To see the other types of publications on this topic, follow the link: Electrochemical Supercapacitor.

Journal articles on the topic 'Electrochemical Supercapacitor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Electrochemical Supercapacitor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Nagarajarao, Sumedha Harike, Apurva Nandagudi, Ramarao Viswanatha, Basavanakote Mahadevappa Basavaraja, Mysore Sridhar Santosh, Beekanahalli Mokshanatha Praveen, and Anup Pandith. "Recent Developments in Supercapacitor Electrodes: A Mini Review." ChemEngineering 6, no. 1 (January 5, 2022): 5. http://dx.doi.org/10.3390/chemengineering6010005.

Full text
Abstract:
The use of nonrenewable fossil fuels for energy has increased in recent decades, posing a serious threat to human life. As a result, it is critical to build environmentally friendly and low-cost reliable and renewable energy storage solutions. The supercapacitor is a future energy device because of its higher power density and outstanding cyclic stability with a quick charge and discharge process. Supercapacitors, on the other hand, have a lower energy density than regular batteries. It is well known that the electrochemical characteristic of supercapacitors is strongly dependent on electrode materials. The current review highlights advance in the TMOs for supercapacitor electrodes. In addition, the newly discovered hybrid/pseudo-supercapacitors have been discussed. Metal oxides that are employed as electrode materials are the focus of this study. The discovery of nanostructured electrode materials continues to be a major focus of supercapacitor research. To create high-performance electrode materials from a morphological standpoint, various efforts have been attempted. Lastly, we analyze the supercapacitor’s evolving trend and our perspective for the future generations of supercapacitors.
APA, Harvard, Vancouver, ISO, and other styles
2

Al Fath, Yusril, Istiqomah, Nasikhudin, Markus Diantoro, Siti Zulaikah, Agus Subagio, Thathit Suprayogi, and Zurina Osman. "Various Low Magnetic Field Effect on Electrochemical Performance of Asymmetric Supercapacitor MnO<sub>2</sub>- Carbon-Based Composites." Materials Science Forum 1080 (January 30, 2023): 99–105. http://dx.doi.org/10.4028/p-l96ngv.

Full text
Abstract:
Application of energy storage systems such as supercapacitors can not be separated from the magnetic fields effect. In the last decade, it’s rare to find research reports about various low magnetic field effects on supercapacitor performance. Asymmetric supercapacitors based on MnO2-Carbon were made to analyze its electrochemical performance changes by magnetic field in 0-50 mT. Magnetic field was applied in flow direction from cathode (MnO2-C) to anode (C) during electrochemical performance test using Galvanostatic Charge-Discharge (C-D) instrument. The electrochemical performance was increasing in charging (91%) and discharging (22%) time of asymmetric supercapacitors. Impressively, the 50 mT magnetic field showed a high specific capacitance of 61.9 F/g at 0.1 A/g. The supercapacitor system delivers specific energy (17.8 Wh/kg), specific power density (329.72 W/kg), and outstanding stability (79% in 50 cycles). The electrochemical improvement by magnetic field indicates a highly promising application of this method in future supercapacitor devices.
APA, Harvard, Vancouver, ISO, and other styles
3

Dekanski, Aleksandar, and Vladimir Panic. "Electrochemical supercapacitors: Operation, components and materials." Chemical Industry 72, no. 4 (2018): 229–51. http://dx.doi.org/10.2298/hemind180515016d.

Full text
Abstract:
Supercapacitors are the best choice when there is a need to deliver high power to the consumer or to store energy. Hybrid supercapacitors with their beneficial characteristics can somewhat overcome the basic lack of batteries, that is the low power density, and when supercapacitors are combined with batteries, the current maximum power can be increased and the lifetime extended. The number of research studies on development of new materials and construction technologies for supercapacitors has been increasing steadily in recent years. As a result, production of commercial devices and their applications are constantly growing, with improved product properties. Here we present the current state of development of supercapacitors as highly promising energy storage systems by an overview of operation principles, main components and various electrode materials and electrolytes, as well as description of different modes of production. A special attention was paid to the need of a good match of the active material and electrolytes, in order to achieve high capacity of the device. The electrode/electrolyte phase optimization is the key to maximizing characteristics of a supercapacitor, especially the capacitance. In selecting the materials, requirements of the final application must be considered, such as the specific energy and power, energy and power density, and service life-time. In addition to material selection, design and optimization of the cell configuration provide new opportunities for development of hybrid battery/supercapacitor systems. Demand for such systems will increase in future, when using a battery or a supercapacitor alone will not be able to meet specific needs, such as the energy density, number of charge and discharge cycles or voltage. Finally, equally important as the development of materials and cells, are the electrode production technology and the cell construction, which need to be optimized in order to improve supercapacitor properties.
APA, Harvard, Vancouver, ISO, and other styles
4

Lim, Jiseok, Jungho Hwang, and Jeong Hoon Byeon. "Utilizing deactivated catalysts from the nitric oxide removal process for the fabrication of metal oxide/carbon supercapacitors." Green Chemistry 21, no. 3 (2019): 491–97. http://dx.doi.org/10.1039/c8gc03345e.

Full text
Abstract:
The utilization of catalyst waste from nitric oxide removal at thermoelectric power plants for supercapacitor fabrication is proposed; the electrochemical performance of the resultant supercapacitors is comparable to that of current state-of-the-art supercapacitor systems.
APA, Harvard, Vancouver, ISO, and other styles
5

Kosnan, Muhammad Akmal, Mohd Asyadi Azam, Nur Ezyanie Safie, Rose Farahiyan Munawar, and Akito Takasaki. "Recent Progress of Electrode Architecture for MXene/MoS2 Supercapacitor: Preparation Methods and Characterizations." Micromachines 13, no. 11 (October 27, 2022): 1837. http://dx.doi.org/10.3390/mi13111837.

Full text
Abstract:
Since their discovery, MXenes have conferred various intriguing features because of their distinctive structures. Focus has been placed on using MXenes in electrochemical energy storage including a supercapacitor showing significant and promising development. However, like other 2D materials, MXene layers unavoidably experience stacking agglomeration because of its great van der Waals forces, which causes a significant loss of electrochemically active sites. With the help of MoS2, a better MXene-based electrodecan is planned to fabricate supercapacitors with the remarkable electrochemical performance. The synthesis of MXene/MoS2 and the ground effects of supercapacitors are currently being analysed by many researchers internationally. The performance of commercial supercapacitors might be improved via electrode architecture. This analysis will support the design of MXene and MoS2 hybrid electrodes for highly effective supercapacitors. Improved electrode capacitance, voltage window and energy density are discussed in this literature study. With a focus on the most recent electrochemical performance of both MXene and MoS2-based electrodes and devices, this review summarises recent developments in materials synthesis and its characterisation. It also helps to identify the difficulties and fresh possibilities MXenes MoS2 and its hybrid heterostructure in this developing field of energy storage. Future choices for constructing supercapacitors will benefit from this review. This review examines the newest developments in MXene/MoS2 supercapacitors, primarily focusing on compiling literature from 2017 through 2022. This review also presents an overview of the design (structures), recent developments, and challenges of the emerging electrode materials, with thoughts on how well such materials function electrochemically in supercapacitors.
APA, Harvard, Vancouver, ISO, and other styles
6

Bellani, Sebastiano, Beatriz Martín-García, Reinier Oropesa-Nuñez, Valentino Romano, Leyla Najafi, Cansunur Demirci, Mirko Prato, et al. "“Ion sliding” on graphene: a novel concept to boost supercapacitor performance." Nanoscale Horizons 4, no. 5 (2019): 1077–91. http://dx.doi.org/10.1039/c8nh00446c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Atif Javaid, Atif Javaid, Ahmad Shahzaib Ahmad Shahzaib, Hammad Tahir Hammad Tahir, Munazza Ali Munazza Ali, and and Wajiha Younus and Wajiha Younus. "Investigation of Mechanical and Electrochemical Performance of Multifunctional Carbon-Fiber Reinforced Polymer Composites for Electrical Energy Storage Applications." Journal of the chemical society of pakistan 41, no. 3 (2019): 444. http://dx.doi.org/10.52568/000759/jcsp/41.03.2019.

Full text
Abstract:
Concept of structural supercapacitors, based on carbon fiber reinforced polymer composites, has been introduced that can act as a structural load bearing component as well as an electrical energy storing device simultaneously. This multifunctional carbon fiber reinforced structural supercapacitors are fabricated by using carbon fiber and glass fiber/filter paper as reinforcements and cross-linked polymer electrolyte as a matrix. Carbon fiber mats also simultaneously serve the role of electrodes in addition to reinforcements whereas the glass fiber mat/filter paper also acts as an insulator to avoid the short-circuiting of the carbon fiber electrodes. A polymer epoxy matrix is modified by introducing ions within the cross-linked structure in order to develop an optimized polymer electrolyte. Flexural tests of structural supercapacitor are conducted to evaluate the structural performance while charge/discharge tests are conducted to evaluate the electrochemical performance. Multifunctional structural supercapacitors are tested mechanically as well as electrochemically. A structural supercapacitor is fabricated showing simultaneously an energy density of 0.11 mWh m-3, a specific capacitance of 0.8 mF.cm-3 and a flexural modulus of 26.6 GPa simultaneously.
APA, Harvard, Vancouver, ISO, and other styles
8

KIAMAHALLEH, MEISAM VALIZADEH, SHARIF HUSSEIN SHARIF ZEIN, GHASEM NAJAFPOUR, SUHAIRI ABD SATA, and SURANI BUNIRAN. "MULTIWALLED CARBON NANOTUBES BASED NANOCOMPOSITES FOR SUPERCAPACITORS: A REVIEW OF ELECTRODE MATERIALS." Nano 07, no. 02 (April 2012): 1230002. http://dx.doi.org/10.1142/s1793292012300022.

Full text
Abstract:
Electrode materials are the most important factors to verify the properties of the electrochemical supercapacitor. In this paper, the storage principles and characteristics of electrode materials, including carbon-based materials, transition metal oxides and conducting polymers for supercapacitors are depicted in detail. Other factors such as electrode separator and electrolyte are briefly investigated. Recently, several works are conducted on application of multiwalled carbon nanotubes (MWCNTs) and MWCNTs-based electrode materials for supercapacitors. MWCNTs serve in experimental supercapacitor electrode materials result in specific capacitance (SC) value as high as 135 Fg-1. Addition of pseudocapacitive materials such as transition metal oxides and conducting polymers in the MWCNTs results in electrochemical performance improvement (higher capacitance and conductivity). The nanocomposites of MWCNTs and pseudocapacitive materials are the most promising electrode materials for supercapacitors because of their good electrical conductivity, low cost and high mass density.
APA, Harvard, Vancouver, ISO, and other styles
9

AZAM, MOHD ASYADI, R.N.A.R. Seman, M.A. Mohamed, and M.H. Ani. "Effect of Polytetrafluoroethylene Binder Content on Gravimetric Capacitance and Life Cycle Stability of Graphene Supercapacitor." International Journal of Automotive and Mechanical Engineering 19, no. 3 (September 30, 2022): 9964–70. http://dx.doi.org/10.15282/ijame.19.3.2022.08.0768.

Full text
Abstract:
One of the major elements in determining the supercapacitor performance is the development of a nano-layered structure through facilitating the surface-dependent electrochemical reaction processes. Carbon-based nanomaterials especially graphene, has attracted tremendous interest in electrical charge and power sources including supercapacitor because of their exceptional properties, which include high conductivity and large specific surface area. In this paper, the effect of polytetrafluoroethylene (PTFE) binder ratio (1, 5, 10, and 15 wt. %) on the electrochemical performance of graphene supercapacitor are evaluated. In addition, the facile and scalable preparation of graphene electrodes by using low-cost slurry technique is proposed. From the conducted experimental works, it was found that the fabricated graphene electrodes exhibit superior electrochemical properties for supercapacitor applications with a specific gravimetric capacitance of up to 373 F g−1. Moreover, the graphene electrode presented excellent cyclic stability with 99 % specific capacitance retention after 10,000 charge/discharge cycles hence promising for long‐lasting supercapacitors. The outcomes from the deliberated study serve as the basis of knowledge in the development of a cost-effective graphene-based materials production for energy storage devices.
APA, Harvard, Vancouver, ISO, and other styles
10

Gonsalves, Tayara Correia, Franks Martins Silva, Ligia Silverio Vieira, Julio Cesar Serafim Casini, and Rubens Nunes de Faria. "Electrochemical Characteristics and Microstructures of Activated Carbon Powder Supercapacitors for Energy Storage." Materials Science Forum 930 (September 2018): 597–602. http://dx.doi.org/10.4028/www.scientific.net/msf.930.597.

Full text
Abstract:
In recent years, extensive investigations have focused on the study and improvement of supercapacitor electrode materials. The electric devices produced with these materials are used to store energy over time periods ranging from seconds to several days. The main factor that determines the energy storage period of a supercapacitor is its self-discharge rate, i.e., the gradual decrease in electric potential that occurs when the supercapacitor terminals are not connected to either a charging circuit or electric load. Self-discharge is attenuated at lower temperatures, resulting in an increased energy storage period. This paper addresses the temperature-dependence of self-discharge via a systematic study of supercapacitors with nominal capacitances of 1.0 and 10.0 F at DC potentials of 5.5 and 2.7 V, respectively. The specific capacitances, internal resistances, and self-discharge characteristics of commercial activated carbon electrode supercapacitors were investigated. Using cyclic voltammetry, the specific capacitances were determined to be 44.4 and 66.7 Fg−1 for distinct carbon electrode supercapacitors. The self-discharge characteristics were investigated at both room temperature and close to the freezing point. The internal resistances of the supercapacitors were calculated using the discharge curves at room temperature. The microstructures of the electrode materials were determined using scanning electron microscopy.
APA, Harvard, Vancouver, ISO, and other styles
11

Canobre, S. C., F. F. S. Xavier, W. S. Fagundes, A. C. de Freitas, and F. A. Amaral. "Performance of the Chemical and Electrochemical Composites of PPy/CNT as Electrodes in Type I Supercapacitors." Journal of Nanomaterials 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/560164.

Full text
Abstract:
Polypyrrole (PPy) is one of the most studied conducting polymers and a very promising material for various applications such as lithium-ion secondary batteries, light-emitting devices, capacitors, and supercapacitors, owing to its many advantages, including good processability, easy handling, and high electronic conductivity. In this work, PPy films were chemically and electrochemically synthesized, both in and around carbon nanotubes (CNTs). The cyclic voltammograms of the device, composed of the electrochemically synthesized PPy/CNT composites as working and counter electrodes (Type I supercapacitor with p-type doping), showed a predominantly capacitive profile with low impedance values and good electrochemical stability, with the anodic charge remaining almost constant (11.38 mC), a specific capacitance value of 530 F g−1after 50 charge and discharge cycles, and a coulombic efficiency of 99.2%. The electrochemically synthesized PPy/CNT composite exhibited better electrochemical properties compared to those obtained for the chemically synthesized composite. Thus, the electrochemically synthesized PPy/CNT composite is a promising material to be used as electrodes in Type I supercapacitors.
APA, Harvard, Vancouver, ISO, and other styles
12

Das, Mukta, and Ashis K. Sarker. "Preparation of Polyaniline/Graphene Oxide Thin Films Microelectrodes through Electrochemical Reduction at Different Potential Range for High-Performance Supercapacitors." Asian Journal of Chemistry 32, no. 12 (2020): 3047–56. http://dx.doi.org/10.14233/ajchem.2020.22893.

Full text
Abstract:
In this article, the fabrication and performance of supercapacitors prepared through electrochemical reduction applied at different voltage range from polyaniline/graphene oxide (PANi/GO) thin films, which are renewable materials with an excellent yield of energy conversion is reported. The PANi/GO thin film was reduced electrochemically with different potential windows, scan rate and number of cycles which was acquired using layer-by-layer (LBL) assembly method. The resultant electrodes displayed various specific capacitances after pre-reduction with different conditions.The influence of the electrochemical reduction was investigated by Raman spectroscopy and X-ray photoelectron spectroscopy for capacitance performance. The optimum conditions were explored for supercapacitor application and an elevated specific capacitance 2619 F cm-3 (areal capacitance 18.38 mF cm-2) at 1 mV s-1 obtaining the film reduced with applied potential of -0.87 to -0.5 V. This study could introduce the new possibilities for the improvement of the electrochemical reduction effects to the composite materials for high-performance supercapacitors.
APA, Harvard, Vancouver, ISO, and other styles
13

Chen, Qiao, Xinming Li, Xiaobei Zang, Yachang Cao, Yijia He, Peixu Li, Kunlin Wang, Jinquan Wei, Dehai Wu, and Hongwei Zhu. "Effect of different gel electrolytes on graphene-based solid-state supercapacitors." RSC Adv. 4, no. 68 (2014): 36253–56. http://dx.doi.org/10.1039/c4ra05553e.

Full text
Abstract:
Flexible all-solid-state supercapacitors based on graphene films with different gel electrolytes are demonstrated. During the bending and cycling of graphene-based solid-state supercapacitor, the stability was maintained without sacrificing the electrochemical performance.
APA, Harvard, Vancouver, ISO, and other styles
14

Rajesh, John Anthuvan, Jong-Young Park, Ramu Manikandan, and Kwang-Soon Ahn. "Rationally Designed Bimetallic Co–Ni Sulfide Microspheres as High-Performance Battery-Type Electrode for Hybrid Supercapacitors." Nanomaterials 12, no. 24 (December 13, 2022): 4435. http://dx.doi.org/10.3390/nano12244435.

Full text
Abstract:
Rational designing of electrode materials is of great interest for improving the performance of battery-type supercapacitors. The bimetallic NiCo2S4 (NCS) and CoNi2S4 (CNS) electrode materials have received much attention for supercapacitors due to their rich electrochemical characteristics. However, the comparative electrochemical performances of NCS and CNS electrodes were never studied for supercapacitor application. In this work, microsphere-like bimetallic NCS and CNS structures were synthesized via a facile one-step hydrothermal method by controlling the molar ratio of Ni and Co precursors. The physico-chemical results confirmed that microsphere-like structures with cubic spinel-type NCS and CNS materials were successfully fabricated by this method. When tested as the supercapacitor electrode materials, both NCS and CNS electrodes exhibited battery-type behavior in a three-electrode configuration with outstanding electrochemical performances such as specific capacity, rate performance and cycle stability. Impressively, the CNS electrode delivered a high specific capacity of 430.1 C g−1 at 1 A g−1, which is higher than 345.9 C g−1 of the NCS electrode. Furthermore, the NCS and CNS electrodes showed a decent cycling stability with 75.70 and 84.70% capacity retention after 10,000 cycles. Benefiting from the electrochemical advantage of CNS microspheres, we fabricated a hybrid supercapacitor (HSC) device based on CNS microspheres (positive electrode) and activated carbon (AC, negative electrode), which is named as CNS//AC. The assembled CNS//AC HSC device showed a large energy density of 41.98 Wh kg−1 at a power density of 800.04 W kg−1 and displayed a remarkable cycling stability with a capacity retention of 91.79% after 15,000 cycles. These excellent electrochemical performances demonstrate that both bimetallic NCS and CNS microspheres may provide potential electrode materials for high performance battery-type supercapacitors.
APA, Harvard, Vancouver, ISO, and other styles
15

Bououchma, Zoubida, and Sabor Jalal. "Comparison Between Recursive Least Squares Method and Kalman Filter for Online Identification of Supercapacitor State of Health." Statistics, Optimization & Information Computing 10, no. 1 (February 8, 2022): 119–34. http://dx.doi.org/10.19139/soic-2310-5070-1195.

Full text
Abstract:
Supercapacitors are electrochemical components with high-power density and an intermediate energy density between batteries and conventional capacitors. They are characterized by low series resistance, signifificant equivalent capacitance, and long service life. Nowadays, they have become an attractive alternative storage device for several applications. However, supercapacitors are subject to degradation due to aging, in addition to other factors, such as temperature and high voltage. Therefore, it is very important to be able to estimate their State-of-Health during operation. Electrochemical Impedance Spectroscopy and Maxwell test are very recognized techniques to determine supercapacitors’ state-of-health. However, these methods require the interruption of system operation and thus cannot be performed in real-time (online). The purpose of this paper is the real-time estimation of supercapacitor resistance and capacitance, which are the main indicators of supercapacitor state-of-health. The electrical behavior of the supercapacitor is modeled using equivalent RC circuit model and the identifification is performed using two methods: recursive least squares method and Kalman fifilter. The resistance and the capacitance values obtained with the two methods are compared with capacitance and resistance values using Maxwell experimental test. The values obtained by Kalman fifilter are more accurate for both resistance and capacitance.
APA, Harvard, Vancouver, ISO, and other styles
16

Wustoni, Shofarul, Georgios Nikiforidis, Sahika Inal, Yuli Setyo Indartono, Veinardi Suendo, and Brian Yuliarto. "Hydroxymethyl PEDOT microstructure-based electrodes for high-performance supercapacitors." APL Materials 10, no. 6 (June 1, 2022): 061101. http://dx.doi.org/10.1063/5.0088452.

Full text
Abstract:
The development of conducting polymer-based supercapacitors offers remarkable advantages, such as good ionic and electronic conductivity, ease of synthesis, low processing cost, and mechanical flexibility. 3,4-ethylenedioxythiophene (PEDOT) is a conducting polymer with robust chemical and environmental stability during storage and operation in an aqueous environment. Yet, improving its electrochemical capacitance and cycle life remains a challenge for high-performance supercapacitors exceeding the current state-of-the-art. The fabrication of PEDOT composites with carbon nanomaterials and metal oxides is the commonly used approach to enhance capacitance and stability. This work discusses a comparative study to fabricate highly stable PEDOT derivative electrodes with remarkable specific capacitance via a straightforward electrochemical polymerization technique. The hydroxymethyl PEDOT (PEDOTOH) doped with perchlorate in a dichloromethane (DCM) solvent (197 F g−1) exhibits superior performance compared to the polymer formed in an aqueous solution (124 F g−1). Furthermore, the electropolymerized PEDOTOH on flexible Au/Kapton substrates was assembled into a free-standing symmetrical supercapacitor in an agarose additive-free gel. The use of agarose gel electrolytes can offer easy handling, no leakage, moderate ionic conductivity, and flexibility for miniaturization and integration. The supercapacitor reached a specific capacitance of 36.96 F g−1 at a current density of 13.7 A g−1, an energy density of 14.96 Wh kg−1, and a power density of 22.2 kW kg−1 among the highest values reported for PEDOT-based supercapacitors. The self-standing supercapacitor achieves an industry-par capacitance retention of ∼98% after 10000 charge/discharge cycles at 10 A g−1. This study provides insights into the effect of solvents and electropolymerization modes on the polymer structure and its electrochemical properties toward high-performance supercapacitor devices.
APA, Harvard, Vancouver, ISO, and other styles
17

Javaid, A., KKC Ho, A. Bismarck, JHG Steinke, MSP Shaffer, and ES Greenhalgh. "Improving the multifunctional behaviour of structural supercapacitors by incorporating chemically activated carbon fibres and mesoporous silica particles as reinforcement." Journal of Composite Materials 52, no. 22 (March 14, 2018): 3085–97. http://dx.doi.org/10.1177/0021998318761216.

Full text
Abstract:
Novel structural supercapacitors have been fabricated which can simultaneously carry mechanical loads as well as store electrochemical energy. Structural supercapacitors are fabricated by impregnating activated carbon fibre mat electrodes and glass fibre mat separator with crosslinked polymer electrolytes using the resin infusion under flexible tooling method. Mesoporous silica particles are also used as reinforcements to further improve the electrochemical and mechanical performance of structural supercapacitors. The fabricated structural supercapacitors have been characterised through chronoamperometry method and impedance spectroscopy to evaluate the electrochemical performance and in-plane shear properties to evaluate the mechanical performance. A multifunctional structural supercapacitor, exhibiting simultaneously a power density of 34 W kg−1, an energy density of 0.12 Wh kg−1 and a shear modulus of 1.75 GPa, has been fabricated.
APA, Harvard, Vancouver, ISO, and other styles
18

Liang, Jun Sheng, Shuang Chao Xu, Tong Qun Ren, and Da Zhi Wang. "High Performance Electrodes for All-Solid-State Supercapacitor Prepared by Using E-Jet Deposition Technique." Applied Mechanics and Materials 868 (July 2017): 230–35. http://dx.doi.org/10.4028/www.scientific.net/amm.868.230.

Full text
Abstract:
Electrohydrodynamic jet (E-jet) deposition technique was used to prepare thin film porous electrodes for all-solid-state electrochemical supercapacitors. The performance of thin film graphene/PANI electrodes separately prepared by E-jet deposition and brush-coating were comparatively studied in supercapacitors. Results show that the specific capacitance of the supercapacitor by E-jet deposition can reach 228F·g-1 at 0.5A·g-1and remain 92% after 1000 charge-discharge cycles. Compared to those electrodes made by traditional brush coating techniques, the capacitance and cycling stability of the supercapacitors in this work were respectively increased by 11% and 7%, means that E-jet deposition can be an ideal technique for fabrication of high performance supercapacitor electrodes.
APA, Harvard, Vancouver, ISO, and other styles
19

Zhang, Si Meng. "An Effective Designing of Supercapacitor Mitigating Self-Discharge." Key Engineering Materials 905 (January 4, 2022): 147–59. http://dx.doi.org/10.4028/www.scientific.net/kem.905.147.

Full text
Abstract:
Supercapacitor is a kind of effective energy storage device with merits such as high power density, long cycling life and so on, but their application is limited nowadays compared to the application of batteries. One important restriction is because of the serious self-discharge in supercapacitors, and how to conquer the self-discharge problem is an important issue. In this article we propose an effective way to reduce self-discharge of the supercapacitor by carefully designing of activated carbon (ACs) electrodes and water-in salt electrolyte. The electrochemical characterization shows that our supercapacitor can have the ability to reduce self-discharge.
APA, Harvard, Vancouver, ISO, and other styles
20

Subramaniam, Thilageshwaran, Mohamed Ansari Mohamed Nainar, and Noor Afeefah Nordin. "A Review on Synthesis and Characterization of Activated Carbon from Natural Fibers for Supercapacitor Application." Pertanika Journal of Science and Technology 30, no. 1 (January 10, 2022): 351–76. http://dx.doi.org/10.47836/pjst.30.1.20.

Full text
Abstract:
Supercapacitors have gained much attention in recent years due to their promising characteristics, such as high specific capacitance, high power density, long cycle life, and environment-friendly nature. Usage of natural sources for activated carbon synthesis is a major focus by many researchers worldwide for discovering a replacement of existing supercapacitors. This review summarizes the methods used to synthesize activated carbon (AC) from various natural fiber, their physical and electrochemical characteristics, and the improvement of supercapacitor electrode performance. Previous research studies indicate the practicability of activated carbon derived from various natural fibers with superior electrochemical properties. The effect of activating reagents and temperature on the electrochemical performance for supercapacitor applications are also highlighted in this paper. Since the nature of activated carbon from fibers and its synthesizing methods would result in different properties, the Cyclic Voltammetry (CV) study is also thoroughly discussed on the specific capacitance together with charge/discharge test to observe the capacitance retention after several cycles. Finally, a detailed approach of converting biowaste materials to activated carbon for energy storage applications with environmental concerns is explored.
APA, Harvard, Vancouver, ISO, and other styles
21

Xun, Ni, Gao, Zhang, Gu, and Huo. "Construction of Polymer Electrolyte Based on Soybean Protein Isolate and Hydroxyethyl Cellulose for a Flexible Solid-State Supercapacitor." Polymers 11, no. 11 (November 17, 2019): 1895. http://dx.doi.org/10.3390/polym11111895.

Full text
Abstract:
Supercapacitors are a very active research topic. However, liquid electrolytes present several drawbacks on security and packaging. Herein, a gel polymer electrolyte was prepared based on crosslinked renewable and environmentally friendly soybean protein isolate (SPI) and hydroxyethyl cellulose (HEC) with 1.0 mol L−1 Li2SO4. Highly hydrophilic SPI and HEC guaranteed a high ionic conductivity of 8.40 × 10−3 S cm−1. The fabricated solid-state supercapacitor with prepared gel polymer electrolyte exhibited a good electrochemical performance, that is, a high single electrode gravimetric capacitance of 91.79 F g−1 and an energy density of 7.17 W h kg−1 at a current density of 5.0 A g−1. The fabricated supercapacitor exhibited a flexible performance under bending condition superior to liquid supercapacitor and similar electrochemical performance at various bending angles. In addition, it was proved by an almost 100% cycling retention and a coulombic efficiency over 5000 charge–discharge cycles. For comparison, supercapacitors assembled with commercial aqueous PP/PE separator, pure SPI membrane, and crosslinked SPI membrane were also characterized. The obtained gel polymer electrolyte based on crosslinked SPI and HEC may be useful for the design of advanced polymer electrolytes for energy devices.
APA, Harvard, Vancouver, ISO, and other styles
22

Hu, Xue Bu, Zi Ji Lin, and Yong Long Zhang. "A High Rate, High Capacity and Long Life (LiFePO4+AC)/Li4Ti5O12 Hybrid Battery-Supercapacitor." Advanced Materials Research 936 (June 2014): 496–502. http://dx.doi.org/10.4028/www.scientific.net/amr.936.496.

Full text
Abstract:
A hybrid battery-supercapacitor (LiFePO4+AC)/Li4Ti5O12 using a Li4Ti5O12 anode and a LiFePO4/activated carbon (AC) composite cathode was built. The electrochemical performances of the hybrid battery-supercapacitor (LiFePO4+AC)/Li4Ti5O12 were characterized by constant current charge-discharge, rate charge-discharge, electrochemical impedance spectra, internal resistance, leakage current, self-discharge and cycle performance testing. The results show that (LiFePO4+AC)/Li4Ti5O12 hybrid battery-supercapacitors have rapid charge-discharge performance, high energy density, long cycle life, low resistance, low leakage current and self-discharge rate, which meet the requirements of practical power supply and can be applied in auxiliary power supplies for hybrid electric vehicles. At 4C rate, the capacity loss of (LiFePO4+AC)/Li4Ti5O12 hybrid battery-supercapacitors in constant current mode is no more than 7.71% after 2000 cycles, and the capacity loss in constant current-constant voltage mode is no more than 4.51% after 1500 cycles.
APA, Harvard, Vancouver, ISO, and other styles
23

Sivachidambaram, M., J. Judith Vijaya, K. Niketha, L. John Kennedy, E. Elanthamilan, and J. Princy Merlin. "Electrochemical Studies on Tamarindus indica Fruit Shell Bio-Waste Derived Nanoporous Activated Carbons for Supercapacitor Applications." Journal of Nanoscience and Nanotechnology 19, no. 6 (June 1, 2019): 3388–97. http://dx.doi.org/10.1166/jnn.2019.16115.

Full text
Abstract:
Supercapacitors are perfect energy storage devices; they can be charged almost instantly and release energy over a long period. Another advantage of using supercapacitors is their multipletimes chargeable behavior with minimum degradation in performance. Herein, we report the nanoporous activated carbon based modified electrodes prepared by using phosphoric acid (PA) activation method at different temperatures (600, 700, 800, and 900 °C) using bio-waste precursor, Tamarindus indica (T. indica) fruit shell. Because of their excellent energy storage capacity, in the present work, supercapacitive behavior of the nanoporous activated carbon based modified electrode has been demonstrated and hence the electrochemical properties of the developed supercapacitor electrodes are analyzed using cyclic voltammetry, galvanostatic charge–discharge measurements, electrochemical impedance spectroscopy and cycling studies using 1 M KOH as the electrolyte. The developed supercapacitor nanoporous activated carbon materials are characterized by X-ray diffraction, functional group analysis, surface area and morphological studies.
APA, Harvard, Vancouver, ISO, and other styles
24

Latham, Kenneth G., Anjali Achazhiyath Edathil, Babak Rezaei, Sihui Liu, Sang Nguyen, Stephan Sylvest Keller, Felice Torrisi, Emile S. Greenhalgh, and Maria‐Magdalena Titirici. "Challenges and opportunities in free-standing supercapacitors research." APL Materials 10, no. 11 (November 1, 2022): 110903. http://dx.doi.org/10.1063/5.0123453.

Full text
Abstract:
The design of commercial supercapacitors has remained largely unchanged since the 1970s, comprising powdered electrodes housed in rigid metal cylinders or pouches. To power the next generation of integrated technologies, an evolution in supercapacitor materials and design is needed to create multifunctional materials that allow energy storage while imparting additional material properties (e.g., flexibility and strength). Conductive free-standing electrodes produced from fibers or 3D printed materials offer this opportunity as their intrinsic mechanical properties can be transferred to the supercapacitor. Additionally, their conductive nature allows for the removal of binders, conductive agents, and current collectors from the supercapacitor devices, lowering their economic and environmental cost. In this Perspective, we summarize the recent progress on free-standing supercapacitors from new methods to create free-standing electrodes to novel applications for these devices, together with a detailed discussion and analysis on their electrochemical performance and physicochemical and mechanical properties. Furthermore, the potential directions and prospects of future research in developing free-standing supercapacitors are proposed.
APA, Harvard, Vancouver, ISO, and other styles
25

Jiao, Shasha, Tiehu Li, Chuanyin Xiong, Chen Tang, Alei Dang, Hao Li, and Tingkai Zhao. "A Facile Method of Preparing the Asymmetric Supercapacitor with Two Electrodes Assembled on a Sheet of Filter Paper." Nanomaterials 9, no. 9 (September 19, 2019): 1338. http://dx.doi.org/10.3390/nano9091338.

Full text
Abstract:
An asymmetric supercapacitor was prepared on a sheet of filter paper with two modified surfaces acting as electrodes in 1 M potassium hydroxide aqueous solution. By choosing carbon nanotubes and two different kinds of metal oxides (zinc oxide and ferro ferric oxide) as electrode materials, the asymmetric supercapacitor was successfully fabricated. The results showed that this device exhibited a wide potential window of 1.8 V and significantly improved electrochemical performances of its counterparts. Particularly, the one-sheet asymmetric supercapacitor demonstrated high energy density of 116.11 W h/kg and power density 27.48 kW/kg, which was attributed to the combined action and shortened distance between the two electrodes, respectively. Besides, it showed superior electrochemical cycling stability with 87.1% capacitance retention under room temperature. These outstanding results can not only give researchers new insights into compact energy storage systems, but they also provide a good prospect for flexible asymmetric supercapacitors.
APA, Harvard, Vancouver, ISO, and other styles
26

Yang, Yanchun, Yinghui Han, Wenkun Jiang, Yuyang Zhang, Yanmei Xu, and Ayman Mahmoud Ahmed. "Application of the Supercapacitor for Energy Storage in China: Role and Strategy." Applied Sciences 12, no. 1 (December 30, 2021): 354. http://dx.doi.org/10.3390/app12010354.

Full text
Abstract:
Supercapacitors are widely used in China due to their high energy storage efficiency, long cycle life, high power density and low maintenance cost. This review compares the differences of different types of supercapacitors and the developing trend of electrochemical hybrid energy storage technology. It gives an overview of the application status of supercapacitors in China’s smart grid and Energy Internet in detail. Some strategies and constructive suggestions are put forward to solve the existing problems. With the improvement of the grid-connected capacity of new energy power generation during the 14th Five-year Period of China, the supercapacitor market in China will usher in a good development opportunity. The role of the supercapacitor in achieving carbon peak carbon neutralization is prospected.
APA, Harvard, Vancouver, ISO, and other styles
27

Shaheen, A., Shahid Hussain, G. J. Qiao, Mohamed H. Mahmoud, Hassan Fouad, and M. S. Akhtar. "Outstanding Electrochemical Supercapacitor Performances of NiCo2O4 Nanoflowers." Science of Advanced Materials 13, no. 12 (December 1, 2021): 2460–66. http://dx.doi.org/10.1166/sam.2021.4162.

Full text
Abstract:
Cost-efficient and dynamic electrode materials are required for high-performance renewable energy storage devices. A cost-effective and simple hydrothermal method was employed to prepare NiCo2O4(NCO) nanoflowers (NFs) as an electrode material for high-energy storage electrochemical supercapacitors. The as-prepared nanoflowers were characterized by XRD, BET, SEM, and TEM. NCO-NFs were first coated on nickel foam and then used as a binder-free electrode in a supercapacitor device. The fabricated asymmetric supercapacitor device showed excellent electrochemical properties. The highly conductive NCO-NFs material not only shows a high specific capacitance of 410F g−1 at a scan rate of 5 mV s−1 but also exhibits good cycling stability of 91% capacitive retention after 5000 cycles. The device also delivers a high energy density of 30 Wh kg−1 at a power density of 165 W kg−1. Our method provides a simple and promising strategy for high-performance supercapacitor electrode application.
APA, Harvard, Vancouver, ISO, and other styles
28

Thirumal, Vediyappan, T. V. M. Sreekanth, Kisoo Yoo, and Jinho Kim. "Facile Preparations of Electrochemically Exfoliated N-Doped Graphene Nanosheets from Spent Zn-Carbon Primary Batteries Recycled for Supercapacitors Using Natural Sea Water Electrolytes." Energies 15, no. 22 (November 18, 2022): 8650. http://dx.doi.org/10.3390/en15228650.

Full text
Abstract:
A single production of nitrogen-doped graphene nanosheets was developed in this present work from a spent Zn-C primary battery. The electrochemically exfoliated nitrogen-doped graphene nanosheets (EC-N-GNS) was applied in supercapacitor symmetric devices. As-prepared EC-N-GNS was utilized for a symmetric supercapacitor with natural seawater multivalent ion electrolyte. The recycling of graphite into nitrogen-doped graphene was characterized by X-ray diffraction and RAMAN spectroscopy. The few-layered morphological structures of EC-N-GNS were analyzed by field emission scanning electron microscope and field emission transmission electron microscope. The electrochemical analysis of the cyclic voltammetry curves observed an electrochemical double-layer capacitor (EDLC) behavior with a potential window of −0.8 V to +0.5 V. The electrochemical galvanostatic charge—discharge study was obtained to be maximum specific capacitance (Csp)—67.69 F/g and 43.07 F/g at a current density of 1 A/g. We promising the facile single-step electrochemically exfoliated EC-N-GNS was obtained from a waste zinc-carbon primary battery to recycle the graphite electrodes. The superior electrochemical performance comparatively bulk graphite and EC-N-GNS for potential energy storage supercapacitor applications.
APA, Harvard, Vancouver, ISO, and other styles
29

Abdul Razak, Muhammad Nizam, Zulkarnain Ahmad Noorden, Farid Nasir Ani, Zulkurnain Abdul Malek, Jasrul Jamani Jamian, and Nouruddeen Bashir. "Electrochemical properties of kenaf-derived activated carbon electrodes under different activation time durations for supercapacitor application." Indonesian Journal of Electrical Engineering and Computer Science 19, no. 2 (August 1, 2020): 1105. http://dx.doi.org/10.11591/ijeecs.v19.i2.pp1105-1112.

Full text
Abstract:
<span>The electrochemical properties of supercapacitors with kenaf-derived activated carbon electrodes under different activation time durations were evaluated. The study aims to determine the optimum activation time required that contributes to highest supercapacitor’s perfomance. Kenaf fibre was firstly carbonized at 400 °C to remove its water content and any volatile substances. The resulted kenaf-derived carbon was then impregnated in potassium hydroxide (KOH) with 4:1 impregnation ratio and left overnight. After the impregnation process, the carbon sample was activated at 600 °C with different heating time durations of 1, 2, 3 and 4 hours and named as A600-1, A600-2, A600-3 and A600-4, repectively. Four supercapacitors with the kenaf-derived activated carbon samples as the electrodes were fabricated based on two-electrode symmetrical test cell system. Specific capacitances of 108, 189, 242, and 126 F/g for supercapacitors with activated carbon A600-1, A600-2, A600-3 and A600-4 electrodes, respectively were achieved. These were much higher than previously reported values of only up to 37 F/g. </span><span>The finding suggests that an inexpensive fibrous carbon material derived from kenaf by a facile pyrolysis process may be a remarkable choice to construct high performance supercapacitor.</span>
APA, Harvard, Vancouver, ISO, and other styles
30

Neelamma, M. K., Sowmya R. Holla, M. Selvakumar, P. Akhil Chandran, and Shounak De. "Bentonite Clay Liquid Crystals for High-Performance Supercapacitors." Journal of Electronic Materials 51, no. 5 (February 20, 2022): 2192–202. http://dx.doi.org/10.1007/s11664-022-09469-y.

Full text
Abstract:
AbstractAs the human population increases, there is invariably excessive demand for energy sources, thus making it a fundamental need. The basic use of supercapacitors is the storage of energy. But self-discharge is caused when no external power or internal battery is charging them. This clearly reduces their efficiency. It has been found that self-discharge can be reduced to a great extent by employing liquid crystals (LC). But the effect of LC in enhancing the supercapacitor properties has not been discussed. So here, the naturally available bentonite clay is analyzed for its lyotropic liquid crystalline (LLC) properties. It showed liquid crystalline properties at 0.055 g/cm3 in 0.2 M Na2SO4 solvent. It is characterized by a polarised optical microscope (POM). These LCs are added as an additive electrolyte to the supercapacitors. The electrode materials used for supercapacitors are a composite of activated carbon and polyaniline. When compared, the supercapacitor properties were enhanced with a decrease in IR drop in supercapacitors containing bentonite lyotropic liquid crystal, producing a specific capacitance of 237.5 F/g at a current density of 0.5 mA/cm3. The electrochemical behavior of the supercapacitors is determined by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge cycling techniques. Graphical Abstract
APA, Harvard, Vancouver, ISO, and other styles
31

Moon, Joonhee, Yelyn Sim, Subramani Surendran, Hyeonuk Choi, Cheolho Jeon, Heechae Choi, and Uk Sim. "Plasma-Assisted Fluorine Doping of Graphene Oxide for High Performance Supercapacitors." ECS Meeting Abstracts MA2022-01, no. 15 (July 7, 2022): 2459. http://dx.doi.org/10.1149/ma2022-01152459mtgabs.

Full text
Abstract:
Carbon-based materials are considered to be promising cadidates for energy storage systems because of their superior conductivity, low price, and high specific surface area. Moreover, heteroatom-doped graphene or graphitic carbons are prepared by various methods for modulating their physicochemical properties, improving their wettabililty, and achieving favorable pseudocapacity for use in electrochemical supercapacitors. Here we report a simple solvent-free scale-up technique to synthesis fluorine-doped graphene oxide (FGO) by direct plasma treatment of graphene oxide (GO) powder at ambient pressure. The FGO enabled fast electrochemical charge transfer and provided a large number of active sites for redox reactions during supercapacitor operation, and the mechanisms were thoroughly studied by various electrochemical analyses. As a result, fabricated symmetric supercapacitor using FGO electrodes exhibited a maximum power density (~3200 W/kg) and energy density (~25.87 Wh/kg) with superior cycle stability (20000 cycles) without capacitance loss. Furthermore, the computational calculation results clarified the roles of semi-ionic C–F bonding of FGO: huge charge accumulation on the electrodes and superior electrical conductivity. Thus, our study demonstrates a facile strategy to develop promising functionalized materials, which can enhance the viability of supercapacitor for the next generation of energy storage systems.
APA, Harvard, Vancouver, ISO, and other styles
32

Son, You-Hyun, Phuong T. M. Bui, Ha-Ryeon Lee, Mohammad Shaheer Akhtar, Deb Kumar Shah, and O.-Bong Yang. "A Rapid Synthesis of Mesoporous Mn2O3 Nanoparticles for Supercapacitor Applications." Coatings 9, no. 10 (September 30, 2019): 631. http://dx.doi.org/10.3390/coatings9100631.

Full text
Abstract:
Mn2O3 nanomaterials have been recently composing a variety of electrochemical systems like fuel cells, supercapacitors, etc., due to their high specific capacitance, low cost, abundance and environmentally benign nature. In this work, mesoporous Mn2O3 nanoparticles (NPs) were synthesized by manganese acetate, citric acid and sodium hydroxide through a hydrothermal process at 150 °C for 3 h. The synthesized mesoporous Mn2O3 NPs were thoroughly characterized in terms of their morphology, surfaces, as well as their crystalline, electrochemical and electrochemical properties. For supercapacitor applications, the synthesized mesoporous Mn2O3 NP-based electrode accomplished an excellent specific capacitance (Csp) of 460 F·g−1 at 10 mV·s−1 with a good electrocatalytic activity by observing good electrochemical properties in a 6 M KOH electrolyte. The excellent Csp might be explained by the improvement of the surface area, porous surface and uniformity, which might favor the generation of large active sites and a fast ionic transport over the good electrocatalytic surface of the Mn2O3 electrode. The fabricated supercapacitors exhibited a good cycling stability after 5000 cycles by maintaining ~83% of Csp.
APA, Harvard, Vancouver, ISO, and other styles
33

Cui, Keying, Lin Zhu, Wenshan Guo, Peishuo Shuang, Xiaoqing Yang, Xiao Chai, and Weimin Du. "Recent Advance of Ni–Co–X (X = O, S, Se, Te) Bimetallic Compound Nanoarray Electrode Materials Applied in Supercapacitors." Science of Advanced Materials 14, no. 5 (May 1, 2022): 819–28. http://dx.doi.org/10.1166/sam.2022.4284.

Full text
Abstract:
It is owing to the environmental friendly, low-cost and outstanding electrochemical properties that Ni–Co–X (X = O, S, Se, Te) bimetallic compound nanoarray electrode materials have shown remarkable potential applications in supercapacitors. In this review, the recent research advance in the preparation methods, electrochemical properties and supercapacitor applications of Ni–Co–X (X = O, S, Se, Te) bimetallic compound nanoarray electrode materials are summarized. The impacts of different experimental parameters on the morphology and electrochemical performance are mainly discussed. Finally, some insights into the prospects and challenges of the future development are proposed.
APA, Harvard, Vancouver, ISO, and other styles
34

Pan, Chao, Li Dong, and Hai Teng Gu. "Polyaniline@MnO2/Graphene Oxide Ternary Composites for Electrochemical Supercapacitors." Advanced Materials Research 1070-1072 (December 2014): 465–70. http://dx.doi.org/10.4028/www.scientific.net/amr.1070-1072.465.

Full text
Abstract:
We introduced a facile method to construct new ternary hierarchical nanocomposites by combining MnO2coated one dimensional (1D) conducting polyaniline (PANI) nanowires with 2D graphene oxide sheets (GOs). The hierarchical nanocomposite structures of PANI@MnO2/Graphene oxide were further proved by XRD, SEM and TEM measurements. The ternary composites possessed higher electrochemical capacitance than each individual component as supercapacitor electrode materials.Such intriguing electrochemical performance is mainly attributed to the synergistic effects of MnO2, PANI and GOs. The hierarchical ternary nanocomposites show excellent electrochemical properties for energy storage applications, which evidence their potential application as supercapacitors.
APA, Harvard, Vancouver, ISO, and other styles
35

Xia, Jingjie, Ronghao Wang, Chengfei Qian, Kaiwen Sun, He Liu, Cong Guo, Jingfa Li, Feng Yu, and Weizhai Bao. "Supercapacitors of Nanocrystalline Covalent Organic Frameworks—A Review." Crystals 12, no. 10 (September 24, 2022): 1350. http://dx.doi.org/10.3390/cryst12101350.

Full text
Abstract:
Due to their highly changeable porosity and adaptable skeletons, covalent organic frameworks (COFs) have been frequently used in supercapacitors. Additionally, COFs are a wonderful match for supercapacitors’ requirements for quick carrier migration and ion catalysis. COFs exhibit significant potential and limitless opportunities in electrochemical storage supercapacitors. The applicability of COFs has, nonetheless, been limited because the primary organic component prevents electron conduction and the interior active sites are challenging to fully utilize. The conductivity enhancement of COFs has been the subject of extensive research to solve these challenges. This review begins by outlining the features of COFs in the context of their use in supercapacitors and their methods of synthesis. The application of previously published COF materials in supercapacitors were evaluated including electrode materials and solid-state devices. Finally, essential aspects and potential problems are discussed as the exceptional performance characteristics of COFs are illustrated from a supercapacitor standpoint. This review also forecasts the future of COF-based supercapacitor development.
APA, Harvard, Vancouver, ISO, and other styles
36

Hoque, Md Ikram Ul, Andrew Gibson, and Scott Donne. "(Digital Presentation) In-Situ Growth of SnO2 Quantum Dots Onto Rgo for Supercapacitor Anodes." ECS Meeting Abstracts MA2022-02, no. 7 (October 9, 2022): 2518. http://dx.doi.org/10.1149/ma2022-0272518mtgabs.

Full text
Abstract:
SnO2 has been studied as a negative electrode material for supercapacitors [1]. However, direct use of pure SnO2 is not suitable because of its poor electrical conductivity. In order to mitigate this issue, various materials have been incorporated with pure SnO2, including graphene which is most favourable because of its high electrical conductivity (106 S/cm) and surface area (2630 m2/g), leading to highly conductive nanocomposites, and consequently high electrode capacitance [2]. Therefore, there is a growing interest to develop SnO2 anchored graphene nanocomposites for fabrications of the supercapacitors negative electrode. In-situ growth and homogeneous distribution of the SnO2 on the graphene flakes are highly desirable, as the maximum interaction of SnO2 with the graphene would occur, resulting in high electrochemical performance. Besides, SnO2 quantum dots (TOQDs), which is a 0D material, exhibit remarkable efficiency towards supercapacitors, as they have more surface area compared to 1D, 2D and 3D nanomaterials. However, the fabrication of the TOQDs is still challenging [3]. Therefore, in-situ and homogeneous distribution of the TOQDs on graphene flakes could yield an attractive nanocomposite for the supercapacitor studies. We have synthesized TOQDs embedded reduced graphene oxide (RGO) flakes i.e.; (TOQDs/RGO) nanocomposite. A nanofluidic synthesis approach, which was applied to synthesis the TOQDs/RGO nanocomposite, leads to give in-situ and homogeneous growth of the SnO2-QDs on graphene flakes. The nanofluidic synthesis approach comprises the dropwise addition of a 1D-Sn(OH)4 nanofluid [4] with graphene oxide (GO) nanofluid [5] at room temperature followed by a stirring, sonication and freeze-drying process, respectively. Finally the freeze-dried sample was calcined at 600 °C for 6 hrs under nitrogen gas to obtain the TOQDs/RGO nanocomposite. The synthesis approach with prime electrochemical studies performance is illustrated in Figure 1. A three-electrode supercapacitor was individually constructed to perform cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). It is found that the developed TOQDs/RGO nanocomposite exhibits high capacitance. The results of these electrochemical studies revealed that the developed TOQDs/RGO nanocomposite can be used for high-performance supercapacitors. References: M. Hassan et al., Tin-Based Materials for Supercapacitor. Inorganic Nanomaterials for Supercapacitor Design, CRC Press: 2019; pp 119-131. Lakra et al., A mini-review: Graphene based composites for supercapacitor application. Inorg. Chem. Commun. 2021, 133, 108929. Inomata et al., Dendrimer-templated synthesis and characterization of tin oxide quantum dots deposited on a silica glass substrate. Chem. Mater. 2019, 31 (20), 8373-8382. I. U. Hoque et al., One-dimensional Sn (iv) hydroxide nanofluid toward nonlinear optical switching. Mater. Horiz. 2020, 7 (4), 1150-1159. A. Khan et al., Synthesis of graphene oxide nanofluid based micro-nano scale surfaces for high-performance nucleate boiling thermal management systems. Case Stud. Therm. Eng. 2021, 28, 101436. Figure 1
APA, Harvard, Vancouver, ISO, and other styles
37

Himanshu, S. Rao, Dinah Punnoose, P. Sathishkumar, Chandu Gopi, Naresh Bandari, Ikkurthi Durga, T. Krishna, and Hee-Je Kim. "Development of Novel and Ultra-High-Performance Supercapacitor Based on a Four Layered Unique Structure." Electronics 7, no. 7 (July 19, 2018): 121. http://dx.doi.org/10.3390/electronics7070121.

Full text
Abstract:
This paper presents an electrode with a core/shell geometry and a unique four-layered porous wrinkled surface for pseudocapacitive supercapacitor applications. To design the electrode, Ni foam was used as a substrate, where the harmonious features of four constituents, ZnO (Z), NiS (N), PEDOT:PSS (P), and MnO2 (M) improved the supercapacitor electrochemical performance by mitigating the drawbacks of each other component. Cyclic voltammetry and galvanostatic charge discharge measurements confirmed that the ZNPM hybrid electrode exhibited excellent capacitive properties in 2 M KOH compared to the ZNP, ZN, and solely Z electrodes. The ZNPM electrode showed superior electrochemical capacitive performance and improved electrical conductivity with a high specific capacitance of 2072.52 F g−1 at 5 mA, and a high energy density of 31 Wh kg−1 at a power density of 107 W kg−1. Overall, ZNPM is a promising combination electrode material that can be used in supercapacitors and other electrochemical energy conversion/storage devices.
APA, Harvard, Vancouver, ISO, and other styles
38

Chen, Juanrong, Fengxian Qiu, Ying Zhang, and Shunsheng Cao. "Carbon-Doped Hollow Titania with Tuneable Shell Architecture for Supercapacitors." Australian Journal of Chemistry 69, no. 2 (2016): 183. http://dx.doi.org/10.1071/ch15278.

Full text
Abstract:
A new trend in supercapacitor research has focussed on the construction of inexpensive electrode materials with high capacitor performances. In this study, we demonstrate the successful preparation of carbon-doped hollow titania spheres. The as-prepared titania spheres not only exhibit an advantage over existing methods because they are created in situ by directly carbonizing cationic polystyrene templates without the addition of carbon precursors, but also feature a narrow pore size distribution and a tuneable shell architecture. When the materials were applied as supercapacitor anodes, the electrochemical results reveal the superior performances of the supercapacitors over that of commercial P25. The higher performances were attributed to carbon doping. Thus, the reported C-doped hollow titania shows more potential as electrode materials for high-performance supercapacitors.
APA, Harvard, Vancouver, ISO, and other styles
39

Yang, Luo, Lingyan Zhang, Xuan Jiao, Yangshuai Qiu, and Wenlu Xu. "The electrochemical performance of reduced graphene oxide prepared from different types of natural graphites." RSC Advances 11, no. 7 (2021): 4042–52. http://dx.doi.org/10.1039/d0ra09684a.

Full text
Abstract:
Graphene, as a new type of carbon material in the forefront of research, has been applied widely in the area of supercapacitors with the advantages of a large positive specific surface, high conductivity, stable chemical properties and good supercapacitor performance.
APA, Harvard, Vancouver, ISO, and other styles
40

Yang, Wen, Qian-Yao Ding, Dong-Mei Zhai, Kai-Wen Bo, Yan-Yan Feng, Jie Wen, and Fang He. "Fabrication and electrochemical properties of hollow cage-like nickel cobalt layered hydroxides with porous structure." Acta Physica Sinica 71, no. 1 (2022): 018201. http://dx.doi.org/10.7498/aps.71.20211100.

Full text
Abstract:
Supercapacitors have attracted extensive attention in various storage devices due to their high power density, long life and friendly environment. Hence, improving the energy storage performances of electrode materials are of great significance for supercapacitors. Functional materials with specific nanostructures, as energy storage materials, can display excellent electrochemical performances, for they will provide rich electrochemically active sites, high specific surface area and enhance electrolyte contact area. Consequently, hollow cage-like nickel cobalt layered hydroxides (NiCo-LDH) are prepared via nitrate etching of ZIF-67 nanocrystals, and investigated as electrode materials of supercapacitor. The morphology, structure and electrochemical properties of the obtained materials are investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope, N <sub>2</sub> adsorption/desorption and a series of electrochemical tests (including cyclic voltammetry, galvanostatic charge and discharge and AC impedance). The results show that the NiCo-LDH samples assembled by nanosheets present a porous structure with hollow cages and high specific area surfaces, which conduces to increasing the electroactive sites, enhancing the contact between the electrolyte and the electrode material, and thus significantly improving the electrochemical performance of the materials. With the mass ratio of nickel to cobalt salt being 1∶1, the specific capacitance of Ni <sub>1</sub>Co <sub>1</sub>-LDH is 801 F·g <sup>–1</sup> at a current density of 0.5 A·g <sup>–1</sup>, and a specific capacitance of 582 F·g <sup>–1</sup> can still be maintained at a high current density of 10 A·g <sup>–1</sup>. Moreover, the specific capacitance retention of Ni <sub>1</sub>Co <sub>1</sub>-LDH is 100.2% after 2000 cycles at a current density of 15 A·g <sup>–1</sup>, displaying good electrochemical performance and great potential in supercapacitor applications.
APA, Harvard, Vancouver, ISO, and other styles
41

Mukherjee, Soumya. "CNT-Ni-Co-O based composite for Supercapacitor applications by Cyclic Voltametry analysis: A Short Quick Glimpse." Material Science Research India 17, Issue 1 (May 1, 2020): 16–24. http://dx.doi.org/10.13005/msri/170104.

Full text
Abstract:
CNT based material are of vital importance in modern technology for their superior physical and chemical properties. In recent times, materials development for energy applications is focused for improvement of battery, capacitors, and electrodes for enhanced efficiency. High performance Supercapacitors with high energy densities are at the leading edge for renewable energy engineering device sector. CNT based Ni-Co-O material is of keen interest due to its possible applications as supercapacitors, electrocatalyst for metal/air battery and others. The hybrid material synthesis, morphological and electrochemical features are vital to evaluate the material performances for energy applications. Electrical studies are also important to evaluate the properties required for device applications. CNT is used as electrode material for electrochemical storage due to superior chemical stability, low mass density, low resistivity and large surface area. CNT replaces activated carbon material as supercapacitor due to improper balance between enhanced surface area and mesoporosity thus limiting electrolytic accessibility and capacitance. In the present article a brief review is stressed forward for the development of CNT-Ni-Co-O based hybrid material for supercapacitor high energy density applications.
APA, Harvard, Vancouver, ISO, and other styles
42

Ojha, Gunendra Prasad, Gun Woong Kang, Yun-Su Kuk, Ye Eun Hwang, Oh Hoon Kwon, Bishweshwar Pant, Jiwan Acharya, Yong Wan Park, and Mira Park. "Silicon Carbide Nanostructures as Potential Carbide Material for Electrochemical Supercapacitors: A Review." Nanomaterials 13, no. 1 (December 28, 2022): 150. http://dx.doi.org/10.3390/nano13010150.

Full text
Abstract:
Silicon carbide (SiC) is a very promising carbide material with various applications such as electrochemical supercapacitors, photocatalysis, microwave absorption, field-effect transistors, and sensors. Due to its enticing advantages of high thermal stability, outstanding chemical stability, high thermal conductivity, and excellent mechanical behavior, it is used as a potential candidate in various fields such as supercapacitors, water-splitting, photocatalysis, biomedical, sensors, and so on. This review mainly describes the various synthesis techniques of nanostructured SiC (0D, 1D, 2D, and 3D) and its properties. Thereafter, the ongoing research trends in electrochemical supercapacitor electrodes are fully excavated. Finally, the outlook of future research directions, key obstacles, and possible solutions are emphasized.
APA, Harvard, Vancouver, ISO, and other styles
43

Aihemaitituoheti, Reziwanguli, Nuha A. Alhebshi, and Tuerdimaimaiti Abudula. "Effects of Precursors and Carbon Nanotubes on Electrochemical Properties of Electrospun Nickel Oxide Nanofibers-Based Supercapacitors." Molecules 26, no. 18 (September 17, 2021): 5656. http://dx.doi.org/10.3390/molecules26185656.

Full text
Abstract:
Supercapacitors have been considered as one of the main energy storage devices. Recently, electrospun nanofibers have served as promising supercapacitor electrodes because of their high surface area, high porosity, flexibility, and resistance to aggregation. Here, we investigate the effects of electrospinning parameters and nickel precursors on the nanostructure of electrospun nickel oxide (NiO), as well as on their electrochemical performance as supercapacitor electrodes. In contrast to the case of using nickel nitrate, increasing the nickel acetate molar concentration maintains the flexible fibrous sheet morphology of the as-spun sample during the polycondensation and calcination of NiO. As a result, our flexible electrode of NiO nanofibers derived from nickel acetate (NiO-A) exhibits much better electrochemical performance values than that of nickel nitrate-derived NiO. To further improve the electrochemical storage performance, we combined NiO-A nanofibers with single-walled carbon nanotubes (CNTs) as a hybrid electrode. In both half-cell and full-cell configurations, the hybrid electrode displayed a higher and steadier areal capacitance than the NiO-A nanofibers because of the synergetic effect between the NiO-A nanofibers and CNTs. Altogether, this work demonstrates the potency of the hybrid electrodes combined with the electrospun NiO-A nanofibers and CNTs for supercapacitor applications.
APA, Harvard, Vancouver, ISO, and other styles
44

Popovych, O. M., I. M. Budzulyak, O. V. Popovych, B. I. Rachiy, R. V. Ilnytskyi, L. S. Yablon, and O. V. Morushko. "Synthesis and Electrochemical Properties of Nanocrystalline Nickel Molybdate." Physics and Chemistry of Solid State 22, no. 1 (March 13, 2021): 123–31. http://dx.doi.org/10.15330/pcss.22.1.123-131.

Full text
Abstract:
We have obtained nanocrystalline hydrate and alpha phase of nickel molybdate by a hydrothermal technique. On the basis of the obtained cyclic voltammetry data, we have evaluated the contribution of faradaic and non-faradaic processes to the total capacitance of molybdates under study. It was found that the specific capacitance of hydrate NiMoO4·H2O is 621 F/g at a scan rate of 1 mV / s and the specific capacitance of the α-NiMoO4 is 281 F/g. Cathodes for hybrid supercapacitors were formed on the basis of the obtained nickel molybdates. As a result of electrochemical studies, it was found that the specific capacitance of hybrid supercapacitor based on NiMoO4·H2O/C was 256 F/g at the current of 0.2 A/g, while the specific energy was 80 W h/kg and specific power – 304 W/kg and these results are higher below in the α-NiMoO4 /C-based hybrid supercapacitor.
APA, Harvard, Vancouver, ISO, and other styles
45

Tong, Shu Hui, Chuan Li Qin, Zheng Jin, Xue Song Wang, and Xu Duo Bai. "Activated Nitrogen-Enriched Carbon/Reduced Expanded Graphite Composites for Supercapacitors." Advanced Materials Research 211-212 (February 2011): 440–44. http://dx.doi.org/10.4028/www.scientific.net/amr.211-212.440.

Full text
Abstract:
Activated nitrogen-enriched carbon/reduced expanded graphite composites (ANC/REG-c) with different composite ratio were prepared by in-situ polymerization, carbonization, activation and reduction of aniline and expanded graphite. These were characterized by XPS, SEM and electrochemical measurements. XPS shows that N atoms exist in the ANC and ANC/REG-c. Compared to mechanical mixture of ANC and REG(ANC/REG-m), ANC/REG-c shows lower resistance and higherCp1(185.4 F/g) vs 124.3 F/g of ANC/REG-m measured by CV due to the introduction of the composite sturcture. When the composite ratio of ANC/REG-c is 6:1, the ANC/REG-c shows the highestCp1(264.0 F/g) and its symmetric supercapacitor also shows the best synthetical electrochemical performances. The optimal supercapacitor presents good cycle stability. ANC/REG-c is a suitable electrode material for supercapacitors.
APA, Harvard, Vancouver, ISO, and other styles
46

Lesbayev, Bakhytzhan, Moldir Auyelkhankyzy, Gaukhar Ustayeva, Mukhtar Yeleuov, Nurgali Rakhymzhan, Yerkebulan Maral, and Aidos Tolynbekov. "Modification of Biomass-Derived Nanoporous Carbon with Nickel Oxide Nanoparticles for Supercapacitor Application." Journal of Composites Science 7, no. 1 (January 9, 2023): 20. http://dx.doi.org/10.3390/jcs7010020.

Full text
Abstract:
Supercapacitors are one of the promising devices for the accumulation and storage of electrical energy. The purpose of this study is to develop a synthesis and modification method of carbon material to improve the electrochemical characteristics of a supercapacitor. In the proposed study, by varying the sequence and parameters of the processes of carbonization, mechanoactivation and thermochemical activation, the conditions for obtaining nanoporous carbon with a specific surface area of 2200 (±50) m2/g from walnut shells (WSs) are optimized. In addition, to increase the electrochemical efficiency of the electrode material, the resulting nanoporous carbon was modified with nickel oxide (NiO) nanoparticles by the thermochemical method. It is shown that the modification with nickel oxide nanoparticles makes it possible to increase the specific capacitance of the supercapacitor electrode by 16% compared to the original unmodified nanoporous carbon material.
APA, Harvard, Vancouver, ISO, and other styles
47

Zelinskyi, S. O., N. G. Stryzhakova, O. V. Gozhenko, and Y. A. Maletin. "How the electrochemical impedance spectroscopy can deepen the understanding of supercapacitor performance." Himia, Fizika ta Tehnologia Poverhni 13, no. 1 (March 30, 2022): 70–81. http://dx.doi.org/10.15407/hftp13.01.070.

Full text
Abstract:
Electrochemical impedance spectroscopy has been used for the characterization of electric double layer capacitors also known as supercapacitors. Specific surface area and pore size distribution for supercapacitor electrode materials and the results of impedance spectroscopy measurements for two types of commercially available nanoporous activated carbons and two graphene-type materials have been studied and compared with the results obtained from cyclic voltammetry and galvanostatic charge-discharge cycling the supercapacitor prototypes in different voltage ranges and at different current densities. It has been found that the results for the characteristics of studied supercapacitor prototypes differ insignificantly if they were obtained by different methods, while all three research methods have shown the advantage of materials with nanoporous activated carbon over materials of the graphene type. Besides, according to the data obtained by measuring impedance at low frequencies the deviations from ideal capacitive behaviour are more significant in case of graphene-type materials. Comparison of the three research methods used in this work shows that the method of impedance spectroscopy makes it possible to obtain the most complete and reliable information on the performance characteristics of the supercapacitor system, since not only the capacitance and resistance values, but their frequency dependence, as well as deviations (in degrees) from the purely capacitive vertical line at Nyquist plots and capacitance dissipation can be determined and taken into consideration.
APA, Harvard, Vancouver, ISO, and other styles
48

Xu, Chengjun, Feiyu Kang, Baohua Li, and Hongda Du. "Recent progress on manganese dioxide based supercapacitors." Journal of Materials Research 25, no. 8 (August 2010): 1421–32. http://dx.doi.org/10.1557/jmr.2010.0211.

Full text
Abstract:
The increasing worldwide interest in MnO2 for supercapacitor applications is based on anticipation that MnO2-based high-voltage aqueous supercapacitors will ultimately serve as a safe and low-cost alternative to state-of-the-art commercial organic-based electrochemical double-layer capacitors or RuO2-based acid systems. In this paper, the physicochemical features, synthesis methods, and charge storage mechanism of MnO2 as well as the current status of MnO2-based supercapacitors are summarized and discussed in detail. The future opportunities and challenges related to MnO2-based supercapacitors have also been proposed.
APA, Harvard, Vancouver, ISO, and other styles
49

Liang, Ruibin, Yongquan Du, Peng Xiao, Junyang Cheng, Shengjin Yuan, Yonglong Chen, Jian Yuan, and Jianwen Chen. "Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments." Nanomaterials 11, no. 5 (May 10, 2021): 1248. http://dx.doi.org/10.3390/nano11051248.

Full text
Abstract:
In the past decades, the energy consumption of nonrenewable fossil fuels has been increasing, which severely threatens human life. Thus, it is very urgent to develop renewable and reliable energy storage devices with features of environmental harmlessness and low cost. High power density, excellent cycle stability, and a fast charge/discharge process make supercapacitors a promising energy device. However, the energy density of supercapacitors is still less than that of ordinary batteries. As is known to all, the electrochemical performance of supercapacitors is largely dependent on electrode materials. In this review, we firstly introduced six typical transition metal oxides (TMOs) for supercapacitor electrodes, including RuO2, Co3O4, MnO2, ZnO, XCo2O4 (X = Mn, Cu, Ni), and AMoO4 (A = Co, Mn, Ni, Zn). Secondly, the problems of these TMOs in practical application are presented and the corresponding feasible solutions are clarified. Then, we summarize the latest developments of the six TMOs for supercapacitor electrodes. Finally, we discuss the developing trend of supercapacitors and give some recommendations for the future of supercapacitors.
APA, Harvard, Vancouver, ISO, and other styles
50

Yang, Zhe Wei, Xin Fan, Li Ang Guo, and Wang Xing Jiang. "Polypyrrole/Graphene Oxide Composite Electrodes for High Energy Density Supercapacitor." Advanced Materials Research 904 (March 2014): 146–49. http://dx.doi.org/10.4028/www.scientific.net/amr.904.146.

Full text
Abstract:
Polypyrrole/Graphene oxide composite material (PPy/GO) was synthesized using an in-situ chemical polymerization method. The formation of composite had been shown by the analysis of Fourier transfer of infrared spectroscopy and X-ray diffraction data. Scanning electron and transmission electron microscopy clearly showed sheet-like layered structure of graphite oxide surrounded by polypyrrole. Electrochemical properties were characterized by electrochemical station. We demonstrated the intercalation of conducting polypyrrole into the graphite sheets, and that as electrodes for supercapacitor, the PPy/GO composites (GO0.54) with PPy to GO mass ratio of 5:3 showed a competitive capacitance of 337 F g-1 at a scan rate of 2 mV s-1 than that of PPy alone. Given the electrical and electrochemical properties, we prospect that the PPy/GO composites should find applications in supercapacitors.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography