Academic literature on the topic 'Electrochemistry of enzymes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrochemistry of enzymes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electrochemistry of enzymes"

1

Bernhardt, Paul V. "Enzyme Electrochemistry — Biocatalysis on an Electrode." Australian Journal of Chemistry 59, no. 4 (2006): 233. http://dx.doi.org/10.1071/ch05340.

Full text
Abstract:
Oxidoreductase enzymes catalyze single- or multi-electron reduction/oxidation reactions of small molecule inorganic or organic substrates, and they are integral to a wide variety of biological processes including respiration, energy production, biosynthesis, metabolism, and detoxification. All redox enzymes require a natural redox partner such as an electron-transfer protein (e.g. cytochrome, ferredoxin, flavoprotein) or a small molecule cosubstrate (e.g. NAD(P)H, dioxygen) to sustain catalysis, in effect to balance the substrate/product redox half-reaction. In principle, the natural electron-
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Chuhong, Lior Sepunaru, Enno Kätelhön, and Richard G. Compton. "Electrochemistry of Single Enzymes: Fluctuations of Catalase Activities." Journal of Physical Chemistry Letters 9, no. 11 (2018): 2814–17. http://dx.doi.org/10.1021/acs.jpclett.8b01199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

GUO, L. H., and H. A. O. HILL. "ChemInform Abstract: Direct Electrochemistry of Proteins and Enzymes." ChemInform 22, no. 50 (2010): no. http://dx.doi.org/10.1002/chin.199150345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hill, H. A. O. "Making Use of the Direct Electrochemistry of Enzymes." Portugaliae Electrochimica Acta 19, no. 3 (2001): 165–70. http://dx.doi.org/10.4152/pea.200103165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peterbauer, Clemens K. "Pyranose dehydrogenases: Rare enzymes for electrochemistry and biocatalysis." Bioelectrochemistry 132 (April 2020): 107399. http://dx.doi.org/10.1016/j.bioelechem.2019.107399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Davis, Connor, Stephanie X. Wang, and Lior Sepunaru. "What can electrochemistry tell us about individual enzymes?" Current Opinion in Electrochemistry 25 (February 2021): 100643. http://dx.doi.org/10.1016/j.coelec.2020.100643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gulaboski, Rubin, and Valentin Mirceski. "Application of voltammetry in biomedicine - Recent achievements in enzymatic voltammetry." Macedonian Journal of Chemistry and Chemical Engineering 39, no. 2 (2020): 153. http://dx.doi.org/10.20450/mjcce.2020.2152.

Full text
Abstract:
Protein-film voltammetry (PFV) is considered the simplest methodology to study the electrochemistry of lipophilic redox enzymes in an aqueous environment. By anchoring particular redox enzymes on the working electrode surface, it is possible to get an insight into the mechanism of enzyme action. The PFV methodology enables access to the relevant thermodynamic and kinetic parameters of the enzyme-electrode reaction and enzyme-substrate interactions, which is important to better understand many metabolic pathways in living systems and to delineate the physiological role of enzymes. PFV additiona
APA, Harvard, Vancouver, ISO, and other styles
8

KASAI, Nahoko, Yasuhiko JIMBO, Osamu NIWA, Tomokazu MATSUE, and Keiichi TORIMITSU. "Multichannel Glutamate Monitoring by Electrode Array Electrochemically Immobilized with Enzymes." Electrochemistry 68, no. 11 (2000): 886–89. http://dx.doi.org/10.5796/electrochemistry.68.886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schachinger, Franziska, Hucheng Chang, Stefan Scheiblbrandner, and Roland Ludwig. "Amperometric Biosensors Based on Direct Electron Transfer Enzymes." Molecules 26, no. 15 (2021): 4525. http://dx.doi.org/10.3390/molecules26154525.

Full text
Abstract:
The accurate determination of analyte concentrations with selective, fast, and robust methods is the key for process control, product analysis, environmental compliance, and medical applications. Enzyme-based biosensors meet these requirements to a high degree and can be operated with simple, cost efficient, and easy to use devices. This review focuses on enzymes capable of direct electron transfer (DET) to electrodes and also the electrode materials which can enable or enhance the DET type bioelectrocatalysis. It presents amperometric biosensors for the quantification of important medical, te
APA, Harvard, Vancouver, ISO, and other styles
10

Shukla, Alka, Elizabeth M. Gillam, Deanne J. Mitchell, and Paul V. Bernhardt. "Direct electrochemistry of enzymes from the cytochrome P450 2C family." Electrochemistry Communications 7, no. 4 (2005): 437–42. http://dx.doi.org/10.1016/j.elecom.2005.02.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Electrochemistry of enzymes"

1

Whitaker, Richard George. "The electrochemistry of redox enzymes." Thesis, University of Warwick, 1989. http://wrap.warwick.ac.uk/4235/.

Full text
Abstract:
The work presented in this thesis is of two types. Firstly methods for the electrochemical immobilisation of redox enzymes in organic polymers are described. The electrochemical monitoring of the immobilised enzyme reaction by detection of one of the enzyme's products is discussed, and the results obtained for such a system under a variety of experimental conditions are presented. A good understanding of the way in which such a system operates' was obtained by using a specially developed kinetic model., This model is explained fully in the theory chapter of this thesis. A variety of organic po
APA, Harvard, Vancouver, ISO, and other styles
2

Hunt, Nicholas Imber. "Biological electrochemistry." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

De, Oliveira Pedro M. A. "Studies of enzymes by electrochemistry and atomic force microscopy." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Lang. "Investigating the current/voltage/power/stability capabilities of enzyme-based membrane-less hydrogen fuel cells." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:efef7124-3444-4531-872b-2ee8868e0aa0.

Full text
Abstract:
Fuel cell is a device that can directly convert chemical energy into electrical energy. For low-temperature fuel cells, catalysts are required. Fuel cells using Pt-based or other non-biological materials as catalysts are known as conventional fuel cells. Inspired from Nature, enzymes can be used as catalysts in fuel cells known as enzyme-based fuel cells. The conventional and enzymatic fuel cells share the same underlying electrochemical principles, while enzyme-based fuel cells have their intrinsic advantages and disadvantages due to enzyme properties. The objective of this thesis is to inves
APA, Harvard, Vancouver, ISO, and other styles
5

Owens, Zachary J. "The purification and electrochemistry of his-tagged photosystem II." [Denver, Colo.] : Regis University, 2009. http://165.236.235.140/lib/ZOwens2009.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goldet, Gabrielle. "Electrochemical investigations of H2-producing enzymes." Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:696e5b9d-a80f-493e-85d4-0954be499b72.

Full text
Abstract:
Hydrogenases are a family of enzyme that catalyses the bidirectional interconversion of H<sup>+</sup> and H<sub>2</sub>. There are two major classes of hydrogenases: the [NiFe(Se)]- and [FeFe]-hydrogenases. Both of these benefit from characteristics which would be advantageous to their use in technological devices for H<sub>2</sub> evolution and the generation of energy. These features are explored in detail in this thesis, with a particular emphasis placed on defining the conditions that limit the activity of hydrogenases when reducing H<sup>+</sup> to produce H<sub>2</sub>. Electrochemistry
APA, Harvard, Vancouver, ISO, and other styles
7

Yorke, Jake. "Engineering cytochrome P450BM3 into a drug metabolising enzyme." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:92dcddfe-b3fc-46e8-9e5e-77910fb03783.

Full text
Abstract:
Directed evolution studies by Whitehouse et al. identified several variants of P450BM3 (CYP102A1) with enhanced substrate oxidation rates across a range of substrates. This thesis describes the use of these ‘generic accelerator’ variants, in combination with selectivity altering mutations to engineer P450BM3¬ for the oxidation of pharmaceuticals. Using engineered variants the non-steroidal anti-inflammatory drug diclofenac was metabolised to the primary human metabolites 4′- and 5-hydroxydiclofenac, with total conversion of 2 mM substrate by 5 μM enzyme. The local-anaesthetic lidocaine and the
APA, Harvard, Vancouver, ISO, and other styles
8

Jarrar, Haytem. "Bioélectrodes enzymatiques pour des applications en biocapteurs et en biopiles." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2011. http://www.theses.fr/2011ENCM0017/document.

Full text
Abstract:
La principale originalité de ce travail est la mise en œuvre de deux voies d'immobilisation du biorécepteur sur différents matériaux d'électrodes. Dans un premier temps, nous avons démontré que le polyneutral red (PNR) représente une bonne matrice de rétention pour les enzymes. De plus, de part ses propriétés de médiation vis-à-vis des enzymes et principalement de leur cofacteur (NAD/FAD), ce polymère permet une connexion intime entre le site actif de l'enzyme et l'électrode. L'ensemble de ces caractéristiques nous a permis de mettre en œuvre une bioélectrode applicable en tant qu'anode d'un b
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Vincent Cho-Chien. "New insights into enzymatic CO₂ reduction using protein film electrochemistry." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:f1061854-f6b8-4562-81e0-968c80e1da3a.

Full text
Abstract:
Carbon monoxide dehydrogenase (CODH) is known to catalyze CO oxidation and CO₂ reduction reversibly with the minimal overpotential. A great advantage of protein film electrochemistry (PFE) is its ability to probe catalysis over a wide range of potentials, especially in the low potential region required for CO₂ reduction. CODH I and CODH II from Carboxydothermus hydrogenoformans(Ch) and the composite enzyme acetyl-CoA synthase/carbon monoxide dehydrogenase (ACS/CODH) from Moorella thermoacetica(Mt) are intensively studied throughout this thesis. The different catalytic redox-states in CODH, C<s
APA, Harvard, Vancouver, ISO, and other styles
10

Maerten, Clément. "Bio-inspired self-construction and self-assembly of organic films triggered by electrochemistry." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE045.

Full text
Abstract:
Les architectures moléculaires qui se forment exclusivement sur une surface sont encore rares. L’électrodéposition est un procédé exploitant des « signaux » électriques afin de déclencher et contrôler l’assemblage de films. Récemment, une nouvelle méthode : l’autoconstruction de films en « une étape » par l’utilisation d’un morphogène (un gradient de catalyseur généré depuis une électrode), a attiré l’attention de la communauté scientifique. En effet, elle permet l’auto-assemblage rapide de films polymériques robustes. Cependant, cette technique était limitée à des systèmes basés sur la chimie
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Electrochemistry of enzymes"

1

Whitaker, Richard George. The electrochemistry of redox enzymes. typescript, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Volk, Kevin John. Electrochemistry and enzymes on-line with mass spectrometry. 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electrochemistry of enzymes"

1

Ludwig, Roland. "Direct Electron Transfer to Enzymes." In Encyclopedia of Applied Electrochemistry. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kalimuthu, Palraj, and Paul V. Bernhardt. "CHAPTER 5. Electrochemistry of Molybdenum and Tungsten Enzymes." In Molybdenum and Tungsten Enzymes. Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782628842-00168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Magnusson, Anders O., and Dirk Holtmann. "Cofactor Substitution, Mediated Electron Transfer to Enzymes." In Encyclopedia of Applied Electrochemistry. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Weidinger, Inez M. "Plasmonic Nanostructured Supports for Spectro-Electrochemistry of Enzymes on Electrodes." In Handbook of Nanoelectrochemistry. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15207-3_43-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weidinger, Inez M. "Plasmonic Nanostructured Supports for Spectro-Electrochemistry of Enzymes on Electrodes." In Handbook of Nanoelectrochemistry. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15266-0_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shumyantseva, Victoria V., Tatiana Bulko, Evgeniya Shich, Anna Makhova, Alexey Kuzikov, and Alexander Archakov. "Cytochrome P450 Enzymes and Electrochemistry: Crosstalk with Electrodes as Redox Partners and Electron Sources." In Advances in Experimental Medicine and Biology. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16009-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Butt, Julea N., Andrew J. Gates, Sophie J. Marritt, and David J. Richardson. "Enzyme Film Electrochemistry." In Electrochemical Processes in Biological Systems. John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118899076.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bachmeier, Andreas S. J. L. "The Direct Electrochemistry of Fuel-Forming Enzymes on Semiconducting Electrodes: How Light-Harvesting Semiconductors Can Alter the Bias of Reversible Electrocatalysts in Favour of H2 Production and CO2 Reduction." In Metalloenzymes as Inspirational Electrocatalysts for Artificial Photosynthesis. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47069-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brett, Christopher, and Ana Maria Oliveira-Brett. "DNA and Enzyme-Based Electrochemical Biosensors: Electrochemistry and AFM Surface Characterization." In Nanobioelectrochemistry. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29250-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Guo, Liang-Hong, H. Allen, and O. Hill. "Direct Electrochemistry of Proteins and Enzymes." In Advances in Inorganic Chemistry. Elsevier, 1991. http://dx.doi.org/10.1016/s0898-8838(08)60043-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electrochemistry of enzymes"

1

Mazrouei, Roya, Bryan Kier, and Mohammad Shavezipur. "Development of Three-Dimensional MEMS Biochemical Sensors for Low Concentration Aqueous Solutions." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98071.

Full text
Abstract:
Abstract Three-dimensional biochemical sensors are developed that can be used for chemical and biological detection in aqueous solutions and suspensions. The sensors are fabricated using a standard polycrystalline silicon process, PolyMUMPs, and can detect chemicals and biomarkers in low concentrations in near real time. The sensors made of a stack of electrodes allowing the solution to occupy the space between the layers of electrodes and have a larger interface with the electrodes. The sensors use electrochemistry impedance spectroscopy (EIS) for detection and therefore increasing the soluti
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!