To see the other types of publications on this topic, follow the link: Electrodes positives.

Dissertations / Theses on the topic 'Electrodes positives'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Electrodes positives.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Van, Staen Guilherme. "Electrodes positives à base de cuivre pour accumulateurs Li-ion." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066165/document.

Full text
Abstract:
Les accumulateurs Li-ion sont des systèmes de stockage électrochimique de l’énergie composés de deux électrodes, dans lesquelles les ions Li+ vont venir s’insérer réversiblement lors des cycles de charge et de décharge. Afin d’intégrer le domaine des véhicules électriques, leur densité d’énergie doit être augmentée pour apporter l’autonomie demandée. Ceci peut être réalisé en augmentant la d.d.p. entre les deux électrodes. Nous visons ici la synthèse de nouveaux matériaux polyanioniques d’électrode positive dans lesquels le lithium pourrait venir s’insérer à haut potentiel en faisant intervenir le couple Cu3+/Cu2+ (5,3 V vs Li+/Li). Parmi les phosphates de cuivre synthétisés, Li2CuP2O7 présente une oxydation non réversible à haut potentiel (> 5 V). Sa synthèse à basse température permet d’exacerber les réactions, en raison de la faible taille des particules obtenues ainsi que de la présence de carbone conducteur à leur surface, mais la phase s’avère instable à haut potentiel.En ce qui concerne les composés de type sulfate, une nouvelle phase Li4Cu4O2(SO4)4 est isolée, montrant une insertion réversible du lithium à une valeur moyenne de 4,7 V. Cependant, la capacité de ce matériau est très faible (15 mAh.g-1) et plusieurs substitutions chimiques avec du fluor, du magnésium ou du sodium sont étudiées dans le but d’augmenter la mobilité du lithium
Li-ion batteries (LIBs) are energy storing electrochemical devices composed of two electrodes, in which Li+ ions are reversibly inserted during charge and discharge cycles. Their use in electric vehicles relies on the increase of their energy density, to provide enough autonomy. This can be reached by increasing the cell d.d.p. We thus aim the synthesis of new positive electrode polyanionic materials, in which lithium could be inserted at high potential, using the Cu3+/Cu2+ couple’s activity (5,3 V vs Li+/Li). Among the synthesized copper phosphates, Li2CuP2O7 presents a non-reversible oxidation at high potential (>5 V). Its low temperature synthesis intensifies the reaction, due to the smaller particle size achieved as well as the presence of a conductive carbon coating, but the phase is instable at high potential. Concerning sulfate-type compounds, a new phase Li4Cu4O2(SO4)4 is isolated, showing a reversible lithium insertion at an average value of 4.7 V. Nevertheless, its capacity is very low (15 mAh.g-1) and various chemical substitutions with fluorine, magnesium or sodium are attempted to increase lithium’s mobility
APA, Harvard, Vancouver, ISO, and other styles
2

Dubois, Vincent. "Electrodes positives lithiées d’oxysulfures de titane pour microbatteries Li-ion." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14858/document.

Full text
Abstract:
Le développement à grande échelle des microbatteries pour des applications diverses comme l’alimentation de secours de certains composants électroniques dans les téléphones portables nécessite une compatibilité avec le procédé de solder-reflow employé dans le domaine de la microélectronique. Dans ce contexte, cette étude porte sur la mise au point d’un nouveau procédé de réalisation de couches minces d’oxysulfures de titane lithiés (LixTiOySz) pour une utilisation en tant qu’électrode positive dans une microbatterie Li-ion. Tout d’abord ce travail a débuté par la synthèse et la caractérisation de plusieurs compositions de sulfures de titane lithiés à l’état massif par réaction en solution de TiS2 ou TiS3 avec le n-butyllithium mais aussi par réaction à l’état solide à haute température entre les précurseurs TiS2, Li2S et Ti. Par la suite, des couches minces de LixTiOySz ont été déposées par pulvérisation cathodique radiofréquence à effet magnétron de cibles réalisées à partir des matériaux lithiés à l’état massif. La composition chimique de ces dépôts dépend de celle de la cible utilisée ce qui permet d’obtenir des couches plus ou moins riches en lithium et en soufre. En revanche, elles sont toutes très mal cristallisées, denses et elles ne présentent pas de structuration particulière. Enfin, les caractérisations électrochimiques des dépôts de LixTiOySz, à la fois en électrolyte liquide et solide, ont permis de mettre en évidence une corrélation entre leur composition chimique et leur comportement électrochimique. Globalement, ces dernières sont performantes, compatibles avec le solder-reflow et donc tout à fait intéressante pour l’application
Large-scale development of microbatteries for various applications such as back-up power sources for cell phone electronic components needs suitability with reflowing process that is often used in microelectronic. Here we report on the development of a new realization process to produce lithiated titanium oxysulfides (LixTiOySz) thin films for use as positive electrode in Li-ion microbatteries. First of all, this work began with synthesis and characterization of several lithiated titanium sulfides compounds prepared by reaction between TiS2 or TiS3 with n-butyllithium but also by solid state reaction at high temperature between TiS2, Li2S and Ti. Then, LixTiOySz thin films were sputtered by magnetron effect radio-frequency sputtering from targets made of lithiated materials previously synthesized. The chemical composition of those films depends on the target one and allows obtaining thin films with different lithium and sulfur contents. In contrast, they are all amorphous, dense and they don’t have a morphological structuration. Finally, electrochemical characterizations of thin films, both in liquid and solid electrolyte, have highlighted a correlation between their chemical composition and their electrochemical behavior. Taken as a whole, LixTiOySz thin films are powerful, suitable with reflowing process and thus very interesting for the application
APA, Harvard, Vancouver, ISO, and other styles
3

ZANINOTTO, FRANCK. "Etude des mecanismes de vieillissement des electrodes positives des accumulateurs plomb-acide." Paris 6, 1998. http://www.theses.fr/1998PA066370.

Full text
Abstract:
Les accumulateurs plomb-acide possedent des applications tres diverses. Leur faible cout de fabrication, leur recyclage aise en font de bons candidats comme moyens de stockage d'energie sur vehicule electrique. Toutefois, les accelerations, les freinages et les pauses repetitives generent des contraintes qui tendent a reduire la duree de vie des accumulateurs en alterant la matiere active des electrodes positives. L'objectif de l'etude presentee dans ce memoire est de comprendre les mecanismes de vieillissement du pbo 2 de l'electrode positive et de rechercher des solutions permettant de retarder cette degradation dans le cadre d'une utilisation intensive sur vehicule electrique. Pour ce faire, nous avons elabore des cellules de cyclage specifiques permettant d'accelerer la degradation de l'electrode positive. L'influence du type de cyclage sur la perte de capacite a ete etudiee. Nous nous sommes interesse plus particulierement a l'evolution texturale de la matiere positive pendant le cyclage : les resultats experimentaux mettent en evidence une croissance continue de la microstructure du pbo 2. De la meme maniere, ces travaux ont permis d'etablir le lien direct entre la croissance nanotexturale du pbo 2 et la decohesion de la matiere active positive. Ce vieillissement textural a pu etre modelise a l'aide d'un modele mathematique assimilant les cristaux de pbo 2 a un reseau de spheres jointives. Des essais complementaires montrent que l'ajout d'acide orthophosphorique joue un role favorable dans le maintien des performances des cellules au cours du cyclage en maintenant la stabilite texturale de la matiere active. D'autres tests montrent que l'utilisation d'un traitement electrique specifique permet de restaurer ponctuellement la capacite des accumulateurs grace a une regeneration texturale partielle de la masse active.
APA, Harvard, Vancouver, ISO, and other styles
4

Franger, Sylvain. "Synthese, caracterisation et etude des proprietes electrochimiques de nouveaux oxydes de manganese pour electrodes positives d'accumulateurs au lithium." Paris 6, 2001. http://www.theses.fr/2001PA066094.

Full text
Abstract:
Apres avoir reexamine en detail, dans une premiere partie, l'ensemble des caracteristiques electrochimiques de la birnessite sol-gel, mno 1 , 8 4. 0,6 h 2o, en particulier grace a une etude detaillee de la cinetique de transport du lithium dans le materiau, une reponse appropriee a ete apporte a la baisse constante de capacite en cyclage grace a un dopage de la structure birnessite par le cobalt. Des capacites specifiques stables en cyclage sont alors obtenues avec 170 ah/kg au bout du quarantieme cycle a c/20. Les variations structurales fortement amoindries, dans le cas du compose au cobalt, sont responsables de l'amelioration constatee. En effet, dans le domaine d'utilisation de 4,2 v a 2v, la transition hexagonale monoclinique qui a lieu au cours du processus d'intercalation dans la birnessite sol-gel n'est jamais observee dans le cas du compose au cobalt. Dans une seconde partie, nous avons synthetise toute une famille de composes lamellaires de formule li ymn 1 xm xo 2 +. Prepares par echange d'ions a reflux a 100\c en milieu aqueux a partir de na 0 , 7mno 2 +. Les composes li ymn 1 xm xo 2 +. Obtenus apres traitement thermique a 200 et a 300\c presentent des courbes de decharge - charge uniforme, mais d'un point de vue structurale sont constituees majoritairement d'une phase lamellaire hexagonale et tres minoritairement d'une phase spinelle. L'etude chronopotentiometrique de ces composes a demontre que le comportement le plus performant etait obtenu pour le compose dope au cobalt avec un taux optimum de x = 0,15. Ce materiau s'est revele remarquable de par ses caracteristiques electrochimiques avec 190 ah/kg recuperes au bout du quarantieme cycle contre 170 ah/kg pour le compose non dope. De telles valeurs stables sont parmi les plus elevees jamais obtenues dans le cas des oxydes de manganese lamellaires. Nous avons pu montrer en outre que la cinetique de transport du lithium etait superieure de 1 a 2 ordres de grandeur a celles obtenues dans les birnessites sol-gel.
APA, Harvard, Vancouver, ISO, and other styles
5

Rougier, Aline. "Relation entre la structure et le comportement electrochimique des phases LixNi1-yMyO2 (M = Al, Fe, Co). Materiaux d' electrodes positives pour batteries au lithium." Phd thesis, Université Sciences et Technologies - Bordeaux I, 1995. http://tel.archives-ouvertes.fr/tel-00145612.

Full text
Abstract:
Le nickelate de lithium "LiNiO2" est actuellement l'un des matériaux d'électrode positive pour batteries au lithium les plus etudies. Cependant, "LiNiO2" stoechiométrique n'existe pas, la formule réelle est Li1-zNi1+zO2. La présence de ces (z) ions nickel excédentaires entraine une diminution significative des performances électrochimiques. Une étude structurale fine (méthode de Rietveld), couplée à une étude magnétique, a permis de quantifier de façon précise l'écart a la stoechiométrie (z). L'influence de divers substituants sur les propriétés structurales, physiques et électrochimiques a également été étudiée.
APA, Harvard, Vancouver, ISO, and other styles
6

Storck-Gantois, Fanny. "Effet de la compression et de l’ajout d’additifs sur l’amélioration des performances d’un accumulateur au plomb." Paris 6, 2008. http://www.theses.fr/2008PA066370.

Full text
Abstract:
Les travaux de cette thèse visent le développement d’un accumulateur au plomb-acide aux propriétés améliorées en combinant l’utilisation d’additifs et la mise en compression des cellules. L’utilisation d’additifs poreux vise à favoriser la diffusion de l’électrolyte au sein de la matière active positive et l’utilisation d’additifs de conductivité tend à optimiser le réseau de conduction des matériaux actifs. Le maintien de la cohésion des matières en cyclage est assuré par la mise en compression des électrodes. Dans cet objectif, un protocole de fabrication d’électrodes positives a été développé au laboratoire. Un comportement de référence a ensuite été définit en déterminant les performances électriques et les caractéristiques des électrodes témoins soumises à des pressions allant de 0 à 1bar. Puis les effets des additifs ont été évalués lors d’applications en compression. Notre but étant également une meilleure compréhension du système plomb-acide et du mode de fonctionnement des additifs, des mécanismes pour expliquer l’évolution texturale des matériaux actifs positifs en compression et l’interaction entre les additifs et l’application d’une pression ont été proposés
APA, Harvard, Vancouver, ISO, and other styles
7

Soudan, Patrick. "Etude des proprietes electrochimiques de nouveaux oxydes et bronzes de type m yv 2o 5 prepares par voie sol-gel et utilisables comme electrodes positives d'accumulateurs au lithium." Paris 6, 1998. http://www.theses.fr/1998PA066625.

Full text
Abstract:
Ce travail se situe dans le cadre de l'amelioration des performances des materiaux cathodiques pour accumulateurs au lithium. La synthese sol-gel est utilisee ici pour obtenir des composes de type m yv 2o 5 : un bronze hexagonal cs 0. 3 5v 2o 5 et des oxydes mixtes orthorhombiques m 0. 1 6v 2o 5. 1 6 (m 2 + = mg 2 +, mn 2 +, ni 2 +) et m 0. 1 1v 2o 5. 1 6 (m 3 + = al 3 +, cr 3 +, fe 3 +, ga 3 +, la 3 +). Leurs proprietes electrochimiques et structurales sont etudiees vis a vis de l'insertion du lithium. Dans une premiere partie sont mises en evidence les differences majeures entre v 2o 5 et les oxydes mixtes. La presence de cations divalents limite les deformations structurales qui se produisent pour x > 1 dans li xv 2o 5, alors que les ions trivalents al 3 +, cr 3 +, ga 3 + et la 3 + les empechent totalement. Le gain de capacite en cyclage par rapport a v 2o 5 sol-gel est de 10% pour le groupe m 0. 1 6v 2o 5. 1 6 et de 25% pour le groupe m 0. 1 1v 2o 5. 1 6. La deuxieme partie est consacree a l'oxyde mixte cr 0. 1 1v 2o 5. 1 6 qui est le plus performant. L'etude structurale sur electrodes des materiaux li xcr 0. 1 1v 2o 5. 1 6 pour 0x2 revele un comportement de type monophase, qui se distingue de l'apparition successive des phases , , et du systeme li xv 2o 5. Les mesures cinetiques indiquent un changement important de morphologie pour x > 1, avec une diminution d'un facteur 10 de la longueur du chemin de diffusion. L'obtention d'un materiau reduit par traitement sous ar/h 2 constitue une nouvelle voie de synthese par rapport au compose vo 2(b) nanocristallin mentionne dans la litterature, et offre une capacite specifique aussi elevee. Dans la troisieme partie est etudiee l'insertion electrochimique du lithium dans le bronze cs 0. 3 5v 2o 5. La premiere etape correspond au remplissage des 0. 65 sites 2c et 4e vacants et la deuxieme acheve la reduction du vanadium v. Une mise en forme du materiau est observee en cours de cyclage entre 1. 8 v et 4. 2 v, conduisant a une augmentation de la capacite specifique de 25%.
APA, Harvard, Vancouver, ISO, and other styles
8

Blidberg, Andreas. "Iron Based Materials for Positive Electrodes in Li-ion Batteries : Electrode Dynamics, Electronic Changes, Structural Transformations." Doctoral thesis, Uppsala universitet, Strukturkemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-317014.

Full text
Abstract:
Li-ion battery technology is currently the most efficient form of electrochemical energy storage. The commercialization of Li-ion batteries in the early 1990’s revolutionized the portable electronics market, but further improvements are necessary for applications in electric vehicles and load levelling of the electric grid. In this thesis, three new iron based electrode materials for positive electrodes in Li-ion batteries were investigated. Utilizing the redox activity of iron is beneficial over other transition metals due to its abundance in the Earth’s crust. The condensed phosphate Li2FeP2O7 together with two different LiFeSO4F crystal structures that were studied herein each have their own advantageous, challenges, and scientific questions, and the combined insights gained from the different materials expand the current understanding of Li-ion battery electrodes. The surface reaction kinetics of all three compounds was evaluated by coating them with a conductive polymer layer consisting of poly(3,4-ethylenedioxythiophene), PEDOT. Both LiFeSO4F polymorphs showed reduced polarization and increased charge storage capacity upon PEDOT coating, showing the importance of controlling the surface kinetics for this class of compounds. In contrast, the electrochemical performance of PEDOT coated Li2FeP2O7 was at best unchanged. The differences highlight that different rate limiting steps prevail for different Li-ion insertion materials. In addition to the electrochemical properties of the new iron based energy storage materials, also their underlying material properties were investigated. For tavorite LiFeSO4F, different reaction pathways were identified by in operando XRD evaluation during charge and discharge. Furthermore, ligand involvement in the redox process was evaluated, and although most of the charge compensation was centered on the iron sites, the sulfate group also played a role in the oxidation of tavorite LiFeSO4F. In triplite LiFeSO4F and Li2FeP2O7, a redistribution of lithium and iron atoms was observed in the crystal structure during electrochemical cycling. For Li2FeP2O7, and increased randomization of metal ions occurred, which is similar to what has been reported for other iron phosphates and silicates. In contrast, triplite LiFeSO4F showed an increased ordering of lithium and iron atoms. An electrochemically induced ordering has previously not been reported upon electrochemical cycling for iron based Li-ion insertion materials, and was beneficial for the charge storage capacity of the material.
APA, Harvard, Vancouver, ISO, and other styles
9

El, Khalifi Mohammed. "Étude théorique des matériaux d'électrode positive négative pour batteries Li-ion." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20200.

Full text
Abstract:
Ce mémoire est consacré à l'étude théorique des matériaux de cathode pour batteries Li-ion de structure olivine LiMPO4 (M=Mn, Fe, Co, Ni), des phases délithiées MPO4 et des phases mixtes LiFexMn1-xPO4, FexMn1-xPO4 et LiFexCo1-xPO4. La stabilité des phases magnétiques et les paramètres de maille théoriques ont été déterminés par la méthode des pseudopotentiels et comparés aux données expérimentales. Les structures électroniques ont été calculées par une méthode « tout électron » et analysées en termes d'hybridation des orbitales atomiques Ces résultats ont permis d'interpréter les spectres de photoélectrons X et d'absorption des rayons X, en particulier les modifications réversibles associées aux cycles de lithiation/délithiation. Les effets de la polarisation de spin et de la corrélation électronique ont été discutés. Enfin, le calcul des paramètres Mössbauer du 57Fe a montré qu'un accord quantitatif entre les résultats théoriques et les données expérimentales nécessitait la prise en compte de ces deux effets. Ce type de calcul a permis de prédire et d'expliquer que la transformation LiFePO4FePO4 s'accompagnait de la variation du gradient de champ électrique Vzz d'une extrémité à l'autre de l'échelle Mössbauer pour 57Fe
This thesis is devoted to the theoretical study of the cathode materials for Li-ion batteries with olivine structure LiMPO4 (M=Mn, Fe, Co, Ni), the delithiated phases MPO4 and the mixed phases LiFexMn1-xPO4, FexMn1-xPO4 and LiFexCo1-xPO4. The magnetic phase stability and lattice parameters were theoretically determined from pseudopotential calculations and the results have been compared with experiments. Electronic structures were obtained from all electron calculations and analyzed in terms of orbital hybridization. The results have been used for the interpretation of X-ray photoemission and X-ray absorption spectra, especially changes due to lithiation/delithiation cycles. Effects of spin polarization and electronic correlation on the electronic structures have been also discussed. It has been shown that ab initio calculations of the 57Fe Mössbauer parameters also require these two effects in order to obtain a quantitative agreement with experiments. Finally, it was found that LiFePO4FePO4 transformation involves a dramatic change of the electric field gradient VZZ from one end to the other of the 57Fe Mössbauer scale
APA, Harvard, Vancouver, ISO, and other styles
10

Webster, Simon. "An electrochemical study of lead acid battery positive electrodes." Thesis, Loughborough University, 1986. https://dspace.lboro.ac.uk/2134/13873.

Full text
Abstract:
The thesis describes an electrochemical investigation into the properties of various lead alloys used in the manufacture of leadacid battery positive electrodes. The electrochemical results have been discussed in terms of current nucleation and growth theories. The morphological aspects of the discharge reaction have been investigated and theories are presented describing some of the important influences of various alloying ingredients. It has been found possible to suggest trends important in the optimisation of alloy composition for modern lead-acid battery grids. This aspect is especially relevant to the development of maintenance free technology.
APA, Harvard, Vancouver, ISO, and other styles
11

Palmer, Michael. "High voltage positive electrodes for high energy lithium-ion batteries." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/398001/.

Full text
Abstract:
Lithium-ion high voltage cathode materials are discussed within this thesis, with LiCoPO4 as a composite electrode evaluated for use as the active compound within lithium half-cells. A comprehensive literature review on lithium containing cathode materials with a focus on high voltage materials is provided. The majority of the materials within this work were synthesised using solvothermal techniques, which were characterised through XRD and SEM. Composite type electrodes were prepared through mainly using PTFE as the binder material, and different electrolytes were also investigated. Composite electrodes were electrochemically evulated with competitive capacites obtained compared to the literature. The performance of the LiCoPO4 composite electrodes was found to be significantly different and attributed to the use of different synthesis solvents and heating conditions used for synthesis. The rate performance and electrochemical cycling was found to depend highly on the surface area and particle size of the composite electrode. XANES and in-situ XRD was performed at Diamond Light Source (UK synchrotron), where the LiCoPO4 charge profile was fully characterised. It was found that LiCoPO4 undergoes transient lattice parameter changes during charging, and that phase recovery during any relaxations was observed.
APA, Harvard, Vancouver, ISO, and other styles
12

Blanchard, Rémi. "Redox shuttle and positive electrode protection for Li-O2 systems." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI098/document.

Full text
Abstract:
Les travaux de cette thèse focalisent sur la résolution de deux problèmes majeurs des électrodes positives de systèmes Li-O2, dus à la nature du produit de décharge formé pendant la réaction de réduction de l'oxygène, en milieux Li+ : Lithium peroxyde (Li2O2). Le premier problème est lié au processus de formation de ce dernier (étapes successives de nucléation électrochimiques et de dismutation chimique d'un intermédiaire : le superoxide de lithium), qui conduit à la formation de très grosses particules de peroxyde lithium à la surface de l'électrode. Du fait de leurs taille et de leur résistivité ( le gap du peroxyde de lithium est de 5 eV), il est impossible de recharger de manière efficace et à 100% ce dernier. Cependant, ce problème peut être résolu, grâce à l'ajout d'un additif, qui permet le transport d'électron en solution, et qui peut (en théorie), recharger les particules de Li2O2, détachées de l'électrode. Un très bon candidat a été trouvé dans cette étude, qui a prouvé de très bonne performances pour l'amélioration du processus de recharge, et un effet bénéfique supplémentaire a été caractérisé sur le potentiel de décharge, grâce à un effet catalytique (augmentation du potentiel de réduction de 230 mV). Cependant, cette solution demande de repenser totalement le design actuel des systèmes Li-O2, car ce composé (soluble) peut facilement traverser le séparateur, vers l'électrode de lithium (et causer une autodécharge importante ainsi qu'une boucle de recharge infinie). Le second problème est lié à une autre caractéristique du peroxyde de lithium : sa réactivité. De fait, c'est un base forte au sens de Lewis (en accord avec la théorie HSAB), et réagit de manière importante avec les constituants de l'électrodes (réactivité avec le liant PVDF, mais aussi avec les solvant, le sel et le support carboné de l'électrode). Il est donc nécessaire de trouver un moyen de protéger ce dernier, et une solution proposé dans ce manuscrit a été de réaliser la déposition d'une couche nanométrique de Nb2O5, qui a pour but d'éviter tout contact direct entre le carbone, et le peroxyde de lithium (réaction entre ces deux derniers, qui conduit à la formation d'un composé avec un gap de 7 eV : le carbonate de lithium). Le dépôt fut étudié sur un carbone graphitisé (Zoltek Panex 30) qui, de manière surprenante, a été très résistant versus le peroxyde de lithium. Malheureusement, la présence du dépôt à la surface du tissus n'a pas protégé l'électrode, mais a plutôt eu l'effet inverse, car des traceurs de la formation de carbonate de lithium ont pu être observé (alors qu'aucun traceur n'était détecté sur le tissu nu). Le Nb2O5 a donc été écarté, et d'autres composés doivent être testés dans de futures études, pour cette application
The present PhD work focuses on solving two major issues of the Li-O2 positive electrodes, both being linked with the nature of the discharge product formed during the Oxygen Reduction Reaction, in Lithium cation electrolyte: Lithium peroxide (Li2O2). The first issue is related to the Discharge mechanism (consecutives Electrochemical nucleation and chemical disproportionation of an intermediate, lithium superoxide), which lead to the formation of large particles of lithium peroxide on the electrode surface. Owing to their size and resistivity (bandgap of lithium peroxide : 5 eV), it is nearly impossible to re-charge efficiently the electrode. This issue can be solved, thanks to the dissolution of an additive in solution, that promote the transport of electrons, and allow the oxidation of large discharge particles (in theory, even the ones disconnected from the electrode). A very good compound was found to efficiently work as a redox shuttle (enhanced Oxygen Evolution reaction), with also a highly beneficial effect for the ORR, with a catalysis effect that allowed to increase the onset of the ORR of 230 mV. However, this solution require a engineering of the practical system as this additive could cross from the positive electrode to the negative side (lithium) and trigger capacity loss and infinite charging loop. The second issue is linked to its reactivity. As a matter of fact, it is an hard base (according to HSAB theory), which reacts readily with a large panel of electrodes component (reactivity toward the PvDf binder, solvent, salts, but also with the carbon material, used as the positive electrode). As such, it is necessary to find a way to protect the latter, and a solution proposed in this work was to use Atomic Layer deposition of Niobium pentoxide (Nb2O5), in order to form a very thin deposit, which was supposed to prevent any contact between the discharge product, and the carbon support (consumption of Carbon, with formation of a large bandgap compound : Lithium carbonate). The deposition was conducted onto a graphitized carbon cloth (Zoltek Panex 30), which surprisingly proved to be highly resistant toward lithium peroxide. Sadly, the presence of the deposit did not protect the electrode but rather made it weaker, with tracers of the formation lithium carbonate. This compound was thus not considered anymore, and others deposits are yet needed to be tested in future studies
APA, Harvard, Vancouver, ISO, and other styles
13

Yamada, Izumi. "Studies on Litihum Ion Transfer at Positive-electrode/Electrolyte Interface." 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/77798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Balasubramanian, Prasanth [Verfasser]. "Cobalt free nanomaterials as positive electrodes for Lithium ion battery / Prasanth Balasubramanian." Ulm : Universität Ulm, 2019. http://d-nb.info/1180496973/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Karayaylali, Pinar. "Understanding electronic structure and interfaces of positive electrodes for lithium ion batteries." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104288.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 104-110).
Lithium ion batteries are the currently the best commercial battery in the market and they are used as energy storage devices for mobile phones, laptops, and other portable electronic devices. This is due to their balance of high energy density with high power density compared to other electrochemical energy devices. Also, these days the automotive industry wants to use lithium ion batteries to electric vehicles to reduce the pollution and independence to oil. Although lithium ion batteries are currently one of the best energy storage devices, there is still an ample room for improvement. One of the key parameters to study is electrode/electrolyte interface of electrodes. EEI on the negative electrode, also known as Solid Electrolyte Interphase (SEI) has the well-known structure with organic and inorganic compounds. Although EEI on negative electrodes is well known, it is not the case for positive electrodes. Numerous studies have been done on positive electrodes; however, there is still a need for systematic study of these interfaces on positive electrodes. This thesis is about understanding the reactivity and interactions of Li-ion battery positive electrode materials with the electrolyte. By understanding reactions at the EEI, we can develop a way to improve cycle life and safety of lithium ion batteries. To unambiguously pinpoint the electrode/electrolyte interface layers on different positive electrode materials, 100 % active materials are used as positive electrodes instead of composite electrodes.
by Pinar Karayaylali.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
16

Lacassagne, Elodie. "Études des phénomènes de mouillabilité et des cinétiques d’imprégnation des électrodes positives par l’électrolyte : application aux batteries Lithium-Ion." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10140/document.

Full text
Abstract:
Le contact entre l'électrode et l'électrolyte est primordial pour le bon fonctionnement d'une batterie Lithium-Ion. L'imprégnation de l'électrode positive par un électrolyte liquide a toujours été considérée comme totale, cependant les phénomènes ne sont pas exactement connus. Ainsi, ces travaux s'intéressent à l'influence de la composition de l'électrode positive (matière active et agent conducteur) sur cette imprégnation. Après une première étude des propriétés conductrices, électrochimiques et morphologiques d'électrodes présentant des formulations plus ou moins éloignées des formulations industrielles, une méthode utilisant l'équation de Washburn a été développée afin d'étudier l'imprégnation des pores modélisés par un ensemble de tubes capillaires. L'utilisation de l'hexadecane, considéré comme un liquide parfaitement mouillant, a permis de déterminer la taille effective des pores indépendamment de l'électrolyte, et celle-ci a pu être comparée à des résultats obtenus grâce à la méthode de thermoporosimétrie. Puis, les régimes de Washburn obtenus lors de la diffusion de l'électrolyte ont mis en évidence les cinétiques d'ascension. Par la suite, la méthode de Washburn a été utilisée afin de caractériser les propriétés d'imprégnation d'électrodes élaborées avec un nouveau liant et selon un procédé innovant s'affranchissant de l'utilisation de solvant. L'utilisation d'un additif permettant la création de porosité d'une part, et la réticulation du liant d'autre part permettent d'obtenir une imprégnation de l'électrolyte comparable à celle observée pour les électrodes fabriquées par voie solvant
The contact between the electrode and the electrolyte is essential for a Lithium-Ion battery functioning. The impregnation of a positive electrode by the electrolyte has always been considered as total; however the phenomena are not exactly known. Thus, in this work, the influence of the positive electrode composition (active material, conductive agent and binder) on the impregnation has been investigated. After a first study focusing on the conductive, electrochemical and morphological properties of the electrodes, with different types of formulation, a method using Washburn equation has been developed in order to study the impregnation of the electrode’s pores, which were modeled as capillary tubes. With the use of hexadecane, considered as a perfectly wetting liquid, the effective pore size has been determined and then compared to the results given by the thermoporosimetry method. Then, the kinetics of ascension have been identified with the Washburn regimes obtained with the diffusion of the electrolyte in the cathodes. Afterwards, Washburn method has been used in order to characterize the impregnation properties of electrodes elaborated with an innovative process without solvent. Thanks to the use of an additive allowing the creation of porosity in one hand and the reticulation of the binder in the other hand, an impregnation of these new electrode by the electrolyte has been considered as comparable to the one observed for the cathodes made with solvent
APA, Harvard, Vancouver, ISO, and other styles
17

Jeschull, Fabian. "Functional Binders at the Interface of Negative and Positive Electrodes in Lithium Batteries." Licentiate thesis, Uppsala universitet, Strukturkemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-267557.

Full text
Abstract:
In this thesis, electrode binders as vital components in the fabrication of composite electrodes for lithium-ion (LIB) and lithium-sulfur batteries (LiSB) have been investigated. Poly(vinylidene difluoride) (PVdF) was studied as binder for sulfur-carbon positive electrodes by a combination of galvanostatic cycling and nitrogen absorption. Poor binder swelling in the electrolyte and pore blocking in the porous carbon were identified as origins of low discharge capacity, rendering PVdF-based binders an unsuitable choice for LiSBs. More promising candidates are blends of poly(ethylene oxide) (PEO) and poly(N-vinylpyrrolidone) (PVP). It was found that these polymers interact with soluble lithium polysulfide intermediates generated during the cell reaction. They can increase the discharge capacity, while simultaneously improving the capacity retention and reducing the self-discharge of the LiSB. In conclusion, these binders improve the local electrolyte environment at the electrode interface. Graphite electrodes for LIBs are rendered considerably more stable in ‘aggressive’ electrolytes (a propylene carbonate rich formulation and an ether-based electrolyte) with the poorly swellable binders poly(sodium acrylate) (PAA-Na) and carboxymethyl cellulose sodium salt (CMC-Na). The higher interfacial impedance seen for the conventional PVdF binder suggests a protective polymer layer on the particles. By reducing the binder content, it was found that PAA-Na has a stronger affinity towards electrode components with high surface areas, which is attributed to a flexible polymer backbone and a higher density of functional groups. Lastly, a graphite electrode was combined with a sulfur electrode to yield a balanced graphite-sulfur cell. Due to a more stable electrode-electrolyte interface the self-discharge of this cell could be reduced and the cycle life was extended significantly. This example demonstrates the possible benefits of replacing the lithium metal negative electrode with an alternative electrode material.
APA, Harvard, Vancouver, ISO, and other styles
18

Ashton, Thomas E. "Microwave-assisted synthesis and local analyses of positive insertion electrodes for Li+ batteries." Thesis, University of Glasgow, 2016. http://theses.gla.ac.uk/7856/.

Full text
Abstract:
Efficient energy storage holds the key to reducing waste energy and enabling the use of advanced handheld electronic devices, hydrid electric vehicles and residential energy storage. Recently, Li-ion batteries have been identified and employed as energy storage devices due to their high gravimetric and volumetric energy densities, in comparison to previous technologies. However, more research is required to enhance the efficiency of Li-ion batteries by discovering electrodes with larger electrochemical discharge capacities, while maintaining electrochemical stability. The aims of this study are to develop new microwave-assisted synthesis routes to nanostructured insertion cathodes, which harbor a greater affinity for lithium extraction and insertion than bulk materials. Subsequent to this, state-of-the-art synchrotron based techniques have been employed to understand structural and dynamic behaviour of nanostructured cathode materials during battery cell operation. In this study, microwave-assisted routes to a-LiFePO4, VO2(B), V3O7, H2V3O8 and V4O6(OH)4 have all been developed. Muon spin relaxation has shown that the presence of b-LiFePO4 has a detrimental effect on the lithium diffusion properties of a-LiFePO4, in agreement with first principles calculations. For the first time, a-LiFePO4 nanostructures have been obtained by employing a deep eutectic solvent reaction media showing near theoretical capacity (162 mAh g–1). Studies on VO2(B) have shown that the discharge capacity obtained is linked to the synthesis method. Electrochemical studies of H2V3O8 nanowires have shown outstanding discharge capacities (323 mAh g–1 at 100 mA g–1) and rate capability (180 mAh g–1 at 1 A g–1). The electrochemcial properties of V4O6(OH)4 have been investigated for the first time and show a promising discharge capacity of (180 mAh g–1). Lastly, in situ X-ray absorption spectroscopy has been utilised to track the evolution of the oxidation states in a-LiFePO4, VO2(B) and H2V3O8, and has shown these can all be observed dynamically.
APA, Harvard, Vancouver, ISO, and other styles
19

Clark, John. "Computer modelling of positive electrode materials for lithium and sodium batteries." Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616648.

Full text
Abstract:
Providing cleaner sources of energy will require significant improvements to the solid-state materials available for energy storage and conversion technologies. Rechargeable lithium and sodium batteries are generally regarded as the best available candidates for future energy storage applications, particularly with regard to implementation within hybrid or fully electric vehicles, due to their high energy density. However, production of the next generation of rechargeable batteries will require significant improvements in the materials available for the cathode, anode and electrolyte. Modern computer modelling techniques enable valuable insights into the fundamental defect, ion transport and voltage properties of battery materials at the atomic level. Polyanionic framework materials are being investigated as alternative cathodes to LiCoO2 in Li-ion batteries largely due to their greater stability, cost and environmental benefits. In this thesis, four types of polyanion materials are examined using computational techniques. Firstly, the pyrophosphate material, Li2FeP2O7 is investigated, which has the highest voltage (3.5 V) for an iron-based phosphate cathode. In this pyrophosphate material the anti-site defect in which the Li+ and Fe2+ cations exchange positions is the intrinsic defect type found with the lowest energy. Lithium ion diffusion will follow non-linear, curved paths in the b-axis and c-axis directions, which show low migration energies. Hence, in contrast to 1D diffusion in LiFePO4, fast Li+ transport in Li2FeP2O7 is predicted to be through a 2D network in the bc-plane, which is important for good rate capability and for the function of particles without nano-sizing. Favourable doping is found for Na+ on the Li+ site, and isovalent dopants (e.g., Mn2+, Co2+, Cu2+) on the Fe2+ site; the latter could be used in attempts to increase the Fe2+/Fe3+ redox potential towards 4V. Secondly, the relative abundance and low cost associated with Na-ion batteries now make them an attractive alternative for large-scale grid storage. Therefore, defect chemistry and ion migration results are presented for the sodium-based pyrophosphate framework, Na2MP2O7 (where M = Fe, Mn). Formation energies for Na/M ion exchange are found to be higher than Li/Fe exchange, which has been related to the larger size of the Na ion compared to the Li ion. Low activation energies are found for long-range diffusion in all crystallographic directions in Na2MP2O7 suggesting three-dimensional (3D) Na-diffusion. Thirdly, the search for high voltage cathodes for lithium-ion batteries has led to recent interest in the Li2Fe(SO4)2 material which has a voltage of 3.83 V vs lithium, the highest recorded for a fluorine-free iron-based compound. Ion conduction paths through the Li2M(SO4)2 (M = Fe, Mn, Co) marinite family of cathode materials, show low activation energies for lithium migration along the a-axis channels giving rise to long-range 1D diffusion, supported by molecular dynamics (MD) simulations. Density functional theory (DFT) simulations were used to reproduce the observed high voltage of Li2Fe(SO4)2 and to make predictions of the voltages of both Li2Mn(SO4)2 and Li2Co(SO4)2, and also examine local structural distortions on lithium extraction. Finally, the layered and tavorite polymorphs of LiFeSO4OH have recently attracted interest as sustainable cathode materials offering low temperature synthesis routes. Using DFT techniques the experimental voltage and structural parameters are accurately reproduced for the tavorite polymorph. An important result for the layered structure, is that similar accuracy in both cell voltage and structure can only be obtained if a van der Waals functional is included in the DFT methodology to account for the inter-layer binding.
APA, Harvard, Vancouver, ISO, and other styles
20

Sun, Meiling. "Elaboration of novel sulfate based positive electrode materials for Li-ion batteries." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066686/document.

Full text
Abstract:
Le besoin croissant de batteries à ions lithium dans notre société exige le développement de matériaux d'électrode positive, avec des exigences spécifiques en termes de densité énergétique, de coût et de durabilité. Dans ce but, nous avons exploré quatre composés à base de sulfate: un fluorosulfate - LiCuSO4F et une famille d'oxysulfates - Fe2O(SO4)2, Li2Cu2O(SO4)2 and Li2VO(SO4)2. Leur synthèse, structure et performances électrochimiques sont présentées pour la première fois. Étant électrochimiquement inactif, LiCuSO4F présente une structure triplite ordonnée qui est distincte des autres fluorosulfates. L'activité électrochimique des composés oxysulfate a été explorée face au lithium. Plus spécifiquement, Fe2O(SO4)2 délivre une capacité réversible d'environ 125 mA∙h/g à 3.0 V par rapport à Li+/Li0; Li2VO(SO4)2 et Li2Cu2O(SO4)2 présentent respectivement les potentiels les plus élevés de 4.7 V vs. Li+/Li0 parmi les composés à base de V et de Cu. Enfin, la phase Li2Cu2O(SO4)2 révèle la possibilité d'une activité électrochimique anionique dans une électrode positive polyanionique. Leurs propriétés physiques, telles que les conductivités ioniques et les propriétés magnétiques, sont également rapportées. Dans l'ensemble, les oxysulfates sont intéressants à étudier en tant qu'électrodes positives polyanioniques pour les batteries à ions lithium
The increasing demand of our society for Li-ion batteries calls for the development of positive electrode materials, with specific requirements in terms of energy density, cost, and sustainability. In such a context, we explored four sulfate based compounds: a fluorosulfate – LiCuSO4F, and a family of oxysulfates – Fe2O(SO4)2, Li2Cu2O(SO4)2 and Li2VO(SO4)2. Herein their synthesis, structure, and electrochemical performances are presented for the first time. Being electrochemically inactive, LiCuSO4F displays an ordered triplite structure which is distinct from other fluorosulfates. The electrochemical activity of the oxysulfate compounds was explored towards lithium. Specifically, Fe2O(SO4)2 delivers a sustained reversible capacity of about 125 mA∙h/g at 3.0 V vs. Li+/Li0; Li2VO(SO4)2 and Li2Cu2O(SO4)2 respectively exhibit the highest potential of 4.7 V vs. Li+/Li0 among V- and Cu- based compounds. Last but not least, the Li2Cu2O(SO4)2 phase reveals the possibility of anionic electrochemical activity in a polyanionic positive electrode. Their physical properties, such as ionic conductivities and magnetic properties are also reported. Overall, this makes oxysulfates interesting to study as polyanionic positive electrodes for Li-ion batteries
APA, Harvard, Vancouver, ISO, and other styles
21

Inamoto, Jun-ichi, and Junichi Inamoto. "Electrochemical Characterization of Surface-State of Positive Thin-Film Electrodes in Lithium-Ion Batteries." Kyoto University, 2017. http://hdl.handle.net/2433/226784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Madsen, Alex. "Lithium iron sulphide as a positive electrode material for rechargeable lithium batteries." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/355748/.

Full text
Abstract:
Lithium iron sulphide has been investigated as a low-cost, high energy density and relatively safe positive electrode material for secondary lithium batteries. Lithium iron sulphide was synthesised, characterised and compared with natural pyrite samples and was shown to have a capacity of 350 mAh.g-1 upon cycling between 1.45 and 2.80 V vs. Li. The capacity was attributed to the Fe2+/Fe3+ redox couple at potentials up to 2.55 V, and oxidation of sulphur sites from Fe3+(S2-)2 to Fe3+S2-(S2)2-0.5 up to 2.80 V. The cycle life performance of lithium iron sulphide is poor when the cell is cycled between 1.45 and 2.80 V, with the cell loosing approximately 1.4 mAh.g-1 per cycle, although this performance is superior to comparable pyrite electrodes. Calcium doped samples of lithium iron sulphide were synthesised. Calcium doping was shown to impact upon lithium transport properties of the bulk lithium iron sulphide, improving the rate performance of the material. Improvements in cycle life performance of the calcium doped samples were offset by decreased specific capacity due to lithium substitution. The poor cycle life performance of lithium iron sulphide cells was attributed to the utilisation of the high voltage plateau corresponding to sulphur site oxidation/reduction. Experiments utilising a variety of negative electrode materials has identified the formation of soluble polysulphide species upon cycling of the cell, which reduce irreversibly at the negative electrode, contributing to active mass loss and poor cycle life performance. In-situ XRD studies have highlighted the structural decomposition that occurs upon utilisation of the sulphide, which results in irreversible amorphisation of the lithium iron sulphide crystal structure. Lithium iron sulphide was treated via coating with lithium boron oxide glass and a novel carbon coating method via thermal decomposition of butyl-methyl-pyrrolydinium-dicyanimide. Both treatments were shown to increase the cycle life performance of lithium iron sulphide, due to decreased dissolution of polysulphide upon cycling. The choice of binder, electrode formulation and electrolyte was also shown to impact upon the cycle life performance of lithium iron sulphide cells.
APA, Harvard, Vancouver, ISO, and other styles
23

Martin, Andréa Joris Quentin. "Nano-sized Transition Metal Fluorides as Positive Electrode Materials for Alkali-Ion Batteries." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21619.

Full text
Abstract:
Übergangsmetallfluoridverbindungen sind sehr vielversprechende Kandidaten für die nächste Generation von Kathoden für Alkaliionenbatterien. Dennoch verhindern einige Nachteile dieser Materialklasse ihre Anwendung in Energiespeichermedien. Metallfluoride haben eine stark isolierende Wirkung, außerdem bewirken die Mechanismen beim Lade-/Entladevorgang, große Volumenänderungen und somit eine drastische Reorganisation des Materials, welche nur geringfügig umkehrbar ist. Um diese Nachteile zu reduzieren, werden in dieser Arbeit innovative Syntheserouten für die Umwandlung von Metallfluoridverbindungen sowie deren Anwendung in Alkaliionenbatterien vorgestellt. Im ersten Teil werden MFx Verbindungen (M = Co, Fe; x = 2 oder 3) untersucht. Diese Materialien zeigen eine hohe Ausgangskapazität aber nur bei sehr geringen C-Raten und zudem sehr geringe Zyklisierbarkeiten. Ex-situ-XRD und -TEM zeigen, dass die geringe Umkehrbarkeit der Prozesse hauptsächlich aus der Umwandlungsreaktion während des Be-/Entladens resultieren. Im zweiten Teil werden sowohl die Synthesen als auch die elektrochemischen Eigenschaften von Perowskiten aus Übergangsmetallfluoriden vorgestellt. NaFeF3 zeigt hierbei exzellente Leistungen und Reversibilitäten. Die Untersuchung der Mechansimen durch ex-situ und operando XRD während der Be- und Entladeprozesse hinsichtlich verschiedener Alkalisysteme zeigt, dass das kristalline Netzwerk über den Zyklus erhalten bleibt. Dies führt zur hohen Reversibilität und hohen Leistung selbst bei hohen C-Raten. Der Erhalt der Kristallstruktur wird durch elektrochemische Stabilisierung der kubischen Konformation von FeF3 ermöglicht, welche normalerweise erst bei hohen Temperaturen (400 °C) beobachtet wird und durch geringere Reorganisationen innerhalb des Kristallgerüsts erklärt werden kann. Ähnliche elektrochemische Eigenschaften können für KFeF3 und NH4FeF3 beobachtet werden, wobei erstmalig von Ammoniumionen als Ladungsträger in Alkaliionensystemen berichtet wird.
Metal fluoride compounds appear as very appealing candidates for the next generation of alkali-ion battery cathodes. However, many drawbacks prevent this family of compounds to be applicable to storage systems. Metal fluorides demonstrate a high insulating character, and the mechanisms involved during the discharge/charge processes atom engender large volume changes and a drastic reorganization of the material, which induces poor reversibility. In order to answer these problematics, the present thesis reports the elaboration of innovative synthesis routes for transition metal fluoride compounds and the application of these fluoride materials in alkali-ion battery systems. In a first part, MFx compounds (M = Co, Fe; x = 2 or 3) are studied. Those compounds exhibit high initial capacity but very poor cyclability and low C-rate capabilities. Ex-situ X-ray diffraction and transmission electron microscopy demonstrate that the low reversibility of the processes is mainly due to the conversion reaction occurring during their discharge/charge. In the second part, the syntheses of transition metal fluoride perovskites are reported, as well as their electrochemical properties. NaFeF3 demonstrates excellent performances and reversibility. The study of the mechanisms occurring during its charge/discharge processes towards different alkali systems by ex-situ and operando X-ray diffraction reveals that its crystalline framework is maintained along the cycles, resulting in high reversibility and excellent C-rate performance. This retention of the crystal framework is possible by an electrochemical stabilization of a cubic conformation of FeF3, which is usually only observable at high temperature (400 °C), and can be explained by lower reorganizations within the crystal framework. Similar electrochemical properties could be observed for KFeF3 and NH4FeF3, where ammonium ions are reported for the first time as a charge carrier in alkali-ion systems.
APA, Harvard, Vancouver, ISO, and other styles
24

Nishibori, Eiji, Masaki Takata, Makoto Sakata, Miho Fujita, Mitsuru Sano, and Motoharu Saitoh. "Studies of Capacity Losses in Cycles and Storages for a Li1.1Mn1.9 O 4 Positive Electrode." The Electrochemical Society, 2004. http://hdl.handle.net/2237/18423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Nose, Masafumi. "Studies on Sodium-containing Transition Metal Phosphates for Sodium-ion Batteries." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gabrielli, Giulio [Verfasser]. "Studies of high voltage LiNi0.5Mn1.5O4 as positive electrode material in lithium ion cells / Giulio Gabrielli." Ulm : Universität Ulm, 2017. http://d-nb.info/1124902651/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Chen, Chih-Yao. "A study on positive electrode materials for sodium secondary batteries utilizing ionic liquids as electrolytes." Kyoto University, 2014. http://hdl.handle.net/2433/192207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kremer, Lea Sophie [Verfasser]. "Process-structure-property relationships of ultra-thick positive electrodes for high-energy lithium-ion batteries / Lea Sophie Kremer." Ulm : Universität Ulm, 2021. http://d-nb.info/123973705X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lemoine, Kévin. "Nouveaux matériaux fluorés d'électrodes positives à cations 3d mixtes pour batteries à ions lithium : Elaboration, caractérisation structurale et propriétés électrochimiques." Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1030.

Full text
Abstract:
Ce travail concerne l’application d'une stratégie de synthèse en deux étapes pour préparer de nouveaux matériaux fluorés à base de fer dans l’objectif de les tester en tant que composé actif d’électrodes positives pour batteries à ions lithium : élaboration d’un précurseur suivie d’un traitement thermique adéquat. L’étude porte dans un premier temps sur les fluorures hydratés 3D à valence mixte de fer, Fe2F5(H2O)2 de structure weberite inverse et Fe3F8(H2O)2. Par traitement thermique sous air, deux hydroxyfluorures sont stabilisés, FeF2.5(OH)0.5 de structure pyrochlore et FeF2.66(OH)0.34 de structure HTB respectivement. L’étude de leur comportement électrochimique montre d’excellentes capacités ≈ 170 mAh.g-1 (2-4 V). Afin d’étudier l'impact de la nature des cations 3d sur les performances, les hydrates équivalents à cations mixtes, M2+Fe3+F5(H2O)2 (M = Mn, Ni) et M2+M3+2F8(H2O)2 (M2+ = Mn, Fe, Co, Ni, Cu ; M3+ = V, Fe), ont été synthétisés en milieu solvothermal dans une seconde partie. Des intermédiaires amorphes oxyfluorés apparaissent lors de la dégradation thermique sous air avec en particulier CuFe2F6O, obtenu à partir de CuFe2F8(H2O)2, qui présente une capacité remarquable de 310 mAh.g-1 (2-4 V). Enfin, des fluorures d’ammonium à cations mixtes NH4M2+Fe3+F6 (M = Mn, Co, Ni, Cu), obtenus par mécanosynthèse et la voie solvothermale, ont conduit aux premiers fluorures à cations mixtes trivalents M0.5Fe0.5F3 (M = Mn, Co, Ni, Cu) de structure pyrochlore par oxydation topotactique sous fluor moléculaire F2 en température
This work presents an innovative synthetic strategy to develop new fluorinated iron-based materials as positive electrodes for Li-ion batteries. This two-step elaboration method consists in the preparation of fluorinated precursors followed by an appropriate thermal treatment. The study initially focuses on tridimensional mixed valence iron fluorides, Fe2F5(H2O)2 with the inverse weberitestructural type and Fe3F8(H2O)2. The calcination under air leads to the formation of two new hydroxyfluorides, FeF2.5(OH)0.5 and FeF2.66(OH)0.34 with pyrochlore and HTB structural types respectively which present excellent electrochemical capacities ≈ 170 mAh.g-1 (2-4 V). In a second part, the 3d-cation effect on oxyfluorides performances is evaluated from equivalent mixed metal cation hydrates, M2+Fe3+F5(H2O)2 (M = Mn, Ni) and M2+M3+2F8(H2O)2 (M2+ = Mn, Fe, Co, Ni, Cu, M3+ = V, Fe), synthesized solvothermally. Their thermal degradation under air reveals amorphous oxyfluorinated intermediates and among them, CuFe2F6O, obtained from CuFe2F8(H2O)2, with an remarkable capacity of 310 mAh.g-1 (2-4 V). In the last part, mixed ammonium fluorides (NH4)M2+Fe3+F6 (M = Mn, Co, Ni, Cu) are synthesized using mechanochemical and solvothermal routes. Their thermal topotactic oxidation under molecular fluorine F2 leads to the first trivalent mixed-cation fluorides M0.5Fe0.5F3 (M = Mn, Co, Ni, Cu) with pyrochlore typestructure
APA, Harvard, Vancouver, ISO, and other styles
30

Boivin, Édouard. "Crystal chemistry of vanadium phosphates as positive electrode materials for Li-ion and Na-ion batteries." Thesis, Amiens, 2017. http://www.theses.fr/2017AMIE0032/document.

Full text
Abstract:
Ce travail de thèse a pour but d'explorer de nouveaux matériaux de type structural Tavorite et de revisiter certains déjà bien connus. Dans un premier temps, les synthèses de compositions ciblées ont été réalisées selon des procédures variées (voies tout solide, hydrothermale, céramique assistée par sol-gel, broyage mécanique) afin de stabiliser d'éventuelles phases métastables et d'ajuster la microstructure impactant fortement les performances électrochimiques de tels matériaux polyanioniques. Ces matériaux ont ensuite été décrits en profondeur, dans leurs états originaux, depuis leurs structures moyennes, grâce aux techniques de diffraction (diffraction des rayons X sur poudres ou sur monocristaux et diffraction des neutrons) jusqu'aux environnements locaux, en utilisant des techniques de spectroscopie (résonance magnétique nucléaire à l'état solide, absorption des rayons X, infra-rouge et Raman). Par la suite, les diagrammes de phases et les processus d'oxydoréduction impliqués pendant l'activité électrochimique des matériaux ont été étudiés grâce à des techniques operando (diffraction et absorption des rayons X). La compréhension des mécanismes impliqués pendant le cyclage permet de mettre en évidence les raisons de leurs limitations électrochimiques : La synthèse de nouveaux matériaux (composition, structure, microstructure) peut maintenant être développée afin de contrepasser ces limitations et de tendre vers de meilleures performances
This PhD work aims at exploring new Tavorite-type materials and at revisiting some of the well-known ones. The syntheses of targeted compositions were firstly performed using various ways (all solid state, hydrothermal, sol-gel assisted ceramic, ball milling) in order to stabilize eventual metastable phases and tune the microstructure impacting strongly the electrochemical performances of such polyanionic compounds. The materials were then described in-depth, at the pristine state, from their average long range structures, thanks to diffraction techniques (powder X-rays, single crystal X-rays and neutrons diffraction), to their local environments, using spectroscopy techniques (solid state Nuclear Magnetic Resonance, X-rays Absorption Spectroscopy, Infra-Red and/or Raman). Thereafter, the phase diagrams and the redox processes involved during electrochemical operation of the materials were investigated thanks to operando techniques (SXRPD and XAS). The in-depth understanding of the mechanisms involved during cycling allows to highlight the reasons of their electrochemical limitations: the synthesis of new materials (composition, structure and microstructure) can now be developed to overcome these limitations and tend toward better performance
APA, Harvard, Vancouver, ISO, and other styles
31

Dupré, Nicolas. "Etude du phosphate de vanadyle comme matériau d'électrode de batteries Li-ion." Paris 6, 2001. http://www.theses.fr/2001PA066420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Das, Pratik Ranjan [Verfasser], Gunther [Akademischer Betreuer] Wittstock, and Michael [Akademischer Betreuer] Wark. "Conducting Polymers as Functional Binders for Lithium Ion Battery Positive Electrodes / Pratik Ranjan Das. Betreuer: Gunther Wittstock ; Michael Wark." Oldenburg : BIS der Universität Oldenburg, 2016. http://d-nb.info/1111038821/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Das, Pratik Ranjan Verfasser], Gunther [Akademischer Betreuer] [Wittstock, and Michael [Akademischer Betreuer] Wark. "Conducting Polymers as Functional Binders for Lithium Ion Battery Positive Electrodes / Pratik Ranjan Das. Betreuer: Gunther Wittstock ; Michael Wark." Oldenburg : BIS der Universität Oldenburg, 2016. http://nbn-resolving.de/urn:nbn:de:gbv:715-oops-29114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Martin, Andréa Joris Quentin [Verfasser]. "Nano-sized Transition Metal Fluorides as Positive Electrode Materials for Alkali-Ion Batteries / Andréa Joris Quentin Martin." Berlin : Humboldt-Universität zu Berlin, 2020. http://d-nb.info/1220690406/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Gao, Shuang. "INVESTIGATION OF TRANSITION-METAL IONS IN THE NICKEL-RICH LAYERED POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES." UKnowledge, 2019. https://uknowledge.uky.edu/cme_etds/100.

Full text
Abstract:
Layered lithium transition-metal oxides (LMOs) are used as the positive electrode material in rechargeable lithium-ion batteries. Because transition metals undergo redox reactions when lithium ions intercalate in and disintercalate from the lattice, the selection and composition of transition metals largely influence the electrochemical performance of LMOs. Recently, a Ni-rich compound, LiNi0.8Co0.1Mn0.1O2 (NCM811), has drawn much attention. It is expected to replace its state-of-the-art cousins, LiCoO2 (LCO) and LiNi1/3Co1/3Mn1/3O2 (NCM111), because of its higher capacity, lower cost, and reduced toxicity. However, the excess Ni, as a transition-metal element in NCM811, can cause structural and cycling instability. Starting from NCM811, I modified the composition of transition metals by two approaches: 1) introducing cobalt deficiency and 2) substituting Ni, Co, and Mn with Zr. Their influences on the phase, structure, cycling performance, rate capability, and ionic transport were investigated by a variety of characterization techniques. I found that cobalt non-stoichiometry can suppress Ni2+/Li+ cation mixing, but simultaneously promotes the formation of oxygen vacancies, leading to rapid capacity fade and inferior rate capability compared to pristine NCM811. On the other hand, Zr can reside on and expand the lattice of NCM811, and form Li-rich lithium zirconates on their surfaces. In particular, 1% Zr substitution can increase the stability of NCM811 and facilitate Li-ion transport, resulting in enhanced cycling durability and high-rate performance. My studies help improve the understanding of the effects of transition metals on the degradation of the Ni-rich layered positive electrode material and provide modification strategies to enhance its performance and durability for Li-ion battery applications.
APA, Harvard, Vancouver, ISO, and other styles
36

Nakanishi, Shinji. "Studies on Reaction Mechanism of Lithium Air Secondary Battery and Effects of Carbonaceous Materials to Positive Electrode." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/174954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Nejedlý, Libor. "Elektrody pro lithno-iontové baterie na bázi kobaltitanu lithného." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-218937.

Full text
Abstract:
This master´s thesis deals with electrodes for lithium-ions batteries based on LiCoO2. The first part of the project is devoted to the characteristics of Li-ion batteries, electrochemical reactions and characteristics of electrode materials. The next part describes an experiment that deals with the effects of NA doping on performance of layered materials for lithium secondary batteries. The materials were measured by cyclic voltammetry, impedance spectroscopy and galvanostatic cycling.
APA, Harvard, Vancouver, ISO, and other styles
38

Hwang, Jinkwang. "A Study on Enhanced Electrode Performance of Li and Na Secondary Batteries by Ionic Liquid Electrolytes." Kyoto University, 2019. http://hdl.handle.net/2433/245327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Cuisinier, Marine. "Caractérisation et contrôle de l’interface électrode / électrolyte d’électrodes positives pour accumulateurs Li-ion." Nantes, 2012. http://www.theses.fr/2012NANT2097.

Full text
Abstract:
Les accumulateurs au lithium, largement développés pour l’électronique portable, sont aujourd’hui envisagés pour des applications en véhicules hybrides et électriques. Les limitations actuelles sont leur faible capacité et leur durée de vie limitée provenant entre autres de la nonmaitrise de l’interface électrode positive / électrolyte. La présente étude porte sur la caractérisation et le contrôle des processus interfaciaux relatifs aux matériaux LiNi0. 5Mn0. 5O2, Li1. 2Ni0. 4Mn0. 4O2 et LiFePO4 d’électrode positive lors du stockage et du cyclage électrochimique. La thèse s'est concentrée sur la formation et l’évolution de l'interphase formée par décomposition de l’électrolyte, en fonction de l’état de surface du matériau actif. Différents types de modifications ont été envisagés, tels qu’une modification intrinsèque par vieillissement à l’air ou par favorisation d’une orientation cristalline particulière dans le cas de l’olivine LiFePO4, ou encore par la surlithiation de l’oxyde lamellaire LiNi0. 5Mn0. 5O2, sous la forme Li[Li0. 2Ni0. 4Mn0. 4]O2. D’autres types de modifications, considérées comme artificielles ou externes, reposent sur l’usage d’additifs dans l’électrolyte ou d’un dépôt hétérochimique en surface de Li1. 2Ni0. 4Mn0. 4O2. Dans chaque cas, les espèces visibles à la surface des matériaux au cours du stockage et du cyclage sont corrélées aux performances électrochimiques des électrodes positives. L’originalité du travail repose sur le développement d’outils spectroscopiques tels que la RMN MAS (7Li, 19F et 31P) et l'EELS, parallèlement à l’XPS, pour quantifier les interphases de manière absolue et en décrire l’architecture
Lithium batteries, widely developed for portable electronics, are now being considered for applications in hybrid and electric vehicles. Their current limitations are the low capacity and limited cycle life caused notably by the uncontrolled positive electrode / electrolyte interface. The present study reports the characterization and attempts of control of interfacial processes occurring on LiNi0. 5Mn0. 5O2, Li1. 2Ni0. 4Mn0. 4O2 and LiFePO4 positive electrode materials during their storage and electrochemical cycling. The thesis focuses on the formation and evolution of the interphase formed by decomposition of the electrolyte, depending on the surface chemistry of the active material. Different types of surface modifications have been proposed, such as intrinsic modifications upon aging in air or the promotion of a particular crystalline orientation in the case of olivine LiFePO4, or by overlithiation of the LiNi0. 5Mn0. 5O2 oxide lamellar, under the form of Li [Li0. 2Ni0. 4Mn0. 4]O2. Other types of modifications, considered as artificial or external, are based on the use of additives in the electrolyte or of a heterochemical coating on the surface of Li1. 2Ni0. 4Mn0. 4O2. In each case, species detected on the surface of materials during storage and cycling are correlated with the electrochemical performance of the positive electrodes. The originality of the work is based primarily on the development of spectroscopic tools such as MAS NMR (7Li, 19F and 31P) and EELS, in parallel to XPS, to quantitatively describe the interphase and unravel its architecture
APA, Harvard, Vancouver, ISO, and other styles
40

子揚, 曹., and Ziyang Cao. "Dilution effects of highly concentrated electrolyte with fluorinated solvents on charge/discharge characteristics of Ni-rich layered oxide positive electrode." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13127443/?lang=0, 2020. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13127443/?lang=0.

Full text
Abstract:
高ニッケル三元系材料は商用のLiCoO2正極より高い容量を有するため、EVsで使用するリチウムイオン電池の正極材料の候補として有望である。本論文に、著者は濃厚電解液とフッ素化溶媒を用いた希釈電解液に着目し、高ニッケル三元系LiNi0.8Co0.1Mn0.1O2(NCM811)の充放電サイクル特性を向上させた。電解液中の溶媒化構造の観点から、濃厚電解液の希釈効果がNCM811の充放電特性に及ぼす影響を詳細に検討した。
Ni-rich ternary materials have higher capacity than the commercial LiCoO2 positive electrode, and therefore they are promising candidates for the positive electrode material of lithium ion batteries for use in EVs. In this thesis, the author focused on highly concentrated electrolytes and their diluted electrolytes with fluorinated solvents to improve the cycling performance of a Ni-rich ternary LiNi0.8Co0.1Mn0.1O2 (NCM811) for practical application. Dilution effects of the concentrated electrolytes on the charge/discharge properties of NCM811 were discussed in detail from the viewpoint of the solvation structure in the electrolyte.
博士(工学)
Doctor of Philosophy in Engineering
同志社大学
Doshisha University
APA, Harvard, Vancouver, ISO, and other styles
41

Jokar, Ali. "An inverse method for estimating the electrochemical and the thermophysical parameters of lithium-ion batteries with different positive electrode materials." Thèse, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/11799.

Full text
Abstract:
La sécurité de plusieurs systèmes électriques est fortement dépendante de la fiabilité de leur bloc-batterie à base de piles aux ions lithium (Li-ion). Par conséquent, ces batteries doivent être suivis et contrôlés par un système de gestion des batteries (BMS). Le BMS interagit avec toutes les composantes du bloc-batterie de façon à maintenir leur intégrité. La principale composante d’un BMS est un modèle représentant le comportement des piles Liion et capable de prédire ses différents points d’opération. Dans les industries de l’électronique et de l’automobile, le BMS repose habituellement sur des modèles empiriques simples. Ceux-ci ne sont cependant pas capables de prédire les paramètres de la batterie lorsqu’elle vieillit. De plus, ils ne sont applicables que pour des piles spécifiques. D’un autre côté, les modèles électrochimiques sont plus sophistiqués et plus précis puisqu’ils sont basés sur la résolution des équations de transport et de cinétique électrochimique. Ils peuvent être utilisés pour simuler les caractéristiques et les réactions à l’intérieur des piles aux ions lithium. Pour résoudre les équations des modèles électrochimiques, il faut connaître les différents paramètres électrochimiques et thermo-physiques de la pile. Les variables les plus significatives des piles Li-ion peuvent être divisées en 3 catégories : les paramètres géométriques, ceux définissant les matériaux et les paramètres d’opération. Les paramètres géométriques et de matériaux peuvent être facilement obtenus à partir de mesures directes ou à partir des spécifications du manufacturier. Par contre, les paramètres d’opération ne sont pas faciles à identifier. De plus, certains d’entre eux peuvent dépendre de la technique de mesure utilisée et de l’âge. Finalement, la mesure de certains paramètres requiert le démantèlement de la pile, une procédure risquée et destructive. Plusieurs recherches ont été réalisées afin d’identifier les paramètres opérationnels des piles aux ions lithium. Toutefois, la plupart de ces études ont porté sur l’estimation d’un nombre limité de paramètres et se sont attardées sur un seul type de matériau pour l’électrode positive utilisé dans la fabrication des piles Li-ion. De plus, le couplage qui existe entre les paramètres électrochimiques et thermo-physiques est complètement ignoré. Le but principal de cette thèse est de développer une méthode générale pour identifier simultanément différents paramètres électrochimiques et thermo-physiques et de prédire la performance des piles Li-ion à base de différents matériaux d’électrodes positives. Pour atteindre ce but, une méthode inverse efficace a été introduite. Des modèles directs représentatifs des piles Li-ion à base de différents matériaux d’électrodes positives ont également été développés. Un modèle rapide et précis simulant la performance de piles Li-ion avec des électrodes positives à base de LiMn2O4 ou de LiCoO2 est présenté. Également, deux modèles ont été développés pour prédire la performance des piles Li-ion avec une électrode positive de LiFePO4. Le premier, appelé modèle mosaïque modifié (MM), est basé sur une approche macroscopique alors que le deuxième, appelé le modèle mésoscopique, est plutôt basé sur une approche microscopique. Des études d’estimation de paramètres ont été conduites en utilisant les modèles développés et des données expérimentales fournies par Hydro-Québec. Tous les paramètres électrochimiques et thermo-physiques des piles Li-ions ont été simultanément identifiés et appliqués à la prédiction de la performance des piles. Finalement, une technique en temps réel reposant sur des réseaux de neurones est introduite dans la méthode d’estimation des paramètres intrinsèques au piles Li-ion.
Abstract : The safety of many electrical systems is strongly dependent on the reliable operation of their lithium-ion (Li-ion) battery packs. As a result, the battery packs must be monitored by a battery management system (BMS). The BMS interacts with all the components of the system so as to maintain the integrity of the batteries. The main part of a BMS is a Li-ion battery model that simulates and predicts its different operating points. In the electronics and in the automobile industries, the BMS usually rests on simple empirical models. They are however unable to predict the battery parameters as it ages. Furthermore, they are only applicable to a specific cell. Electrochemical-based models are, on the other hand, more sophisticated and more precise. These models are based on chemical/electrochemical kinetics and transport equations. They may be used to simulate the Li-ion battery characteristics and reactions. In order to run the electrochemical-based mathematical models, it is imperative to know the different electrochemical and thermophysical parameters of the battery. The significant variables of the Li-ion battery can be classified into three groups: geometric, material and operational parameters. The geometric and material parameters can be easily obtained from direct measurements or from the datasheets provided by the manufacturer. The operational properties are, on the other hand, not easily available. Furthermore, some of them may vary according to the measurement techniques or the battery age. Sometimes, the measurement of these parameters requires the dismantling of the battery itself, which is a risky and destructive procedure. Many investigations have been conducted to identify the operational parameters of Li-ion batteries. However, most of these studies focused on the estimation of limited parameters, or considered only one type of the positive electrode materials used in Li-ion batteries. Moreover, the coupling of the thermophysical parameters to the electrochemical variables is ignored in all of them. The main goal of this thesis is to develop a general method to simultaneously identify different electrochemical and thermophysical parameters and to predict the performance of Li-ion batteries with different positive electrode materials. To achieve this goal, an effective inverse method is introduced. Also, direct models representative of Li-ion batteries are developed, applicable for all of the positive electrode materials. A fast and accurate model is presented for simulating the performance of the Li-ion batteries with the LiMn2O4 and LiCoO2 positive electrodes. Moreover, two macro- and micro-based models are developed for predicting the performance of Li-ion battery with the LiFePO4 positive electrode, namely the Modified Mosaic (MM) and the mesoscopic-based models. The parameter estimation studies are then implemented by means of the developed direct models and experimental data provided by Hydro-Québec. All electrochemical and thermophysical parameters of the Li-ion batteries are simultaneously identified and applied for the prediction of the battery performance. Finally, a real-time technique resting on neural networks is used for the estimation of the Li-ion batteries intrinsic parameters.
APA, Harvard, Vancouver, ISO, and other styles
42

Kifune, Koichi, Miho Fujita, Mitsuru Sano, Motoharu Saitoh, and Koh Takahashi. "Electrochemical and Structural Properties of a 4.7 V-Class LiNi0.5Mn1.5 O 4 Positive Electrode Material Prepared with a Self-Reaction Method." The Electrochemical Society, 2004. http://hdl.handle.net/2237/18424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhao, Wenjiao [Verfasser], and H. J. [Akademischer Betreuer] Seifert. "Thermal Characterization of Lithium-ion Cells with Positive Electrode Materials $LiNi_xMn_0.8-xCo_0.2O_2 and their Components / Wenjiao Zhao ; Betreuer: H. J. Seifert." Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/1238148034/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Macháč, Milan. "In-situ analýza složení záporné elektrody olověných sekundárních článků s využití rentgenového difraktometru." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-319626.

Full text
Abstract:
This diploma thesis is focused on in-situ analysis of the composition of the negative electrodes of second secondary cells with using X-ray radiation. The first part is dedicated to the theory of lead accumulators, including charging, discharging, battery components and individual degradation mechanisms. The main part of the thesis includes the preparation of electrochemical in situ XRD cells and following measurement of the growth of lead sulphate crystals on the OCV potential. Furthermore, the lead cell was subjected to the measurement of the cyclic voltammetry around the working point of the negative electrodes. From these measurements was evident gradual increase of the lead sulfate crystals. The analysis was supplemented with electron microscopy images. In addition, were evaluated the in-situ particle analysis of the LTO Sigma sample.
APA, Harvard, Vancouver, ISO, and other styles
45

Jankulár, Tomáš. "Příprava a charakterizace elektrodových materiálů z elementární síry pro Li-ion akumulátory." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220240.

Full text
Abstract:
This thesis deals with the preparation and characterization of electrode materials for Li-ion batteries based on elemental sulfur. The theoretical part is focused on the characteristics of Li-ion batteries, electrochemical reactions, the process of electrochemical lithiation of sulfur and solubility properties of intermediate polysulfides. The practical part of the thesis deals with the preparation of cathode materials for Li-ion cells with an active substance in the form of elemental sulfur. The prepared electrodes were investigated using cyclic voltammetry and galvanostatic cycling. Physical characterization by SEM and XRD was provided.
APA, Harvard, Vancouver, ISO, and other styles
46

Hujňák, Jan. "Studie materiálů pro Li-ion akumulátory pomocí elektronové mikroskopie." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413237.

Full text
Abstract:
This work deals with problems of lithium-ion batteries. In the theoretical part are described electrochemical sources in general and their division. The main representatives of individual types of electrochemical sources are described in more detail. In the next part the thesis focuses specifically on lithium-ion accumulators, their history, electrochemical reactions taking place inside and materials of individual parts of which the accumulator consists. Next part focuses on electron microscopy and its division into scanning and transmission. Basic parts and the principle of operation are described. The practical part is focused on creating a small cell for examination under an electron microscope.
APA, Harvard, Vancouver, ISO, and other styles
47

Koga, Hideyuki. "Étude de Li riche en oxydes lamellaires comme matériaux d'électrode positive pour des batteries lithium-ion." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00923812.

Full text
Abstract:
Les mécanismes mis en jeu lors du cyclage de batteries au Lithium Li//Li1.20Mn0.54Co0.13Ni0.13O2 ont été étudiés avec l'objectif de déterminer l'origine des capacités très élevées délivrées par les oxydes lamellaires " (1-x)LiMO2.xLi2MnO3 ". La caractérisation par diffraction des RX et des neutrons montre que la structure est maintenue et l'existence de fluctuations de composition qui peuvent être assimilées à l'existence de deux phases de compositions voisines. Les résultats des tests électrochimiques et les analyses menées au cours du cyclage en spectroscopie d'absorption des rayons X ont suggéré la participation de l'oxygène aux processus redox. Celle-ci a été confirmée par la préparation et la caractérisation de matériaux désintercalés et réintercalés chimiquement en lithium. Les analyses en microscopie électronique à transmission (HAADF-STEM) et en nanodiffraction, montrent qu'une densification associée à un dégagement d'oxygène a lieu à la périphérie des particules
APA, Harvard, Vancouver, ISO, and other styles
48

Reynaud, Marine. "Elaboration de nouveaux matériaux à base de sulfates pour l'électrode positive des batteries à ions Li et Na." Phd thesis, Université de Picardie Jules Verne, 2013. http://tel.archives-ouvertes.fr/tel-01018912.

Full text
Abstract:
Les prochaines générations de batteries à ions lithium et sodium seront basées sur le développement de nouveaux matériaux d'électrode positive durables, peu chers et sûrs. Dans ce but, nous avons exploré le monde des minéraux à la recherche de structures présentant les pré-requis pour l'insertion et la désinsertion d'ions alcalins. Nous avons alors entrepris l'étude de sulfates bimétalliques dérivés du minéral bloedite, ayant pour formule générale AxM(SO4)2*nH2O (A = Li, Na, M = métal de transition 3d, et n = 0, 4). Ces systèmes présentent une cristallochimie riche, montrant des transitions structurales en fonction de la température ainsi qu'avec le départ des molécules d'eau. Les nouvelles structures ont été déterminées en combinant les techniques de diffraction des rayons X, neutrons et électrons. Nous avons également montré que les composés à base de lithium LixM(SO4)2 présentent des propriétés antiferromagnétiques intéressantes, du fait notamment de leurs structures particulières qui permettent seulement des interactions de super-super-échange. Enfin et surtout, nous avons, parmi les composés isolés, identifié trois sulfates à base de fer, à savoir Na2Fe(SO4)2*4H2O, Na2Fe(SO4)2 et Li2Fe(SO4)2, qui présentent des propriétés électrochimiques intéressantes face au lithium et au sodium. Avec un potentiel de 3,83 V vs. Li+/Li0, la nouvelle phase marinite Li2Fe(SO4)2 affiche le plus haut potentiel jamais observé pour le couple redox FeIII+/FeII+ dans un composé inorganique à base de fer et dépourvu de fluor, et est en fait seulement dépassé par celui de la forme triplite de LiFeSO4F.
APA, Harvard, Vancouver, ISO, and other styles
49

Shimizu, Yuta, Makoto Inagaki, Takayuki Kumada, and Jun Kumagai. "Negative and positive ion trapping by isotopic molecules in cryocrystals in case of solid parahydrogen containing electrons and H6^+ radical cations." American Institute of Physics, 2010. http://hdl.handle.net/2237/14161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Duffiet, Marie. "Compréhension des mécanismes structuraux limitant les performances de LiCoO2 à haut potentiel dans des batteries Li-ion et optimisations des matériaux par dopage Al." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0083.

Full text
Abstract:
L’oxyde lamellaire LiCoO2 (LCO) est un des matériaux d’électrode positive les plus communément utilisés dans les batteries Li-ion commerciales. Les efforts fournis pour contrôler la morphologie des particules de LCO ont grandement contribué à améliorer la compacité des électrodes, augmentant de fait la densité d’énergie des batteries. Celle-ci pourrait être encore améliorée grâce à l’augmentation du potentiel limite haut atteint lors de la charge de la batterie.Dans une première partie de ce manuscrit, plusieurs séries de poudres de LCO ont été synthétisées en effectuant un contrôle poussé de la taille des particules et de la stoechiométrie en Li (1.00 ≤ Li/Co ≤ 1.04) dans l’optique de caractériser leurs propriétés électrochimiques. Une étude par diffraction des rayons X (DRX) in situ a permis de suivre les changements structuraux observés lors de la désintercalation des ions Li dans deux matériaux LCO chargés à 5.2 V: les transitions de phase observées dans le cas de LCO dit « stoechiométrique » (Li/Co = 1.00) s’avèrent être plus nombreuses que précédemment reporté dans la littérature scientifique. La formation des phases H1 3 et O1 est confirmée, avec l’apparition supplémentaire d’une structure hybride entre ces deux phases. L’existence de défauts dans le matériau surlithié n’empêche pas la formation des phases H1 3 et O1, mais retarde leur apparition et modifie leurs paramètres structuraux.Dans une deuxième partie, le dopage aluminium à 4%at de ces poudres est envisagé. Plusieurs matériaux LiCo0.96Al0.04O2 (LCA) à stoechiométrie Li/(Co+Al) variable ont été synthétisés par voie solide afin d’obtenir un dopage le plus homogène possible. La caractérisation fine de ces matériaux par DRX et spectroscopie RMN du solide des noyaux 7Li, 27Al, 59Co permettent de démontrer qu’une répartition d’aluminium homogène est possible au sein de LiCo0.96Al0.04O2 grâce à une préparation en deux étapes : formation d’un LCA surlithié (Li/(Co+Al) > 1.00) suivi d’un réajustement de la stoichiométrie en Li (Li/(Co+Al) = 1.00)
Lithium cobalt oxide (LCO) is widely used as positive electrode material for Li-ion batteries. In order to achieve higher energy density, significant improvement of LCO’s packing density has been recently done by controlling the particles morphology and electrode processing. However, the upper charge cutoff voltage of LCO has barely changed, and would be a way to further enhance the energy density.In this PhD, we focus first in a careful preparation of different LCO samples with an accurate control of the Li stoichiometry (1.00 ≤ Li/Co ≤ 1.04) and particles size to characterize their electrochemical properties. For some selected samples, we study the phase transition mechanisms involved at high voltage during Li de intercalation using in situ synchrotron X-ray diffraction (SXRD): more phase transitions than previously reported have been evidenced for the stoichiometric LCO (Li/Co = 1.00) charged up to 5.2 V. In particular, while the formation of the H1 3 and O1 phases is confirmed, intermediate intergrowth structures are also stabilized. The existence of defects in overlithiated LCO (Li/Co > 1.00) does not hinder, but delay the formation of the high voltage of H1 3 and O1 phases, although structurally modified.In a second part, we focus on the material optimization though 4% Al-doping using a solid state route. Several compounds were prepared using various Li/(Al+Co) stoichiometries, with different particles sizes. Our efforts were dedicated to accurately characterize the Al doping homogeneity in the samples that affects the electrochemical properties. Using SXRD and 7Li, 27Al and 59Co MAS NMR as complementary tools, we show that homogeneous Al-doping in stoichiometric LCO can be achieved using Li-excess in a first step of the synthesis followed by a stoichiometry readjustment to Li/(Co+Al) = 1.00
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography