI) nanocomposite could be a promising material for supercapacitor applications. The supercapacitor is also associated with self-leakage current regardless of any electrode material. The main objectives of the project are to: (i) synthesize highly fabricate supercapacitor based of G-PANI electrode; (ii) improve the energy density of supercapacitor by applying ultrathin monolayer/monolayers film electrode surface. It is crucial to either improve or retain the effective capacitance of the dielectric film. The dielectric material chosen is polyvinylidene fluoride (PVDF) due to its dielectric constant and electrochemical properties. Langmuir-Schaefer (LS) technique is used to deposit the PVDF film onto the substrate. The optical properties of electrode materials were measured by UV-vis spectrophotometer. The surface morphology of the fabricated electrode material has been investigated using scanning electron microscopic (SEM) and atomic force microscopic (AFM) studies. The supercapacitor with and without dielectric layer have been studied using cyclic voltammetry, charging and discharging, and electrochemical impedance techniques, respectively. The specific capacitance has been found to increase by application of one monolayer of PVDF film of G-PANI electrode. However, the LS film of PVDF does not show the minimization of leakage current but revealed an increase in the specific capacitance due to enhancement in surface area associated with the electrode besides PVDF is also an electrochemical active material. The electrochemical investigation of various layers of PVDF on G-PANI in symmetric and asymmetric supercapacitor configuration has been presented in thesis. The future scope of the project could be designing the electrode with various number of layers of dielectric material that could reduce the leakage current, and retaining the specific capacitance of G-PANI nanocomposite electrodes.
APA, Harvard, Vancouver, ISO, and other styles
30

Moncoľ, Maroš. "Uhlíkové elektrody pro superkondenzátory." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2010. http://www.nusl.cz/ntk/nusl-218318.

Full text
Abstract:
This master thesis deals with supercapacitors based on electrical double layer and proper carbon electrodes for this type of supercapacitors. In theoretical part of work is described theory of supercapacitors, energy storage principles and their properties. In the next part are described carbon materials, their properties and electrochemical methods of measurements that we used. In the experimental part is described preparation of electrodes, results and conclusion.
APA, Harvard, Vancouver, ISO, and other styles
31

Turano, Stephan Parker. "Carbon Nanotubes chemical vapor deposition synthesis and application in electrochemical double layer supercapacitors /." Thesis, Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-02242005-094827/unrestricted/turano%5Fstephan%5Fp%5F200505%5Fmast.pdf.

Full text
Abstract:
Thesis (M. S.)--Materials Science and Engineering, Georgia Institute of Technology, 2005.
Ready, Jud, Committee Co-Chair ; Carter, Brent, Committee Co-Chair ; Snyder, Bob, Committee Member ; Wang, Zhong Lin, Committee Member. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
32

Benedetti, Tânia Machado. "Caracterização eletroquímica de filmes nanoestruturados de óxido de manganês e de vanádio em líquidos iônicos: aplicação em baterias de lítio e supercapacitores." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/46/46132/tde-06092011-135735/.

Full text
Abstract:
Este trabalho apresenta a preparação de filmes nanoestruturados de óxido de manganês e de vanádio por diferentes técnicas e a sua caracterização eletroquímica utilizando diferentes líquidos iônicos como eletrólito. Os filmes de óxido de manganês foram preparados por automontagem camada-por-camada e por eletrodeposição assistida por molde de nanoesferas de poliestireno. Os filmes de óxido de vanádio foram preparados também por automontagem camada-por-camada e por deposição eletroforética. Diversos aspectos relacionados ao uso dos líquidos iônicos como eletrólitos foram discutidos: os resultados obtidos para os filmes de óxido de manganês por automontagem camada-por-camada mostraram que os íons do líquido iônico participam do processo de compensação de carga superficialmente e que o cátion do líquido iônico, apesar de mais volumoso, apresenta coeficiente de difusão maior que o Li+, formando uma barreira à intercalação dos mesmos na estrutura do material. A partir dos resultados obtidos para os filmes de óxido de manganês por eletrodeposição assistida por nanoesferas de poliestireno, foi possível verificar que o desempenho do sistema depende da natureza do líquido iônico utilizado, sendo possível obter desempenho superior aos solventes orgânicos convencionais com um dos líquidos iônicos utilizados do ponto de vista da ciclabilidade. Desempenho superior aos eletrólitos convencionais também foi observado para os filmes de óxido de vanádio obtidos por automontagem camada-por-camada. Por fim, a caracterização eletroquímica em líquidos iônicos dos filmes de óxido de vanádio obtidos por deposição eletroforética mostrou que não apenas o uso de nanopartículas, mas também o modo de deposição das mesmas influencia no desempenho eletroquímico do sistema. De maneira geral, os resultados obtidos mostraram que o uso de filmes nanoestruturados e de líquidos iônicos como eletrólitos constituem alternativas promissoras para a obtenção de dispositivos de armazenamento e conversão de energia de alto desempenho e segurança.
This work presents the preparation of manganese and vanadium oxides nanostructured films by different techniques and their electrochemical characterization in different ionic liquids based electrolytes. Manganese oxide films have been prepared by self-assembly layer-by-layer and by electrodeposition assisted by polystyrene nanospheres template. Vanadium oxide films have been also prepared by self-assembly layer-by-layer deposition and by electrophoretic deposition. Several aspects related with the use of ionic liquids as electrolytes have been discussed: the obtained results from layer-by-layer deposition of manganese oxide have shown that ionic liquid ions also participate in the charge compensation process, but only superficially; in spite of ionic liquid cation been larger than Li+, it moves faster, achieving the electrode surface before, being a barrier for Li+ intercalation. From the results obtained for the manganese oxide prepared by template assisted electrodeposition, it was possible to notice that electrochemical performance is dependent on the ionic liquid structure, being possible to achieve higher performance than with conventional organic solvent electrolyte with one of the studied ionic liquid. Superior performance in comparison with conventional electrolyte has also been achieved for vanadium oxide films prepared by layer-by-layer deposition from the point of view of cyclability. Finally, the electrochemical characterization of vanadium oxide films prepared by electrophoretic deposition in ionic liquids has shown that not only the use of nanoparticles but also the deposition method employed influences the electrochemical performance. To conclude, the obtained results have shown that the use of nanostructured films and ionic liquids as electrolytes are promising alternatives for the obtention of high performance energy storage and conversion devices.
APA, Harvard, Vancouver, ISO, and other styles
33

Gao, Hongyan. "Nano/Submicro-Structured Iron Cobalt Oxides Based Materials for Energy Storage Application." TopSCHOLAR®, 2017. https://digitalcommons.wku.edu/theses/2057.

Full text
Abstract:
Supercapacitors, as promising energy storage devices, have been of interest for their long lifespan compared to secondary batteries, high capacitance and excellent reliability compared to conventional dielectric capacitors. Transition metal oxides can be applied as the electrode materials for pseudocapacitors and offer a much higher specific capacitance. Co3O4 is one of the most investigated transition metal oxides for supercapacitor. Besides simple monometallic oxides, bimetallic transition oxides have recently drawn growing attention in electrochemical energy storage. They present many unique properties such as achievable oxidation states, high electrical conductivities because of the coexistence of two different cations in a single crystal structure. This study focuses on the bimetallic iron cobalt oxide based materials for the application of energy storage. We selected iron as the substituent in spinel Co3O4, by virtue of its abundant and harmless character. Four types of iron cobalt oxides based electrode materials with different morphologies and components have been synthesized for the first time. The hydrothermal method was the main strategy for the synthesis of iron cobalt based materials, which achieved the control of morphology and ratio of components. Multiple characterization methods, including SEM, TEM, XRD, XPS, TGA, BET, have been applied to study the morphologies and nano/submicron structures. The electrochemical properties of as-fabricated samples were performed by electrochemical workstation. In addition, in order to investigate the practical application of electrode materials, asymmetric supercapacitors have been assembled by using as-prepared samples as the positive electrodes and activated carbon as the negative electrodes.
APA, Harvard, Vancouver, ISO, and other styles
34

Dabonot, Aurore. "Nouveaux matériaux pour les supercondensateurs : développement et caractérisation." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENI092/document.

Full text
Abstract:
Ces travaux de thèse portent sur l'étude de matériaux d'électrodes de supercondensateurs. Ce sont des dispositifs de stockage qui possèdent une densité de puissance importante de l'ordre de plusieurs kW/kg. Des systèmes asymétriques ont été développés dans le but d'augmenter la densité d'énergie de ces dispositifs, tout en essayant de maintenir une densité de puissance élevée. Ils font intervenir une électrode capacitive classique de carbone activé et une électrode faradique. Concernant cette électrode non-bloquante, deux orientations ont été abordées : • Principalement, l'utilisation de titanate de lithium Li4Ti5O12 qui est un matériau d'insertion du lithium habituellement utilisé dans les électrodes de batteries Li-ion. Il est apparu que pour les systèmes hybrides comportant une électrode négative composée uniquement de Li4Ti5O12, la densité d'énergie chute fortement au-delà de 1 kW/kg. L'utilisation d'électrodes négatives composites carbone activé + Li4Ti5O12 est donc préconisée pour maintenir de bonnes performances à la fois en énergie et en puissance. Ainsi, pour une densité de puissance de 2 kW/kg, la densité d'énergie du système hybride développé est encore 1,5 fois supérieure à celle d'un système symétrique carbone activé / carbone activé testé dans les mêmes conditions. • En second plan, l'utilisation du dioxyde de manganèse MnO2, matériau pseudo-capacitif qui fait intervenir des réactions redox. L'étude a porté sur la synthèse de l'oxyde métallique puis sur celle d'un matériau composite réalisé par auto-assemblage. Le but est d'agréger de fines particules de dioxyde de manganèse autour d'un squelette carboné. Une telle microstructure présente l'avantage d'offrir une grande surface spécifique de matière active directement en contact avec un réseau possédant une bonne conductivité électronique. Le matériau composite MnO2 + VGCF obtenu a été testé en électrode positive dans un système asymétrique face à une électrode négative de carbone activé. Cela a permis de multiplier par 1,5 l'étendue de la fenêtre de stabilité de l'électrolyte aqueux par rapport à un système carbone activé / carbone activé. Enfin, dans une optique exploratoire, l'utilisation du diamant en tant que matériau d'électrode de supercondensateur a été étudiée puisqu'il présente dans l'eau une fenêtre de stabilité électrochimique importante d'environ 3 V. L'intérêt de synthétiser des structures tridimensionnelles a été mis en évidence, en particulier une architecture de diamant « en aiguilles » permet de multiplier par 10 la capacité surfacique par rapport à une architecture plane
This work deals with the study of electrode materials for supercapacitors. These storage devices have a significant power density of several kW/kg. Asymmetric systems have been developed in order to increase the energy density of these components while trying to maintain a high power density. They consist of a classic capacitive electrode made of activated carbon and a faradaic electrode. Two approaches have been broached regarding that non-blocking electrode: • Mainly, the use of lithium titanate Li4Ti5O12 which is a lithium insertion material usually used in Li-ion battery electrodes. It appeared that for hybrid systems including a negative electrode only made of Li4Ti5O12, the energy density is greatly reduced beyond 1 kW/kg. The use of composite negative electrodes made of activated carbon and Li4Ti5O12 is recommended so as to maintain good performances both in energy and power. Thus, for a power density of 2 kW/kg, the energy density of the developed hybrid system remains 1.5 superior to the one of an activated carbon / activated carbon symmetric system tested in the same conditions. • Secondly, the use of manganese dioxide MnO2, a pseudo-capacitive material involving redox reactions. The study has been focused on the synthesis of the metal oxide and then on the synthesis of a composite material by self-assembly. The aim is to aggregate small manganese dioxide particles around a carbon backbone. Such a microstructure offers a high specific surface area of active material directly in contact with a network having a good electronic conductivity. The obtained MnO2 + VGCF composite material has been tested as positive electrode in an asymmetric system, facing an activated carbon electrode. Thus, the stability window of the aqueous electrolyte has been multiplied by 1.5 compared to an activated carbon / activated carbon system. Finally, diamond has been considered as a supercapacitor electrode material in an explorative view since it offers a wide electrochemical stability window in water (around 3 V). The interest for tridimensional structures has been evidenced, e.g. a “needles” architecture allows to obtain a surfacic capacity ten times higher than the one obtained with a flat architecture
APA, Harvard, Vancouver, ISO, and other styles
35

Vignal, Thomas. "Développement d’électrodes utilisant un PCE déposé sur VACNT/Al selon un procédé continu et leur utilisation dans des pseudosupercondensateurs." Thesis, Cergy-Pontoise, 2019. http://www.theses.fr/2019CERG1044.

Full text
Abstract:
Les travaux réalisés ont porté sur l’élaboration d’électrodes composites à base de polymère conducteur électronique déposé électrochimiquement sur des tapis de nanotubes de carbone verticalement alignés sur substrat d’aluminium (VACNT/Al). Ces nouveaux tapis VACNT/Al ont une densité de nanotube très élevée (10^11 - 10^12 CNT/cm²) et proposent une architecture nanométrique très intéressante pour l’élaboration d’électrode dans des dispositifs de stockage d’énergie de type supercondensateur. Le dépôt de polymère sur ces électrodes permet d’augmenter l’énergie spécifique des supercondensateurs. De plus, ces travaux ont aussi été dédiés à l’élaboration d’un procédé de dépôt en continu en vue d’une montée en échelle des synthèses du composite. Dans une première partie, les matériaux utilisés dans les électrodes composites ont été caractérisés individuellement. Ainsi, des dépôts en milieu liquide ionique des polymères poly(3-méthylthiophène) (P3MT) et polypyrrole (PPy) à la surface d’électrodes planes ont été réalisés et, des tapis VACNT ont été caractérisés. La deuxième partie de ce travail a été consacrée à l’optimisation de la synthèse électrochimique par une méthode chronoampérométrique pulsée en milieu liquide ionique.de nanocomposites P3MT/VACNT/Al avec des proportions massiques de P3MT dans l’électrode variant de 10 à 90 %. Ces composites ont par la suite été utilisés en tant qu’électrodes dans des supercondensateurs symétrique et asymétrique sous forme de pile-bouton permettant des énergies et puissances spécifiques de 52 Wh/kg et 12 kW/kg, respectivement. Dans la troisième partie, un procédé de dépôts du P3MT sur un tapis en mouvement a été mis au point pour étudier l’élaboration en continu d’électrodes composites et permettre la préparation d’électrodes de plus grande dimension, 80 cm² dans cette étude. Ces composites ont montré des capacitances spécifiques équivalentes aux composites obtenus avec des dépôts statiques. De plus, les bandes de 80 cm2 ont été utilisées pour la réalisation de supercondensateurs de type zig-zag symétrique et asymétrique et ont aussi montré des énergies et puissance spécifiques très similaire à celles des piles bouton. Dans une dernière partie, un transfert de méthode a été réalisé pour la synthèse de composite PPy/VACNT, en statique puis en procédé continu
The work carried out focused on the development of composite electrodes by electrochemically deposition of conductive polymer onto carbon nanotube vertically aligned on aluminum substrate (VACNT/Al). These new VACNT / Al have a very high nanotube density (10^11 - 10^12 CNT/cm²) and offer a very interesting nanometric architecture for the elaboration of electrodes in energy storage devices as supercapacitor. The deposition of polymer on these electrodes allows the increase of the supercapacitors’ specific energies. In addition, this work has also been dedicated to the development of a continuous deposition process for scaling syntheses of the composite. In a first part, the materials used in the composite electrodes have been characterized individually. Thus, ionic liquid medium deposits of poly (3-methylthiophene) (P3MT) and polypyrrole (PPy) polymers at the surface of planar electrodes were made and VACNT were characterized. The second part of this work was devoted to the optimization of electrochemical synthesis by a pulsed chronoamperometric method in ionic liquid medium. P3MT/VACNT/Al nanocomposites with mass proportions of P3MT in the electrode ranging from 10 to 90%. These composites have subsequently been used as electrodes in symmetric and asymmetric supercapacitors in coin-cell devices allowing specifics energies and powers of 52 Wh/kg and 12 kW/kg, respectively. In the third part, a P3MT deposition process onto moving VACNT was developed to study the continuous elaboration of composite electrodes and to allow the preparation of larger electrodes, 80 cm² in this study. These composites showed specific capacitances equivalent to the composites obtained with static deposits. In addition, the 80 cm2 strips were used for the realization of symmetric and asymmetric zig-zag supercapacitors and also showed specific energies and power very similar to those of coin-cells. In a last part, a transfer of method was realized for the synthesis of composite PPy / VACNT, in static then continuous process
APA, Harvard, Vancouver, ISO, and other styles
36

Bodin, Charlotte. "Etude des dynamiques d’électrolytes à base de liquides ioniques redox pour une application en supercondensateur." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS145.

Full text
Abstract:
Les électrolytes sont au cœur des batteries et des supercondensateurs et leur rôle premier est de conduire les ions, et même si leurs spécifications sont en fait plus complexes : stabilité chimique, grande tension de cellule, conductivité élevée. Cependant, selon la conception des molécules qui composent le cation et/ou l'anion, leur fonction pourrait s'étendre. Les liquides ioniques se prêtent particulièrement bien à cette fonctionnalisation de par leurs propriétés intéressantes en tant qu’électrolyte et leur facilité de synthèse. Dans le domaine des supercondensateurs, la densité d'énergie est une limite technologique. Pour y répondre, une stratégie innovante est l’ajout de molécules redox à l'électrolyte pour participer au stockage de charge. Malgré la promesse d'augmenter les densités énergétiques (ou capacités apparentes), l’utilisation d’électrolyte redox fait face à deux limites clairement identifiées : (1) la diffusion des molécules redox diminuent l'efficacité coulombique et (2) l'autodécharge est importante. L'une de ces possibilités est l'utilisation de liquides ioniques biredox (2 couples oxydo-réducteur). Ce travail de thèse s’est concentré sur l’étude des dynamiques d’électrolytes à base de liquides ioniques redox pour une application en supercondensateur. L’effet du confinement des électrolytes redox dans la porosité des électrodes de carbone a été plus particulièrement étudié. Cela a permis de mettre en avant des interactions différentes, entre diffusion et adsorption, entre les liquides ioniques redox et les électrodes. S’il ne répond pas à toute nos questions, le formalisme utilisé pour comprendre ces dynamiques électrochimiques différentes a permis d’allier théorie et expérimentation pour aller toujours plus loin dans la compréhension des interactions des liquides ioniques redox comme électrolyte pour le stockage de l’énergie
Electrolytes are at the heart of batteries and supercapacitors and their primary role is to conduct ions, and even if their specifications are actually more complex: chemical stability, high cell voltage, high conductivity. However, depending on the design of the molecules that compose the cation and/or anion, their function could be expanded. Ionic liquids are particularly suitable for this functionalization because of their interesting properties as an electrolyte and their ease of synthesis.In the field of supercapacitors, energy density is a technological limitation. To address this, an innovative strategy is the addition of redox molecules to the electrolyte to participate in charge storage. Despite the promise to increase energy densities (or apparent capacities), the use of redox electrolyte faces two clearly identified limitations: (1) the diffusion of redox molecules decreases the coulombic efficiency and (2) the self-discharge is important. One of these possibilities is the use of biredox ionic liquids (2 oxidation-reducing pairs). This thesis work focused on the study of electrolyte dynamics based on redox ionic liquids for supercapacitor application. The effect of the confinement of redox electrolytes in the porosity of carbon electrodes has been studied. Thanks to this, the different interactions as diffusion and adsorption between redox ionic liquids and electrodes are described. The formalism used to understand these different electrochemical dynamics allow us to combine theory and experimentation to go ever further in understanding the interactions of redox ionic liquids as an electrolyte for energy storage
APA, Harvard, Vancouver, ISO, and other styles
37

Avireddy, Hemesh. "Enhancing electrochemical performances of supercapacitors." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667599.

Full text
Abstract:
The thesis is focused on the development and enhancement of the electrochemical properties of the carbon based supercapacitors and pseudocapacitors. To overcome the capacitance loss at the condition of fast charging in the carbon-based supercapacitors, a metal-oxide embedded porous carbon nanofiber with a 3-D electrode architecture is designed. This electrode reduces the electrode resistance and at the same time increases the associated values of capacitance at high rates. The investigation also indicates an essential role in the concentration of the metal oxide precursor towards the electrochemical behavior of the electrodes. This correlation could be useful to design better electrodes for supercapacitor, functioning with better energy and power density capabilities. Whereas, in the case of the water-based pseudocapacitors, it is shown that they suffer from low voltages. Two strategies were used to overcome this issue. (i) Exploring and improving the electrode material based non-carbon materials. In this regard, new materials from the family of MXenes are introduced, to achieve higher cell voltages. Under this frame, a new 2-D MXene based on Molybdenum Vanadium Carbide is proposed and its electrochemical characteristics were investigated. According to its characteristics, its coupling with 2-D Titanium Carbide MXene exhibits a higher cell voltage. The investigation reveals that the charge storage in 2-D molybdenum vanadium carbide MXene has the dependence on the type of electrolyte cations. For the case in point, small size monovalent cations, such as lithium and sodium ions, demonstrate lower hindrance to the charge storage, while large size monovalent potassium ions and bivalent magnesium ions suffer from hindrance effect, causing them to have lower charge storage than lithium and sodium ions. Therefore, the selection of appropriate electrolyte ions especially in the case of MXene based materials appears to be important, which is here found to be with the protonic and sodium ion based electrolytes. (ii) the proposed approach is based on the use of water-based super-concentrated salt solutions which are promising electrolytes to contribute to widening the cell voltage of aqueous pseudocapacitors. Likewise, besides this, it is also proposed that the coupling of 2-D Titanium Carbide MXene with the tunnel structures of Manganese Oxide using this super-concentrated electrolyte water in salt can enable a high voltage aqueous pseudocapacitive energy storage device. The investigation using this approach reveals that the concentration of the salt electrolyte plays a significant role in the values of charge storage in 2-D titanium carbides. Although an extremely high concentration of salt electrolytes widens the potential window, the electrolyte ions in such high concentration face difficulty to insert within the 2-D layers of titanium carbide MXene. On the contrary, the use of low concentrated salt solutions is not recommended, as they provide narrow potential windows. Consequently, during the cell assembling using super-concentrated electrolytes, a moderate concentration of salt electrolyte needs to be taken into attention. On this way, both wider potential window and high charge storage, can be achieved with pseudocapacitive materials like 2-D titanium carbides MXenes. The crystallographic tunnel size of manganese oxide plays a vital role in the charge storage. For instance, tunnel structures, both smaller and larger than the size of the electrolyte ions store fewer charges. As both of these tunnel phases of manganese oxide face difficulty for the insertion of the electrolyte ions. Therefore, manganese oxide with adequate tunnel size needs to be taken into account. Besides this, it is also essential to consider the electronic conductivity of the manganese oxide phase, as high electronic conductivity allows it to store more charges during the condition of fast charging. In regards of the cell assembly, after considering the above-mentioned understanding the practice of applying the voltage-hold test to determine the realistic cell voltage is helpful, as the cell assembled with such realistic voltages permits the cell to have long cycle life. Besides these understanding, remarkable performances were witnesses with the technologies developed in this thesis. For example: (i) the carbon-based electric double layer supercapacitor shows faster responses than the existing carbon-based supercapacitors, (ii) the pseudocapacitors shows high volumetric capacitances (> 35 F cm-3) than carbon-based supercapacitors. Besides this, pseudocapacitors also exhibit higher cells voltages than the existing pseudocapacitors. The pseudocapacitor cells developed in this exhibits high electrochemical stability (> 95 %) over thousands of cycles. Furthermore, the pseudocapacitor is more favorable than EDLCs in applications as they provide slower self-discharges than EDLCs. The above understanding, such as the selection of the electrode, electrode processing and the cell assembly is a tool for designing better supercapacitors.
La tesis se centra en el desarrollo del conocimiento orientado y conducido a la mejora de las propiedades electroquímicas de los supercapacitores, ya que sufren bajos valores de densidad de energía. Este inconveniente limita a los supercapacitores en las aplicaciones donde son necesarios tanto alta potencia como densidad de energía. Entonces, en este escenario, se identificaron dos problemas principales importantes: (a) las limitaciones de rendimiento del supercapacitor debido a la condición de carga rápida, y (b) el bajo voltaje de celda de los pseudocapacitores en electrolitos acuosos en comparación con los electrolitos orgánicos. Para superar la limitación de rendimiento en el primer problema, se muestra una alternativa original a través del electrospinning para diseñar nanofibras de carbono porosas con incrustaciones de óxido metálico con una arquitectura de electrodo 3D que contribuyen a reducir la resistencia del electrodo y al mismo tiempo aumentan los valores asociados de capacidad. La investigación indica un papel esencial en la concentración del precursor de óxido metálico hacia el comportamiento electroquímico de los electrodos. Esta correlación podría ser útil para diseñar mejores electrodos para supercapacitadores, funcionando con mejores capacidades de densidad de energía y potencia. En lo que respecta al problema relacionado con los bajos voltajes celulares en el pseudocapacitor acuoso, en lugar de utilizar materiales basados en carbono más estándar, se toma una metodología en términos de exploración y mejora basada en las propiedades del material del electrodo. Así, se introducen nuevos materiales de la familia de MXenes, para lograr voltajes de celda más altos. Bajo este marco, se propone un nuevo MXene 2-D basado en carburo de vanadio y molibdeno y se han investigado sus características electroquímicas. De acuerdo con sus características, su acoplamiento con carburo de titanio 2-D MXene exhibe un voltaje más alto en una celda pseudocapacitiva todo en MXene. Además de esto, el problema del bajo voltaje de la celda también se resuelve aplicando otro enfoque basado en la modificación del electrólito. El enfoque propuesto se basa en el uso de soluciones salinas superconcentradas a base de agua que son electrolitos prometedores en la ampliación del voltaje celular de los pseudocapacitores acuosos. Del mismo modo, también se propone que el acoplamiento del carburo de titanio 2-D MXene con las estructuras del túnel de óxido de manganeso utilizando este electrolito súper concentrado o agua en sal permite lograr una celda de pseudocapacitador acuoso de alto voltaje. En conjunto, la estrategia presentada a través de esta tesis en términos de preparación de electrodos, selección de materiales, ensamblaje celular y su evaluación de las propiedades electroquímicas es una herramienta para diseñar supercapacitores con mejores capacidades de energía y potencia.
APA, Harvard, Vancouver, ISO, and other styles
38

Rowlands, Stephen E. "Electrochemical supercapacitors for energy storage applications." Thesis, De Montfort University, 2002. http://hdl.handle.net/2086/4077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gaboriau, Dorian. "Nanostructures de silicium par croissance chimique catalysée : une plate-forme pour des applications micro-supercondensateurs." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAV073/document.

Full text
Abstract:
Les supercondensateurs sont des dispositifs de stockage électrochimique de l’énergie ayant été récemment mis au point et possédant des performances intermédiaires entre les condensateurs diélectriques et les batteries. Leurs intéressantes valeurs de densité d’énergie et de puissance, conjuguées à leur excellente durée de vie et à leur miniaturisation facilité rendent ces composants prometteurs pour des micro-dispositifs électroniques, tels des micro-capteurs autonomes ou des implants médicaux.Le silicium nanostructuré par CVD a prouvé être un remarquable matériau d’électrode de supercondensateur, pour des applications miniaturisées, lors de récents travaux. L’excellent contrôle de la morphologie et des propriétés électroniques permis par la synthèse montante de nano-fils et nano-arbres de silicium, ainsi que la grande stabilité électrochimique et thermique de ce matériau font des nanostructures de silicium obtenues par synthèse montante une excellente plate-forme pour des micro-supercondensateurs.La présente thèse s’attache à explorer plusieurs voies d’amélioration et d’utilisation des nano-fils et nano-arbres de silicium. Une étude systématique de l’optimisation des nanostructures a été conduite, permettant d’améliorer largement les performances précédemment établies. Ensuite, une fonctionnalisation par des couches minces d’alumines utilisant la technique d’ALD a permis d’accroitre largement la plage de tensions d’utilisation des supercondensateurs, et d’augmenter leur stabilité électrochimique. Enfin, la croissance « sur-puce », ainsi que l’étude de la stabilité en température des dispositifs ont été effectuées, laissant entrevoir d’importantes perspectives d’applications
Supercapacitors are electrochemical energy storage devices which have been recently developed, and possess intermediate performances between dielectric capacitors and batteries. These components exhibit interesting power and energy densities, combined with an exceptional cycle life and an easy miniaturization. Supercapacitors are thus envisioned as energy storage solutions for electronic micro-devices, such as autonomous micro-sensors or implantable medical devices.In recent studies, CVD nanostructured silicon proved to be an excellent electrode material candidate for micro-supercapacitor applications. Bottom-up synthesis allows an exceptional control of the morphology and electrical properties of the obtained silicon nano-wires and nano-trees. Moreover, the nanostructured electrodes possess superior electrochemical and temperature stability. These arguments lead to consider silicon as an excellent platform for micro-supercapacitors applications.This PhD thesis details various ways to improve and use silicon nano-wires and nano-trees. The nanostructures have been subjected to a systematic optimization study, yielding a significant increase of the electrochemical performances of the electrodes, compared to previously published studies. In addition, surface functionalization using thin ALD alumina layers permitted a considerable increase of the supercapacitor voltage window and an improved electrochemical stability. Finally, “on-chip” nanostructure growth, and temperature stability studies of the device were conducted, opening a broad field of improvements and potential uses for these silicon nanostructures
APA, Harvard, Vancouver, ISO, and other styles
40

Abrahams, Dhielnawaaz. "Charge Transfer and Capacitive Properties of Polyaniline/ Polyamide Thin Films." University of the Western Cape, 2018. http://hdl.handle.net/11394/6361.

Full text
Abstract:
Magister Scientiae - MSc (Chemistry)
Blending polymers together offers researchers the ability to create novel materials that have a combination of desired properties of the individual polymers for a variety of functions as well as improving specific properties. The behaviour of the resulting blended polymer or blend is determined by the interactions between the two polymers. The resultant synergy from blending an intrinsically conducting polymer like polyaniline (PANI), is that it possesses the electrical, electronic, magnetic and optical properties of a metal while retaining the poor mechanical properties, solubility and processibility commonly associated with a conventional polymer. Aromatic polyamic acid has outstanding thermal, mechanical, electrical, and solvent resistance properties that can overcome the poor mechanical properties and instability of the conventional conducting polymers, such as polyaniline.
APA, Harvard, Vancouver, ISO, and other styles
41

Martins, Bruno Miguel Rocha. "Electrochemical supercapacitors of conductive polymers and their composites." Master's thesis, Faculdade de Ciências e Tecnologia, 2014. http://hdl.handle.net/10362/13633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zhang, Yuan. "Prepartion of multi-metal sulfides for electrochemical supercapacitors." Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1I014.

Full text
Abstract:
Ces dernières années, les supercondensateurs électrochimiques (SE), en tant que systèmes de stockage d'énergie respectueux de l'environnement, sont confrontés à plusieurs défis liés aux performances, à la fonctionnalité et à la durabilité des matériaux clés. Parmi les différents types de supercondensateurs électrochimiques, les supercondensateurs hybrides combinent des électrodes avec différents mécanismes de stockage. En particulier, la combinaison d’électrodes à double couche (EDLC) et de type batterie devrait offrir une performance électrochimique améliorée. En ce qui concerne les supercondensateurs hybrides à comportement EDLC // type batterie, il a été largement reconnu que les matériaux en carbone, en raison de leur excellente conductivité électrique, de leur stabilité électrochimique et de leur grande surface spécifique, sont les candidats les plus prometteurs pour les matériaux d'électrode avec un comportement de type EDLC. En ce qui concerne les matériaux d'électrodes ayant un comportement de type batterie, il a été prouvé qu'en raison des réactions de transfert de charge faradiques impliquées dans le processus électrochimique, les matériaux à base de métaux de transition ont la capacité de stocker beaucoup de l'énergie et sont des candidats prometteurs pour les matériaux d'électrodes avec un comportement de type batterie. Dans cette thèse, différents matériaux d'électrodes en carbone, tels que l'oxyde de graphène réduit (rGO), l'oxyde de graphène réduit poreux (PrGO) et le polyéthylène-dioxythiophène-Fe-900 (PF-9), ont été préparés par une méthode d'oxydation et de réduction chimiques. De plus, des matériaux d'électrodes composés de métaux de transition, tels que CoS / support carboné (rGO ou PF-9), ZnCoS, ZnS / Ni3S2 et Sb2S3 / CoS2 / CrOOH ont été synthétisés par co-précipitation chimique et méthode d'échange d'ions. Une variété de techniques différentes (MES, MET, DRX, XPS, ICP-AES, BET, Raman) ont été utilisées pour caractériser les propriétés physico-chimiques des matériaux d'électrodes ainsi préparés. Leur performance électrochimique est également évaluée dans une cellule à 3 électrodes. Enfin, des supercondensateurs hybrides ont été assemblés et leur performance électrochimique a été évaluée dans un système à deux électrodes
In recent years, electrochemical supercapacitors (ESs), as environmentally-friendly energy storage systems, are facing several challenges associated with the performance, functionality, and durability of key materials. Among different types of ESs, hybrid supercapacitors, the combination of electrodes with different energy storage mechanisms, especially the combination of electrochemical double layer capacitance (EDLC) and battery-type behavior, are expected to offer enhanced electrochemical performance. Concerning hybrid supercapacitors consisting of EDLC//battery-type electrode materials, carbonaceous materials, owing to their excellent electrical conductivity, electrochemical stability, and large specific surface area, are the most promising candidates for electrode materials with EDLC-type behavior. For electrode materials with battery-type behavior, owing to the faradaic charge transfer reactions involved in the electrochemical process, transition metal compounds can store plenty of energy and represent one of the most promising candidates for electrode materials with battery-type behavior. In this thesis, different carbonaceous materials, such as reduced graphene oxide (rGO), porous reduced graphene oxide (PrGO), and poly-ethylene dioxythiophene-Fe-900 (PF-9), are prepared through chemical oxidation and reduction methods. Moreover, transition metal compounds, such as CoS/carbonaceous support (rGO or PF-9), ZnCoS, ZnS/Ni3S2 and Sb2S3/CoS2/CrOOH, are synthesized via chemical co-precipitation and ion-exchange method. A variety of different techniques, including XPS, SEM, ICP-AES, TEM, XRD, BET, and Raman, are used to investigate the physicochemical performance of as-prepared materials. Their corresponding electrochemical performance is also evaluated through a 3- electrode system. Additionally, hybrid supercapacitors consisting of as-prepared carbon and transition metal electrodes are assembled, respectively, and their electrochemical performance is evaluated through the 2- electrode system
APA, Harvard, Vancouver, ISO, and other styles
43

Hába, Roman. "Stanice na cyklování baterií a superkondenzátorů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219361.

Full text
Abstract:
The supercapacitor is a perspective electrical component reaching very large capacity. Currently is beeing worked on improving its parameters. These parameters are needed to test. Charging and discharging of the supercapacitor is theoretically fully reversible process. However, real supercapacitor accompanies ageing of the electrolyte and electrodes, lead to reduction of the capacity. The aim of this work is to design a device that expose supercapacitor to accelerated ageing, which will facilitate the assessment of ageing commercial and laboratory made supercapacitors.
APA, Harvard, Vancouver, ISO, and other styles
44

Tammela, Petter. "On the electrochemical performance of energy storage devices composed of cellulose and conducting polymers." Doctoral thesis, Uppsala universitet, Nanoteknologi och funktionella material, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-300917.

Full text
Abstract:
Applications that require electrical energy storage are becoming increasingly diverse. This development is caused by a number of factors, such as an increasing global energy demand, the advent of electric vehicles, the utilization of intermittent renewable energy sources, and advances in disposable and organic electronics. These applications will set different demands on their electrical energy storage and, thus, there will be no single technology used for all applications. For some applications the choice of energy storage materials will be extremely important. Conventional batteries and supercapacitors rely on the use of nonrenewable inorganic materials mined from depleting ores, hence, requiring large amounts of energy for their processing. Such materials also add a significant cost to the final product, making them less attractive for large scale applications. Conducting polymers, on the other hand, constitute a class of materials that can be used for organic matter based energy storage devices. The aim of this thesis was to investigate the use of a composite consisting of the conducting polymer polypyrrole (PPy) and cellulose derived from Cladophora sp. algae for electrical energy storage. The polymer was coated onto the cellulose fibers by chemical polymerization resulting in a flexible material with high surface area. By using this composite as electrodes, electrochemical cells consisting of disposable and non-toxic materials can be assembled and used as energy storage devices. The resistances of these prototype cells were found to be dominated by the resistance of the current collectors and to scale with the thickness of the separator, and can hence be reduced by cell design. By addition of nanostructured PPy, the weight ratio of PPy in the composite could be increased, and the cell voltages could be enhanced by using a carbonized negative electrode. Composites of cellulose and poly(3,4-ethylenedioxythiophene) could also be synthesized and used as electrode materials. The porosities of the electrodes were controlled by mechanical compression of the composite or by coating of surface modified cellulose fibers with additional PPy. Finally, the self-discharge was studied extensively. It was found that oxygen was responsible for the oxidation of the negative electrode, while the rate of self-discharge of the positive electrode increases with increasing potential. Through measurements of the charge prior to and after self-discharge, as well as with an electrochemical quartz crystal microbalance, it was found that the self-discharge of the positive electrode was linked to an exchange of the counter ions by hydroxide ions. It is also demonstrated that the self-discharge rate of a symmetric PPy based device can be decreased dramatically by proper balancing of the electrode capacities and by reducing the oxygen concentration. The results of this work are expected to contribute towards future industrial implementation of electric energy storage devices based on organic materials.
APA, Harvard, Vancouver, ISO, and other styles
45

Njomo, Njagi. "Synthesis of sulphonated and transition metal oxide doped polymeric nanocomposites for application in design of supercapacitors." University of the Western Cape, 2011. http://hdl.handle.net/11394/5429.

Full text
Abstract:
Philosophiae Doctor - PhD
To meet a fast-growing market demand for next generation portable electronic devices with higher performance and increased device functionalities, efficient electrical energy devices with substantially higher energy, power densities and faster recharge times such as supercapacitors are needed. The overall aim of this thesis was to synthesize nanostructured sulphonated polyaniline and transition metal single, binary and ternary mixed oxide doped nanocomposites with electro-conductive properties. These nanocomposites were anchored on activated graphitic carbon and used in design of asymmetric supercapacitors. Tantalum(IV)oxide, tantalum(IV)oxide-nickel(II)oxide, tantalum(II)oxide-manganese(III)oxide, tantalum(II)oxide-nickel(II)oxide-manganese(II,III)oxide nanoparticles were synthesised using modified sol-gel methods. These were then dispersed, individually, in acidic media through sonication and incorporated in-situ into the polymeric matrix during the oxidative chemical polymerization of aniline doped with poly(4-styrene sulphonic acid). These novel polymeric nanocomposites were characterised with FTIR, UV-visible, TEM, SEM, EDS, XRD to ascertain successful polymerization, doping, morphology and entrapment of the metal oxide nanoparticles. SECM approach curves and interrogation of CV revealed that these nanocomposites are conductive and electro-active. The cells showed good supercapacitor characteristics with high specific capacitances of 170.5 Fg⁻¹ in TaO₂- PANi-PSSA, 166.1 Fg⁻¹ in TaO₂-NiO-PANi-PSSA, 248.4 Fg-1 in TaO-Mn₂O₃-PANi- PSSA and 119.6 Fg⁻¹ in TaO-NiO-Mn₃O₄-PANi-PSSA. Their corresponding energy densities were calculated as 245.5 Whg⁻¹, 179.4 Whg⁻¹, 357.7 Whg⁻¹ and 172.3 Whg⁻¹ respectively. They also gave respective power densities of 0.50 Whg⁻¹, 0.61 Whg⁻¹, 0.57 Whg⁻¹ and 0.65 Whg⁻¹ and showed good coulombic efficiencies ranging between 77.97% and 83.19%. These materials are found to have a long cycle life and therefore good electrode materials for constructing supercapacitor cells.
National Research Foundation (NRF)
APA, Harvard, Vancouver, ISO, and other styles
46

Peng, Chuang. "Electrochemical synthesis of composites of conducting polymers and carbon nanotubes for supercapacitors." Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486715.

Full text
Abstract:
The power units in modem electric vehicles are required to store large amount of energy and to provide a high power. Supercapacitors being able to export a pulsed high power can be used in combination with batteries or fuel cell to meet the energy and power demand of electric vehicles. Carbon nanotubes with high surface area and conducting polymers with large pseudocapacitance are both powerful candidates for supercapacitors. This thesis describes a novel electrochemical route for synthesis of composites of conducting polymer and nanotubes via co-deposition from solutions containing ionic CNTs and monomers. The resulting deposits exhibited a unique porous network structure composed of individual nanotubes coated with a layer of conducting polymers. Carbon nanotubes served as charge carriers during the polymerisation and also acted as both a strong backbone and effective dopant within the composite materials. Therefore, the composites have improved mechanical integrity and an open structure that facilitates ion and solvent motion during the electrochemical processes. Moreover, the large immobile CNT anions exert an electrostatic repulsion to the electrons on the polymer chain. This repulsion makes it easier to remove electrons from the polymer chains. As a result, the composites showed good conductivity and capacitive properties even at negative potentials. A systematic study on the charge storage properties of the composites has been carried out using various electrochemical methods, including CV, AC impedance spectroscopy, chronocoulometry, chronoamperometry and chronopotentiometry. FTIR and XPS have been used to study the interaction between CNTs and conducting polymers. Prototype supercapacitors were built with the composites as electrode material. Both symmetric and asymmetric prototypes showed ideal capacitive behaviour, indicating a good potential for application in supercapacitors using the novel composite materials.
APA, Harvard, Vancouver, ISO, and other styles
47

Li, Song. "Molecular modeling of ionic liquids| Structure, dynamics and electrochemical performance in supercapacitors." Thesis, Vanderbilt University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3584411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Coadou, Erwan. "Organosulphur compounds for electrochemical energy storage applications : supercapacitors and lithium-sulphur batteries." Thesis, Queen's University Belfast, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.706291.

Full text
Abstract:
The work presented in this manuscript concentrates on investigating the use of organosulfur compounds as potential electrolyte components for electrochemical energy storage systems, in particular in lithium-sulfur batteries. Novel glyme-functionalised sulfonium-based ionic liquids were synthesized and characterised before being tested as pure electrolytes for symmetrical supercapacitors based on activated carbon electrodes. The adaptation of the structure of the ionic liquids to the porosity of activated carbon was found to be of fundamental importance for the design of more efficient systems. For lithium-sulfur batteries, the study has enabled a better understanding of the mechanisms involved during the operation of the sulfur/diphenyl disulfide redox couple in a range of glyme-based solvents. Similarly, the influence of the glyme-based solvents on the chemical equilibria between organic and mineral polysulfides and on the system operation has been investigated. The initial results demonstrated that this is a particularly promising strategy in order to significantly improve the performances of lithium-sulfur batteries.
APA, Harvard, Vancouver, ISO, and other styles
49

Li, Hongyan, Yang Hou, Faxing Wang, Martin R. Lohe, Xiaodong Zhuang, Li Niu, and Xinliang Feng. "Flexible All-Solid-State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-235446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Malhotra, Jaskaran Singh. "Carbon materials from biomass for supercapacitors." Thesis, KTH, Tillämpad fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285494.

Full text
Abstract:
The fast pyrolysis plant at RISE – ETC, Piteå produces carbon rich chars in bulk from various sources of biomass as feedstock. These in-house manufactured carbon rich chars were upgraded via pyrolysis as well as chemical activation using KOH to enhance their potential as an electrode material for supercapacitors. Commercial activated charcoal (Merck) was also studied and used as a yardstick for comparing performance of our materials. Investigations using EDX show enrichment in carbon content and very low amounts of impurities in the materials prepared from wood char after specific treatments for upgrading. Two-electrode coin cell apparatus with an aqueous electrolyte was used to determine the electrochemical performance of these materials. Wood char after KOH activation shows a high specific capacitance of ~105 Fg-1 at 2 Ag-1 in galvanostatic charge discharge measurements which outperformed activated charcoal used in this study (~68 Fg-1 at 2 Ag-1). This material was tested in a wide range of conditions (current density ranging from 0.1 Ag-1 to 10 Ag-1) and showed specific capacitance from ~90 Fg-1 (for 10 Ag-1) up to ~118 Fg-1 (for 0.1 Ag-1). Fatigue testing for >20000 cycles showed a remarkably high retention (>96%) of capacitance. Currently, most commercial supercapacitors use activated carbon materials prepared from coconut shells as the active electrode material which are not native to Sweden. In this study, we upgrade wood chars produced at RISE – ETC from biomass sources obtained locally (Sweden and Scandinavia) and demonstrate their applicability as supercapacitor electrode materials.
Den snabba pyrolysanläggningen vid RISE - ETC, Piteå, producerar kolrika kol i bulk från olika källor till biomassa som råvara. Dessa interna tillverkade kolrika karaktärer uppgraderades via pyrolys samt kemisk aktivering med hjälp av KOH för att förbättra deras potential som ett elektrodmaterial för superkondensatorer. Kommersiellt aktivt kol (Merck) studerades och användes som en måttstock för att jämföra våra materials prestanda. Undersökningar med EDX visar berikning av kolinnehåll och mycket låga mängder föroreningar i material som framställts av träkol efter specifika behandlingar för uppgradering. Tvåelektrodmyntcellapparater med en vattenhaltig elektrolyt användes för att bestämma den elektrokemiska prestandan hos dessa material. Träkol efter KOH-aktivering visar en hög specifik kapacitans på ~ 105 Fg-1 vid 2 Ag-1 i galvanostatiska laddningsurladdningsmätningar som överträffade aktivt kol som användes i denna studie (~ 68 Fg-1 vid 2 Ag-1). Detta material testades under ett stort antal betingelser (strömtäthet från 0,1 Ag-1 till 10 Ag-1) och visade specifik kapacitans från ~ 90 Fg-1 (för 10 Ag-1) upp till ~ 118 Fg-1 (för 0,1 Ag-1). Trötthetstestning för > 20000 cykler visade en anmärkningsvärt hög retention (> 96%) av kapacitansen. För närvarande använder de flesta kommersiella superkondensatorer aktivt kolmaterial framställt av kokosnötskal som det aktiva elektrodmaterialet som inte är hemma i Sverige. I den här studien uppgraderar vi träkolor som produceras vid RISE - ETC från biomassakällor erhållna lokalt (Sverige och Skandinavien) och visar deras användbarhet som superkapacitorelektrodmaterial.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography