Dissertations / Theses on the topic 'Electrochemistry, Industrial'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 32 dissertations / theses for your research on the topic 'Electrochemistry, Industrial.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Scott, Leonard Lindsay. "Electrolytic manufacture of thiosulfate-free solutions of sodium hydrosulfite from aqueous sodium bisulfite." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/10241.
Full textBrimecombe, Rory Dennis. "Nanomaterial modified electrodes : optimization of voltammetric sensors for pharmaceutical and industrial application." Thesis, Rhodes University, 2011. http://hdl.handle.net/10962/d1009721.
Full textNaidoo, Kaveshini. "Electrochemical behavious of boron-doped diamond electrodes." Pretoria : [s.n.], 2001. http://upetd.up.ac.za/thesis/available/etd-11212005-173041/.
Full textTau, Prudence Lerato. "Study of titanium, tantalum and chromium catalysts for use in industrial transformations." Thesis, Rhodes University, 2007. http://hdl.handle.net/10962/d1005028.
Full textParikh, Harshil R. "Modeling and analysis of proton exchange membrane fuel cell." Ohio : Ohio University, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1088438486.
Full textPereira, Wellington da Silva. "Estudo da aplicação de ferro zero no tratamento de efluente têxtil." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/46/46132/tde-05092016-144057/.
Full textThis work describes a study to evaluate the viability of zero-valent iron in the treatment of four classes of dyes that are commonly used in the textile industry: Remazol Black B (azo), Remazol Red RB133 (triazine), Remazol Brilliant Blue RN (anthraquinone) and Remazol Turquoise G133 (phtalocyanine). The process was also apllied in the textile effluent remediation. Fe0 process showed a great efficiency in the degradation of the studied dyes, it was obtained a discoloration level higher than 90% in just 15 minutes of treatment employing 5 g L-1 of Fe0 (obtained from of a metallurgic residue) in the degradation of 100 mg L-1 azodye solutions. A quite favorable characteristic of the proposed process was the wide pH operational range; the degradation of chromophore group was upper to 80% for azodye solutions with pH between 1,5 and 9 (the optimum range observed between 3 and 5). The process showed low susceptibility to variations in dye concentration (studied range: 25 - 150 mg L-1). On the other hand, the efficiency of the treatment with zero-iron valence zero was dependent on particle size, mass and surface of the metallic material. The degradation mechanism also varied as function of anaerobic and aerobic conditions. For 15 minutes of treatment, the discoloration of studied dyes and textile effluent reached levels around 95% independent of anaerobic/aerobic condition. However, in the presence of O2, the total arganic carbon showed a reduction up to 75% (versus just around 25% observed in the anaerobic condition). These results showed that when this electron acceptor species is present, the mechanism involves oxidation stages, probably associated with type Fenton reactions. The treatment using Feo presented pseudo-first arder kinetics for the degradation of chromophore groups and for organic matter mineralization. The kinetic constants presented the following order for the studied dyes: phtalocyanine < azo < anthraquinone < triazine. In general, the studied remediative process showed some good characteristics, which makes it a promising alternative for the treatment of dyes and textile effluents.
Khatib, Maher Al. "EPR Spectroscopy for the investigation of materials of technological and industrial interest." Doctoral thesis, Università di Siena, 2019. http://hdl.handle.net/11365/1070360.
Full textStevens, Michaela. "Fundamentals and Industrial Applications: Understanding First Row Transition Metal (Oxy)Hydroxides as Oxygen Evolution Reaction Catalysts." Thesis, University of Oregon, 2017. http://hdl.handle.net/1794/22633.
Full text10000-01-01
Woodcock, Christopher Paul. "A review and development of accelerated test methods for anti-corrosive organic coatings." Thesis, University of Northampton, 2007. http://nectar.northampton.ac.uk/2665/.
Full textBorin, Antonio Carlos. "Reator eletroqu¡mico de bancada para remoção de íons de metais a partir de efluentes industriais." Universidade de São Paulo, 1986. http://www.teses.usp.br/teses/disponiveis/46/46132/tde-04072012-083932/.
Full textAn electrochemical reactor, with the aim of recovering metallic ions from waste water, was designed, built and evaluated in laboratory scale. The working conditions concerning to the ion concentrations were based in real operational data. Thus, solutions containing 15,900 ppm Cu2+ ions (0.25 M) were electrolysed with the purpose of obtain a final concentration as near as possible to the limiting value which is allowed by CETESB (Companhia de Tecnologia de Saneamento Ambiental), i.e., 1 ppm (15.7 µM). Four commercial graphite plates (600 X 150 X 10 mm), of different origins,were employed as electrodes. A centrifugal pump with capacity equal to 0.3 L.s-1 was used to circulate the electrolyte through the reactor. The electric current was supplied by sources with a maximum output of 20 A. The performance of the different graphite, which are available at the Brazilian market was studied further by means of potentiodynamic experiments, using electrodes with areas of few square millimeters. The reactor was built with glass to make possible visual observations of the inside. Two adjacent electrodes were separated by 5 mm. At each experiment 10 liters of solution containing the metallic ion and 10% H2S04 (v/v) were electrolysed for about 20 hours. The calculated values and the experimental ones, for different electrolysis times, show some deviation. This deviation, however, seems to be reasonable in that kind of experiments. Calculated and experimental values converge to the same limit with time. For example, after 15 hours electrolysis with an operating current of 20 A, the initial concentration, 15,900 ppm, is reduced to 9 ppm, when the calculated value is 7,2 ppm. Thus, a 99% conversion is attained. This is apparently, the limiting value which is attainable with the reactor. Although, this conversion value may be considered very good, it does not seems possible to obtain the limiting value, imposed by CETESS, with a one-step electrochemical operation. The cost of the recovered copper is high compared with the market price. Therefore, the main benefice of process is the ecological one.
Martí, Calatayud Manuel César. "STUDY OF THE TRANSPORT OF HEAVY METAL IONS THROUGH CATION-EXCHANGE MEMBRANES APPLIED TO THE TREATMENT OF INDUSTRIAL EFFLUENTS." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/46004.
Full textMartí Calatayud, MC. (2014). STUDY OF THE TRANSPORT OF HEAVY METAL IONS THROUGH CATION-EXCHANGE MEMBRANES APPLIED TO THE TREATMENT OF INDUSTRIAL EFFLUENTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/46004
TESIS
Premiado
Oliveira, André. "Synthèse d'oxydes lamellaires haute performances à base de Ni, Mn et Co : élaboration d'un procédé industriel et application à l'électrode positive d'un accumulateur Li-ion." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS239.pdf.
Full textThe company Nanoe in collaboration with the Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP) offers an innovative process for the synthesis of NMC, a positive electrode material for Li-ion batteries. These materials are currently synthesized in solution by coprecipitation, requiring retreating waste metals dissolved in aqueous solution. The new method proposed is a solid-state synthesis composed of a high-energy milling of the solid-state precursors in suspension, followed by a spray-drying structuration step and a final heat treatment.to form the NMC phase. This new route not only produces no solid or liquid waste, but also have fewer synthesis steps and the use of cheaper raw materials. The aim of this thesis work is to optimize this synthesis process to produce NMC by using nickel-rich compositions. The different process stages were first optimized on LiNi0.33Mn0.33Co0.33O2, a widely used and commercial material. The synthesis was then adapted for compositions richer in nickel, namely LiNi0.6Mn0.2Co0.2O2 and LiNi0.8Mn0.1Co0.1O2. It has been shown that enriching the nickel composition required reducing the synthesis temperature to obtain the best structural, morphological, and electrochemical properties. The synthesized materials are then compared to their commercial counterparts produced by a coprecipitation process and demonstrated, at 1C-rate, a lower capacity in the first cycles but a better capacity retention allowing them to dominate in long-term cycling
Vande, Vyver Olivier. "Etude et mise au point d'une cellule à électrodes poreuses pour la récupération d'ions métalliques en solution." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210558.
Full textParmi les électrodes poreuses, celles constituées de fibres métalliques semblent les plus prometteuses. L’objectif de ce travail est de donner les relations utiles pour dimensionner une cellule contenant ce type d’électrodes en vue du traitement d’effluents industriels contenant des ions métalliques.
Les électrodes étudiées ont été caractérisées par différentes techniques :microscopie électronique, méthode électrochimique, mesure de la perte de charge, conductimétrie, porosimétrie,… Cette caractérisation a permis de connaître la porosité, les surfaces spécifiques (géométrique, dynamique et électrochimique) et la tortuosité des électrodes.
Ensuite, le coefficient de transport de matière moyen a été étudié par une nouvelle méthode basée sur la mesure d’un rendement électrochimique. Cette méthode présente l’avantage de pouvoir travailler avec des vitesses de circulation de l’électrolyte compatibles avec celles utilisées industriellement. Pour cela, une cellule d’électrolyse à circulation forcée a été mise au point.
Afin de comprendre comment la géométrie d’une électrode poreuse de ce type influence le transport de matière local et la densité de courant et donc l’efficacité de l’électrode, le transport de matière et la densité de courant locale ont été modélisés autour d’un cylindre (représentatif d’une fibre) et validés par des mesures expérimentales. La modélisation s’est ensuite étendue à un réseau de fibres cylindriques représentatif des électrodes poreuses étudiées. Cette modélisation a permis d’obtenir une relation générale liant les nombres de Sherwood, de Reynolds et de Schmidt à des nombres sans dimension caractérisant la géométrie du réseau de fibres. Cette relation donne des résultats concordants avec ceux obtenus expérimentalement pour les électrodes poreuses étudiées.
Le volume utile d’une électrode poreuse dépend fortement des conditions expérimentales (concentration de l’électrolyte, vitesse de circulation, intensité du courant appliquée,…) et de la structure de l’électrode (porosité, surface spécifique,…). Ces paramètres influencent la distribution du potentiel et de la densité de courant dans l’électrode. Différents modèles de distribution sont comparés et appliqués aux électrodes poreuses étudiées. Cette distribution de courant influence le colmatage progressif de l’électrode poreuse en cours d’électrolyse. Il s’avère que l’électrode en contrôle diffusionnel (avec un rendement électrochimique faible) optimise la distribution du courant dans l’électrode et, de ce fait, ralenti son colmatage. De plus, travailler avec une solution diluée et une vitesse de circulation de l’électrolyte importante améliore la distribution du courant. Il en est de même si l’électrode poreuse présente une grande porosité et une faible surface spécifique.
Ce travail aura donc permis de proposer des relations indispensables pour le dimensionnement d’une cellule à électrodes poreuses (constituées de fibres métalliques) ainsi que les conditions opératoires idéales dans le cas du traitement d’effluents industriels contenant des ions métalliques./
Electrochemical techniques offer many advantages for the prevention of pollution problems in the industrial processes. However, flat electrodes are not ideal to treat dilute solutions containing metallic ions. With their high specific surface and open structure, which enhance mass transfer, porous electrodes are a good alternative for the treatment this kind of effluent. Fibre materials are particularly well suited as material for the production of porous electrodes.
The aim of this thesis is to study an electrochemical cell with a porous electrode in order to treat dilute metallic ions solutions and to provide dimensionless equations suited to scale-up the electrode for industrial application.
The porous electrodes, used in this thesis, are made of a stainless steel fibre network. The main properties and characteristics of these electrodes are studied by means of several techniques :electron microscopy, electrochemical methods (voltammetry, limiting current density measurerment), conductivity measurement, porosimetry, pressure drop measurement,… The obtained parameters are :porosity, specific surfaces (geometric, dynamic and electrochemical), fibres' diameter, tortuosity and the geometric disposition of the fibres in the electrodes. Mass transfer inside the porous electrodes is studied experimentally by a new developed method, linked to the measurement of the faradic yield as a function of different electrolysis parameters. For these measurements, an experimental electrolysis cell with high electrolyte flow rate has been designed and builds.
To understand how the geometry of the porous electrode influences the local and mean mass transfer coefficients and current densities, numerical studies and simulations have been performed.
The first type of simulation deals with a single wire (representative of a fibre from the porous electrode).
The second type of simulation deals with the integration of individual fibres in a fibre network. A correlation between dimensionless numbers such as Sherwood's, Reynolds' and Schmidt's numbers together with numbers characteristic of the electrode’s geometry has been established for Reynolds’s numbers ranging from 0,02 to 1,4. A good agreement between simulation and experimental measurements of mass transfer is observed.
The real effective electrochemical volume of the porous electrode depends on experimental conditions (current, concentration, flow velocity…) and electrode’s geometry (porosity, specific surface,…). These parameters influence the potential and current distribution inside the porous electrode. Several models of current distribution are applied to these electrodes and the theoretical simulations are compared with experimental measures.
As a result of these simulations, an electrode under diffusion control with a small faradic yield appears to be the best choice in order to homogenise the current density inside the porous electrodes. Dilute solutions, high flow velocity and electrodes with high porosity improve also the current density penetration inside the electrode. These observations are confirmed by an electrode’s plugging study.
In conclusion, this thesis provides mathematical relationships to scale-up a cell with porous electrodes of metallic fibre, and provides guidelines to treat, in an efficient manner industrial effluents containing metallic ions.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Grosu, Cristina. "Correlation between structure and electrochemistry of LiMO2 cathode materials (M = Ni, Co)." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13355/.
Full textLaurita, Angelica. "Synthesis and characterization of molecular electrode materials for lithium-ion batteries." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16685/.
Full textBina, Alessandro. "Sintesi e caratterizzazione di batterie tipo rocking chair basate sugli analoghi del blu di Prussia." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22238/.
Full textLorandi, Francesca. "L'elettrochimica quale strumento fondamentale per accrescere la comprensione e l'implementazione della polimerizzazione radicalica per trasferimento di atomo - Electrochemistry as a crucial tool to broaden atom transfer radical polymerization understanding and implementation." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3421943.
Full textLa possibilità di controllare processi per via elettrochimica riveste crescente attenzione nel mondo della chimica organica e della sintesi di polimeri. L’elettrochimica offre diversi parametri per intervenire sulle proprietà dei sistemi in oggetto, senza introdurre altri agenti chimici e spesso aumentando la tolleranza del sistema verso le impurezze. Di conseguenza la gestione del processo e il passaggio tra diversi stadi risultano facilitati. Negli ultimi dieci anni, il principale interesse nel campo della sintesi polimerica riguarda la preparazione di macromolecole con architetture predeterminate. La polimerizzazione radicalica per trasferimento di atomo (ATRP) è la tecnica più versatile e affermata per la costruzione di polimeri ben definiti, con stretta distribuzione di pesi molecolari ed eccellente ritenzione di funzionalità di fine catena. L’ATRP si basa sulla disattivazione reversibile dei radicali propaganti, in modo da allungare il tempo di vita delle catene in crescita. La concentrazione di radicali in soluzione rimane sempre molto bassa, portando così a minimizzare la probabilità dei radicali stessi di essere soggetti a terminazione. L’equilibrio di attivazione-disattivazione è generalmente governato da un catalizzatore metallico, composto da un centro di rame e un legante amminico polidentato. Nella sua forma attiva, [CuIL]+, il catalizzatore genera radicali per rottura riduttiva del legame C–X nell’alogenuro alchilico, RX, utilizzato come iniziatore. La specie disattivante [X–CuIIL]+ si forma in seguito al trasferimento elettronico e atomico che avvengono in contemporanea. I radicali generati riescono ad addizionare solo poche molecole di monomero (reazione di propagazione), prima di essere riconvertiti al loro stato dormiente tramite reazione con [X–CuIIL]+. In ATRP è importante che gli iniziatori siano altamente reattivi, in modo da garantire la crescita simultanea di tutte le catene e quindi poter ottenere pesi molecolari predeterminati. Le funzionalità di fine catena non vengono intaccate durante la polimerizzazione e questo permette di sottoporre il polimero a processi di post-polimerizzazione e di costruire copolimeri con varie composizioni e topologie. Lo scopo di questa tesi di dottorato è quello di affermare l’elettrochimica come fondamentale, accessibile ed efficace risorsa per l’analisi meccanicistica dei processi di ATRP e anche per condurre questo tipo di polimerizzazioni. Meno di venti anni fa, studi elettrochimici furono per la prima volta utilizzati in ATRP: i potenziali standard di riduzione di alcuni catalizzatori comunemente usati furono determinati tramite voltammetria ciclica (CV) e correlati alle performances catalitiche di questi composti. Da allora, la CV è la tecnica per eccellenza per lo studio delle proprietà redox dei catalizzatori per ATRP, nonché per la determinazione delle affinità relative delle specie di CuI e CuII per gli ioni alogenuro, quindi per predire l’attività dei complessi nella polimerizzazione. Inoltre, diverse procedure elettrochimiche sono state messe a punto per misurare con elevata precisione la costante cinetica di attivazione, kact, che riguarda quindi la reazione tra [CuIL]+ e RX. Valori di kact che coprono 12 ordini di grandezza sono stati misurati con diverse tecniche, in vari ambienti. Tra le suddette tecniche, l’utilizzo di un elettrodo a disco rotante (RDE) consente misure rapide, facilmente realizzabili e altamente riproducibili. Il RDE è stato usato in questo lavoro di tesi per definire una semplice procedura elettrochimica per la determinazione della costante termodinamica di equilibrio di ATRP, KATRP. Sostanzialmente con questo strumento è stata seguita la reazione tra CuI e RX, come avveniva per la misura di kact, ma in questo caso non si è introdotto nel sistema un catturatore radicalico, che serviva per isolare cineticamente lo step di attivazione. Quindi le reazioni di attivazione, disattivazione e terminazione radicalica sono state contemporaneamente monitorate e il valore di KATRP è stato ottenuto dall’elaborazione del responso elettrochimico tramite un’equazione, originariamente proposta da Fischer e in seguito opportunamente modificata. Il metodo è stato applicato a diversi catalizzatori, iniziatori, combinazioni di solvente e monomero e temperature, osservando dei trends nelle costanti in accordo con i principi di ATRP. KATRP e kact devono essere determinate in assenza di ioni alogenuro, i quali influenzano fortemente la speciazione dei complessi di CuI. Infatti, la quantità della specie attiva [CuIL]+ viene diminuita a causa della formazione di specie di CuI variamente alogenate, di conseguenza la sua reazione con RX risulta rallentata. Dalla riduzione nella velocità con cui CuI viene consumato al variare di C_(X^- ) è stato possibile stimare la costante di associazione di X− a [CuIL] + (o alidofilicità di CuI, K_X^I). Viene quindi presentata una procedura per determinare K_X^I dai valori di K_ATRP^app, determinati via RDE in presenza di diverse concentrazioni di X−. Oltre a fornire strumenti per studi di tipo meccanicistico, l’elettrochimica viene usata anche come driving force del processo di polimerizzazione. Infatti, un potenziale o una corrente possono essere applicati al sistema per rigenerare la specie di CuI, da [X–CuIIL]+ che si accumula in seguito al verificarsi di reazioni di terminazione radicalica. La polimerizzazione radicalica per trasferimento di atomo mediata elettrochimicamente (eATRP) sfrutta gli elettroni come agenti riducenti, quindi non porta alla formazione di sottoprodotti e consente di usare come reagente un sale di CuII, stabile all’aria, che viene poi ridotto in situ. Il tradizionale setup per eATRP richiede però un potenziostato e costosi elettrodi di Platino. Durante il mio periodo di dottorato ho cercato di semplificare il setup di eATRP, così da rendere questa tecnica più conveniente e realizzabile su larga scala. Alcuni materiali non costosi e facilmente funzionalizzabili sono stati testati come catodi in solventi organici e in sistemi acquosi. Polimerizzazioni ben controllate sono state ottenute con gli elettrodi lavoranti analizzati, anche operando in modalità galvanostatica (i.e. applicando step a corrente costante), la quale consente di utilizzare due elettrodi anziché tre, e di sostituire il potenziostato con un semplice generatore di corrente. Inoltre, questi catodi hanno dato ottimi risultati anche in combinazione con un anodo sacrificale di Alluminio, quindi realizzando un setup completamente Pt-free. Infine, è stato dimostrato che questi materiali non rilasciano ioni metallici in soluzione e che la loro morfologia non viene modificata nel corso delle polimerizzazioni, pertanto possono essere riutilizzati in reazioni successive. Caratteristica distintiva dell’eATRP e della ATRP in generale è l’eccezionale versatilità di queste tecniche, che consentono di polimerizzare diverse tipologie di monomeri. Per molti anni però, fu ritenuto impossibile controllare la polimerizzazione di monomeri acidi via ATRP. Nel 2016, Fantin et al. hanno dimostrato che le catene propaganti di poli(acido metacrilico) tendono a ciclizzare, con conseguente perdita della funzionalità C–X, quindi terminazione. Una volta definite le condizioni adatte per evitare questa pericolosa reazione secondaria, è stato possibile controllare efficacemente la polimerizzazione dell’acido metacrilico tramite eATRP. Questa importante vittoria mi ha permesso di lavorare con successo alla polimerizzazione dell’acido acrilico (AA), monomero biocompatibile, usato in moltissimi settori. Innanzitutto è stato dimostrato che la propagazione di AA è affetta dalla stessa reazione parassita di ciclizzazione, quindi alcune delle condizioni che hanno permesso l’efficace eATRP dell’acido metacrilico, sono state adattate al sistema analizzato. i) Il sale bromurato è stato sostituito da un sale clorurato, ii) la velocità di polimerizzazione è stata massimizzata usando un elettrodo lavorante con elevata area superficiale, applicando un potenziale molto più negativo di quello standard di riduzione del catalizzatore e ottimizzando la composizione del sistema. Un modo efficace per aumentare l’applicabilità della ATRP consiste nella sintesi di nuovi leganti che conferiscano particolari proprietà al centro metallico. Nella tesi sono riportati 4 nuovi leganti, in cui lo scheletro del legante tris-2(metilpiridil)ammina (TPMA), comunemente usato in ATRP, è stato modificato con sostituenti fenilici variamente funzionalizzati in posizione meta. La caratterizzazione elettrochimica dei complessi di Cu con questi leganti ha portato a predire una minore attività rispetto al tradizionale Cu/TPMA. Questa è stata confermata dalla determinazione di kact tramite RDE. Ciononostante, questi complessi sono risultati efficaci catalizzatori in eATRP di metil metacrilato in DMF, e di oligo(etilene glicole)metil etere metacrilato e di acido metacrilico in acqua. Nonostante la non elevata attività, i complessi analizzati hanno mostrato buona stabilità in acqua, anche a pH acido, e si propongono come catalizzatori adeguati per sistemi altamente reattivi. La versatilità di queste polimerizzazioni si riflette nella possibilità di applicazione in un’ampia varietà di ambienti. Grande interesse, ad esempio, è rivolto all’utilizzo di Liquidi Ionici (ILs) come solventi di polimerizzazione “green”. Pertanto, le proprietà redox di alcuni catalizzatori e iniziatori, frequentemente usati in ATRP, sono state studiate tramite CV in 1-butil-3-metilimidazolio trifluorometansolfonato. Nello stesso sono stati effettuati studi cinetici via RDE. Queste analisi hanno permesso di affermare che il comportamento dei composti di Cu e degli alogenuri alchilici in IL è del tutto simile a quello osservato nei solventi organici tradizionali. Perciò, i liquidi ionici si confermano come solventi adatti a processi di polimerizzazione controllata. Appare infine auspicabile realizzare eATRP in ILs, perché la buona conducibilità elettrica di questi solventi consente di evitare l’aggiunta di un elettrolita di supporto. Un ulteriore ambiente sostenibile di polimerizzazione è rappresentato dai sistemi dispersi. Sebbene moltissime polimerizzazioni su scala industriale si basino su sistemi in (mini)emulsione, la maggior parte della letteratura che tratta di ATRP riporta processi in soluzione omogenea. La realizzazione di ATRP in miniemulsione ha richiesto la sintesi di opportuni leganti super-idrofobici, che consentissero di confinare il catalizzatore nella fase dispersa idrofobica, dove potesse esercitare il suo effetto. Durante il mio dottorato ho trascorso sei mesi come visiting student presso la Carnegie Mellon University, nei laboratorio del Prof. Matyjaszewski, che scoprì l’ATRP nel 1995. In quel periodo ho potuto lavorare estesamente su ATRP in miniemulsione ed emulsione. Un nuovo sistema catalitico è stato messo a punto e applicato con efficacia in eATRP e ARGET-ATRP (attivatori rigenerati per trasferimento elettronico, in cui un agente riducente è usato per rigenerare continuamente CuI). Catalizzatori idrofilici tradizionali sono stati usati in combinazione con surfattanti anionici poco costosi, formando coppie ioniche capaci di entrare negli agglomerati monomerici e catalizzare la polimerizzazione. L’interazione tra le specie reagenti è stata provata attraverso caratterizzazioni elettrochimiche e spettrochimiche, che hanno permesso di definire il diverso contributo di catalisi interfacciale e via coppie ioniche. Grazie a questo approccio sono stati prodotti copolimeri a blocchi, a stella e a spazzola. Inoltre il Cu residuo nei polimeri precipitati è risultato estremamente poco, in alcuni casi inferiore ad 1 ppm, quindi i polimeri non necessitano di ulteriore purificazione. Il sistema catalitico è stato poi applicato in ARGET-ATRP in emulsione, sfruttando la presenza di un catalizzatore idrofilico, essenziale in emulsione dove la polimerizzazione deve verificarsi in fase acquosa. ARGET-ATRP ben controllate in emulsione ab initio sono state ottenute, anche con basse quantità di surfattante, ottimizzando la procedura di pre-emulsificazione, la velocità di mescolamento e selezionando opportuni iniziatori idrofilici.
Farrell, Troy W. "The mathematical modelling of primary alkaline battery cathodes." Thesis, Queensland University of Technology, 1998.
Find full textBoaretto, Nicola. "Inorganic-organic hybrid polymer electrolytes for secondary lithium metal batteries." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424435.
Full textGli elettroliti polimerici costituiscono un’importante classe di materiali a conduzione ionica, che trova applicazione essenzialmente in dispositivi di stoccaggio elettrochimici, quali batterie al litio o celle a combustibile. Nel campo delle batterie al litio, l’interesse per questi materiali deriva principalmente dalla loro non infiammabilità, che li distingue dagli elettroliti liquidi attualmente utilizzati. In aggiunta, gli elettroliti polimerici mostrano una maggiore compatibilità nei confronti del litio metallico. L’utilizzo di questo come materiale anodico permette una riduzione della massa della cella e quindi un aumento dell’energia specifica della stessa. Questo studio descrive la sintesi e la caratterizzazione di elettroliti polimerici ibridi a base polisilossanica/polieterea. La sintesi include una reazione d’idrolisi/co-condensazione tra alcossisilani funzionalizzati e la reticolazione di gruppi terminali vinilici o epossidici. La struttura, le proprietà termomeccaniche, elettrochimiche e di trasporto sono caratterizzate tramite varie tecniche analitiche. Infine, i materiali più promettenti sono testati in celle con anodi in litio metallico. Lo studio descrive, infine, un tentativo di migliorare la ciclabilità delle celle litio/polimero tramite pre-passivazione degli elettrodi in litio. I materiali sintetizzati sono caratterizzati da buona conducibilità ionica (fino a 8∙10-5 S•cm-1 a temperatura ambiente) e da buona stabilità termomeccanica ed elettrochimica. L’analisi degli spettri elettrici (BES) rivela che la mobilità ionica è massimizzata a) in assenza di interazioni inter-ioniche a corto raggio e b) in assenza di ordine nei domini polieterei. Se queste due condizioni sono soddisfatte, la migrazione ionica a lungo raggio è modulata dal moto segmentale delle catene polieteree. Test in cella a 60 °C dimostrano che questi materiali possono essere utilizzati come elettroliti polimerici in celle con anodo in litio metallico, seppur con una moderata perdita di capacità. Questa è in parte attribuita a problemi di contatto e di stabilità elettrochimica tra l’elettrolita e l’anodo. La pre-passivazione degli elettrodi in litio metallico protegge l’elettrolita dal deterioramento e permette di migliorare le prestazioni in cella.
Mariani, Federica. "PEDOT:PSS thin films: Applications in Bioelectronics." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11915/.
Full textLe, Guevel Yves. "Dissolution sélective de produits de corrosion et revêtements sur matériaux de turbine aéronautique par méthodes électrochimiques." Thesis, La Rochelle, 2016. http://www.theses.fr/2016LAROS003/document.
Full textNickel based superalloys of aeronautical turbines are subjected to high temperature oxidation and/or corrosion in service conditions. Thus, protective aluminide coatings are applied onto the parts by chemical vapor deposition. The degradation of the coatings with time requires them to be removed prior to recoating the parts. The chemical baths industrially employed are toxic, polluting and quite empirical. Therefore, this thesis aimed at studying an alternative and original electrochemical method to circumvent the drawbacks of the chemical approach. Fixed potentials (potentiostatic mode) were thus applied to provide selectivity between the coating and the substrate upon the dissolution process, as well as to ensure in-situ control through a 3-electrode cell. The feasibility of the method was first demonstrated, then different procedures (cathodic/anodic cycles; continuous anodic and sometimes with modification of the potential) were investigated. The correlations between the metallurgical phases of the coating/substrate systems were elucidated. It also appeared that dissolution is mainly governed by the concentration of aluminium in the coating whereas the incorporation of platinum to the coating brought about the homogeneous dissolution. In addition, XPS and MET confirmed the hypothesis by which the chromium content drastically change the stripping homogeneity upon the cathodic polarization step by passivation of the surface and the subsequent electrochemical blocking. However, the results on the cyclic oxidation behaviour of the coatings priorly stripped chemically or electrochemically were not conclusive enough as the microstructure of the original coatings was different. Finally, quite a few stripping trials were carried out onto real turbine parts that confirmed the high selectivity of the electrochemical approach studied
Duranti, Mattia. "Bromine-Based Electrolyte Properties for a Semi-Organic Redox Flow Battery." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/276465.
Full textDuranti, Mattia. "Bromine-Based Electrolyte Properties for a Semi-Organic Redox Flow Battery." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/276465.
Full textSALA, BEATRICE. "Contribution a l'etude de la corrosion du titane, de ses alliages et de certains aciers inoxydables en milieu aqueux, a haute temperature et sous pression." Orléans, 1987. http://www.theses.fr/1987ORLE2048.
Full textVan, Aswegen Anton. "The Electrochemistry Of Metal Ions In Industrial Streams." Thesis, 2006. http://hdl.handle.net/10539/353.
Full textThe electrochemical recovery of low concentrations ( < 200 1 l mg − ) of palladium and platinum from a selected refinery effluent was investigated. Cyclic Voltammetry (CV) provided qualitative evidence that palladium and platinum contained in an effluent with an acid chloride matrix could be deposited on a graphite cathode. Experimental techniques related to (i) the use of synthetic solutions (ii) the variation of potential scan ranges, (iii) the use of a witness ion ( + 3 Fe ), and (iv) the use of glassy carbon or platinum disc working electrodes were used to assist with the interpretation of voltammograms. Exhaustive electrolysis experiments via a graphite working electrode demonstrated the recovery of palladium and platinum in the refinery effluent to concentrations of < 1 1 l mg − . Copper present in the effluent was co-deposited with the precious metals. Exchange current densities ( o j ), electron transfer coefficients ( á), standard rate constants ( s k ) and mass transfer coefficients ( m k ) were determined for selected reduction-oxidation (redox) couples via a custom made Rotating Disc Electrode (RDE).
Naidoo, Kaveshini. "Electrochemical behaviour of boron-doped diamond electrodes." Diss., 2002. http://hdl.handle.net/2263/29652.
Full textDissertation (MSc (Chemistry))--University of Pretoria, 2006.
Chemistry
unrestricted
Ninosky, Joseph M. "Reaction kinetics and mass transport in the electroless deposition of copper." Thesis, 1998. http://hdl.handle.net/1957/34281.
Full textHolmes, Paul Richard. "Galvanic interactions between minerals during dissolution." Thesis, 1994. http://hdl.handle.net/10539/22931.
Full textA quantitative description of galvanic interactions between sulphide minerals based on thermodynamic and kinetic parameters has been developed. The basis for quantitative description involves conducting a voltage balance over the galvanic couple. The contributions to the voltage balance include the galvanic couple cell emf, kinetic descriptions of the anodic and cathodic half reactions, the voltage characteristics 'of mineral-mineral contacts and solution voltage losses. The rates of the anodic and cathodic half' reactions were modelled by the Butler-Volmer equation and ti1ediffusion equation. A potentiostat was used to vary the voltages losses across mineral-mineral contacts. TIle galvanic couples were constructed. as rotating ring disc electrodes and hence electrolyte voltage losses were negligible. Three galvanic couples, copper-platinum, copper-pyrite and galena-pyrite, were electrochemically characterised under different conditions of ferric concentration, electrode rotation rate and temperature. The effect of illumination on the anodic dissolution of galena was investigated. The electrochemical model is in good agreement with experimentally measured galvanic currents. Galvanic interaction is a dynamic function and various models are developed which account for dynamic behaviour in galvanic cells.
MT2017
Zhu, Ruixing. "Characterization of Positive Electrodes in Sodium-Metal Chloride Batteries." Thesis, 2016. https://doi.org/10.7916/D82R3RGR.
Full textKnehr, Kevin William. "Identification, Characterization, and Mitigation of the Performance Limiting Processes in Battery Electrodes." Thesis, 2016. https://doi.org/10.7916/D8DZ08HF.
Full textVillarreal, Diego. "Reversible solid oxide cells for bidirectional energy conversion in spot electricity and fuel markets." Thesis, 2017. https://doi.org/10.7916/D8V988P6.
Full textCHEN, Shiming. "Development of carbon-based catalysts for small molecule activation." Doctoral thesis, 2019. http://hdl.handle.net/11570/3137751.
Full textIl presente lavoro di tesi è stato incentrato sullo sviluppo di tecniche avanzate per la sintesi dell'ammoniaca attraverso processi sostenibili. Per fare ciò è stato realizzato un processo elettrocatalitico che utilizza N2, H2O ed energia da fonti rinnovabili. Esiste un crescente interesse per la sintesi dell'ammoniaca diretta senza l’utilizzo di combustibili fossili. L'implementazione di questa tecnologia determinerà un cambiamento radicale verso una produzione chimica sostenibile e a basse emissioni di CO2, basata sull'utilizzo di fonti energetiche rinnovabili. Una cella elettrochimica che opera in flusso è stata sviluppata per effettuare la sintesi dell'ammoniaca direttamente dall'acqua e dall’ azoto, operante a temperatura ambiente e pressione atmosferica. Il catalizzatore utilizzato è basato su nanoparticelle di Fe supportate su nanotubi di carbonio (CNT). È stata ottenuta una velocità di formazione di ammoniaca di 2,2 × 10-3 gNH3·m2·h-1 a temperatura ambiente e pressione atmosferica in un flusso di N2, sotto l’applicazione di un voltaggio costante di -2,0 V vs Ag/AgCl. Questo valore è risultato superiore al tasso di formazione di ammoniaca ottenuto utilizzando metalli nobili (Ru / C) in condizioni di reazione comparabili. Inoltre, è stato ottenuto idrogeno con un'efficienza faraidica del 95,1%. La condizioni di reazione sono state ottimizzate per il catalizzatore a base di Fe2O3-CNT, con un carico di ossido di ferro del 30% in peso. Le prestazioni dipendono fortemente dal design della cella, in cui è necessario limitare al massimo il crossover dell'ammoniaca attraverso la membrana. Anche le condizioni di reazione hanno un ruolo significativo, l'effetto dell'elettrolita (tipo, pH, concentrazione) è stato studiato in termini di densità di corrente, velocità di formazione dell'ammoniaca ed efficienza Faradaica nei test condotti fino a 24 ore. Lo studio sulla tensione applicata è risultato complesso: è stata trovata un'eccellente stabilità per una tensione applicata di -1,0 V vs. Ag / AgCl, a tensioni più negative, la velocità di formazione dell'ammoniaca e ix l’efficienza faraidica sono più elevate, ma con un cambiamento delle prestazioni catalitiche, sebbene la densità di corrente rimanga costante per almeno 24 ore. Questo effetto è da attribuire alla riduzione delle specie di ossido di ferro al di sopra di una soglia di tensione negativa, che migliora la reazione collaterale di ricombinazione H+ / e- per generare H2 piuttosto che reagire con le specie N2 attivate, possibilmente situate all'interfaccia tra ossido di ferro e CNT funzionalizzati. Lo studio effettuato sui siti attivi mostra che, contrariamente alle aspettative, le nanoparticelle di ossido di ferro (Fe2O3) (supportate su nanotubi di carbonio - CNT) risultano più attive nella sintesi elettrocatalitica diretta di ammoniaca da N2 e H2O rispetto ai corrispondenti campioni Fe o Fe2N realizzati attraverso riduzione. Si osserva una relazione lineare tra la velocità di formazione dell'ammoniaca, e il segnale specifico dell'ossigeno all’ XPS (spettroscopia a raggi X-fotoelettronica) relativo a O2- nelle specie Fe2O3, che è comprovato da campioni sia chimicamente che elettrochimicamente ridotti. I dati HRTEM (microscopia elettronica a trasmissione ad alta risoluzione) sui cambiamenti durante i test elettrocatalitici hanno confermato che i siti attivati per la sintesi dell'ammoniaca vengono formati in situ a causa della ricostruzione di particelle di ossido di ferro. Questo apre nuove possibilità per comprendere il meccanismo di reazione in condizioni di lavoro e progettare elettrocatalizzatori più efficienti per la sintesi dell'ammoniaca. Utilizzando le stesse condizioni di reazione, sono stati anche esplorati catalizzatori omogenei per la sintesi dell'ammoniaca utilizzando una serie di complessi di Rutenio. Il catalizzatore Ru(PNT)Cl2 (PNP: 2,6-Bis[(di-tert-butylphosphanyl)methyl]pyridine) è risultato essere il miglior catalizzatore per la sintesi dell'ammoniaca in questo screening. Il catalizzatore è stato testato anche in condizioni diverse, è stato osservato che una quantità adeguata di acido acetico aumenta le sue performance catalitiche. Confrontando la diversa composizione di azoto e idrogeno, è stato riscontrato che la x formazione di ammoniaca aumenta con l'aumentare del carico di azoto, dal quale si può dedurre che l'attivazione dell'idrogeno non è il fattore limitante in queste condizioni di reazione.
The present Ph.D. thesis was focused on the development of advanced technics for ammonia synthesis with sustainable methods, i.e. electrocatalytic processes using N2, H2O and renewable energy as input sources. Implementing this technology will thus result in a breakthrough change towards a sustainable, low-carbon chemical production based on the use of renewable energy sources. There is thus a rising interest in fossil-fuel-free direct ammonia synthesis. A flow electrochemical cell was developed for ammonia synthesis directly from water and N2 at room temperature and atmospheric pressure. Iron supported on carbon nanotubes (CNTs) was used as the electrocatalyst in this hemi-cell. An ammonia formation rate of 2.2×10-3 gNH3·m-2·h-1 was obtained at room temperature and atmospheric pressure in a flow of N2, under an applied potential of -2.0 V vs. Ag/AgCl. This value is higher than the ammonia formation rate obtained using noble metals (Ru/C) under comparable reaction conditions. Furthermore, hydrogen gas with total Faraday efficiency as high as 95.1% was obtained. Reaction condition was optimised with Fe2O3-CNT used as electrocatalyst. A 30% wt iron-oxide loading was found to be optimal. The performances greatly depend on the cell design, where the possibility of ammonia crossover through the membrane has to be inhibited. The reaction conditions also play a significant role. The effect of electrolyte (type, pH, concentration) was investigated in terms of current density, rate of ammonia formation and Faradaic efficiency in continuous tests up to 24h of time on stream. A complex effect of the applied voltage was observed. An excellent stability was found for an applied voltage of -1.0 V vs. Ag/AgCl. At higher negative applied voltages, the ammonia formation rate and Faradaic selectivity are higher, but with a change of the catalytic performances, although the current densities remain constant for at least 24h. This effect is interpreted in terms of reduction of the iron-oxide species vii above a negative voltage threshold, which enhances the side reaction of H+/e- recombination to generate H2 rather than their use to reduce activated N2 species, possibly located at the interface between iron-oxide and functionalized CNTs. Active sites for ammonia synthesis was also explored. We show here that, contrary to expectations, iron-oxide (Fe2O3) nanoparticles (supported over carbon nanotubes - CNTs) result more active in the direct electrocatalytic synthesis of ammonia from N2 and H2O than the corresponding samples after reduction to form Fe or Fe2N supported nanoparticles. A linear relationship is observed between the ammonia formation rate and the specific XPS (X-ray- photoelectron spectroscopy) oxygen signal related to O2- in Fe2O3 species, which is proofed by both chemically and electrochemically reduced samples. HRTEM (high-resolution transmission electron microscopy) data on the changes during the electrocatalytic tests confirmed that in-situ activated sites for ammonia synthesis were formed, due to the reconstruction of iron oxide particles. This opens new possibilities to understand the reaction mechanism under working conditions and design more efficient electrocatalyst for ammonia synthesis. Homogenous catalysts for ammonia synthesis was also explored. A series of ruthenium complexes were tested using the same conditions. Ru(PNP)Cl2 (PNP: 2,6-Bis[(di-tert-butylphosphanyl)methyl]pyridine) was found to be the best catalyst for ammonia synthesis among the series of analyzed complexes. This complex was also tested using different conditions, and it was found that suitable amounts of acetic acid can increase its catalytic performance. Comparing different compositions of nitrogen and hydrogen loadings, it was found that the ammonia formation rate increases with increasing nitrogen loading, from which we can deduce that activation of hydrogen was not the rate limitation step in these conditions.