Dissertations / Theses on the topic 'Electrodynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Electrodynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Golz, Marcel. "Parametric quantum electrodynamics." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/19776.
Full textThis thesis is concerned with the study of Schwinger parametric Feynman integrals in quantum electrodynamics. Using a variety of tools from combinatorics and graph theory, significant simplification of the integrand is achieved. After a largely self-contained introduction to Feynman graphs and integrals, the derivation of the Schwinger parametric representation from the standard momentum space integrals is reviewed in full detail for both scalar theories and quantum electrodynamics. The derivatives needed to express Feynman integrals in quantum electrodynamics in their parametric version are found to contain new types of graph polynomials based on cycle and bond subgraphs. Then the tensor structure of quantum electrodynamics, products of Dirac matrices and their traces, is reduced to integer factors with a diagrammatic interpretation of their contraction. Specifically, chord diagrams with a particular colouring are used. This results in a parametric integrand that contains sums of products of cycle and bond polynomials over certain subsets of such chord diagrams. Further study of the polynomials occurring in the integrand reveals connections to other well-known graph polynomials, the Dodgson and spanning forest polynomials. This is used to prove an identity that expresses some of the very large sums over chord diagrams in a very concise form. In particular, this leads to cancellations that massively simplify the integrand.
Hauck, John C. "Electrodynamics of accelerated systems /." free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p3101024.
Full textViehmann, Oliver. "Multi-qubit circuit quantum electrodynamics." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-160998.
Full textKainth, Dherminder Singh. "Electrodynamics of mesoscopically structured systems." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624371.
Full textFerris, Michael Raymond. "Problems in point charge electrodynamics." Thesis, Lancaster University, 2012. http://eprints.lancs.ac.uk/76343/.
Full textHabibian, Hessam. "Cavity Quantum Electrodynamics with Ultracold Atoms." Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/120180.
Full textIn this thesis we investigate the interactions between ultracold atoms confined by a periodic potential and a mode of a high-finesse optical cavity whose wavelength is incommensurate with the potential periodicity. The atoms are driven by a probe laser and can scatter photons into the cavity field. When the von-Laue condition is not satisfied, there is no coherent emission into the cavity mode. We consider this situation and identify conditions for which different nonlinear optical processes can occur. We characterize the properties of the light when the system can either operate as a degenerate parametric amplifier or as a source of antibunched light. Moreover, we show that the stationary entanglement between the light and spinwavemodes of the array can be generated. In the second part we consider the regime in which the zero-point motions of the atoms become relevant in the dynamics of atom-photon interactions. Numerical calculations show that for large parameter regions, cavity backaction forces the atoms into clusters with a local checkerboard density distribution. The clusters are phase-locked to one another so as to maximize the number of intracavity photons.
Liléo, Sónia. "Auroral electrodynamics of plasma boundary regions." Doctoral thesis, KTH, Rymd- och plasmafysik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10446.
Full textQC 20100727
Mansuripur, Masud. "Optical angular momentum in classical electrodynamics." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/625947.
Full textStanwix, Paul Louis. "Testing local Lorentz invariance in electrodynamics." University of Western Australia. School of Physics, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0100.
Full textBeere, W. H. "Electrodynamics of a charged Bose-gas." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596522.
Full textKannan, Bharath. "Waveguide quantum electrodynamics with superconducting qubits." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120400.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 85-87).
Experiments in quantum optics have long been implemented with atoms in 3D free space or with atoms interacting with cavities. Over the past decade, the field of microwave quantum optics using superconducting circuits has gained a tremendous amount of attention. In particular, the confinement of photonic modes to 1D enables a new parameter regime of strong interactions between qubits and open waveguides. In these setups, known as waveguide quantum electrodynamics (WQED), superconducting qubits interact with a continuum of propagating photonic modes. In this thesis, we will explore the physics of WQED devices that consist of multiple qubits and their potential application to quantum information and simulation.
by Bharath Kannan.
S.M.
Broun, David McBride. "The microwave electrodynamics of unconventional superconductors." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621767.
Full textKohler, Shane Jerome. "Non-linear effects in quantum electrodynamics." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5279.
Full textDiniz, Igor. "Quantum electrodynamics in superconducting artificial atoms." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENY048/document.
Full textCette thèse porte sur deux problèmes théoriques d'électrodynamique quantique en circuits supraconducteurs. Nous avons d'abord étudié les conditions d'obtention du couplage fort entre un résonateur et une distribution continue d'émetteurs élargie de façon inhomogène. Le développement de ce formalisme est fortement motivé par les récentes propositions d'utiliser des ensembles de degrés de liberté microscopiques pour réaliser des mémoires quantiques. En effet, ces systèmes bénéficient du couplage collectif au résonateur, tout en conservant les propriétés de relaxation d'un seul émetteur. Nous discutons l'influence de l'élargissement inhomogène sur l'existence et les propriétés de cohérence des pics polaritoniques obtenus dans le régime de couplage fort. Nous constatons que leur cohérence dépend de façon critique de la forme de la distribution et pas uniquement de sa largeur. En tenant compte de l'élargissement inhomogène, nous avons pu simuler avec une grande précision de nombreux résultats expérimentaux pionniers sur un ensemble de centres NV. La modélisation s'est révélée un outil puissant pour obtenir les propriétés des ensembles de spins couplés à un résonateur. Nous proposons également une méthode originale de mesure de l'état de qubits Josephson fondée sur un SQUID DC avec une inductance de boucle élevée. Ce système est décrit par un atome artificiel avec des niveaux d'énergie en forme de diamant où nous définissons les qubits logique et ancilla couplés entre eux par un terme Kerr croisé. En fonction de l'état du qubit logique, l'ancilla est couplée de manière résonante ou dispersive au résonateur, ce qui provoque un contraste important dans l'amplitude du signal micro-onde transmis par le résonateur. Les simulations montrent que cette méthode originale peut être plus rapide et peut aussi avoir une plus grande fidélité que les méthodes actuellement utilisées dans la communauté des circuits supraconducteurs
Грицунов, А. В., И. Н. Бондаренко, А. Б. Галат, О. В. Глухов, and А. Г. Пащенко. "On the quantum electrodynamics of nanosystems." Thesis, Kharkiv, bookfabrik, 2019. http://openarchive.nure.ua/handle/document/10408.
Full textLiléo, Sónia. "Auroral electrodynamics of plasma boundary regions /." Stockholm : Skolan för elektro- och systemteknik, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10446.
Full textDordevic, Sasa V. "Electrodynamics of strongly correlated electron systems /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 2002. http://wwwlib.umi.com/cr/ucsd/fullcit?p3044790.
Full textJeantet, Adrien. "Cavity quantum electrodynamics with carbon nanotubes." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC010/document.
Full textCarbon nanotubes are extensively investigated for their amazing mechanical and electronic properties. Optically, they are excellent candidates for on-demand single-photon sources because they can be electrically excited and they can emit anti-bunched light at room temperature in the telecoms bands. However, their emission efficiency is low, its origins remain unclear and the spectral shape of their photoluminescence is complicated. In this work, we build an original setup combining a confocal microscope and a fiber based micro-cavity which is both spatially and spectrally tunable. With this device, we observed the rise of cavity quantum electrodynamics effects by analyzing the evolution of the dipole-cavity coupling as a function of the cavity volume. We obtained a strong acceleration of the spontaneous emission rate, due to Purcell factors above 100. The associated effective efficiency of the source reaches up to 50%, leading to a brightness of up to 10%, while keeping excellent anti-bunching features. We observe the effect of the cavity coupling as a function of the cavity detuning, and develop a model to account for emitters undergoing exciton-phonon coupling in the presence of a cavity. We show that our single-photon source is tunable on a range of frequencies more than a hundred times higher than the cavity spectral width, opening the way to extensive multiplexing. Further strengthening of the coupling may open the way to the very rich physics of one-dimensional cavity polaritons. And conversely, cavity polaritons could be a tool to understand better the diffusion, and localization properties of excitons in carbon nanotubes. Finally, the original setup build here is extremely versatile and could be used to coupled other types of emitters, such as nano-diamonds or molecules
Petry, Robert George. "Atomic field electrodynamics and classical radiation reaction." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0008/MQ34986.pdf.
Full textBaxter, Colin. "Gauge transformations in non-relativistic quantum electrodynamics." Thesis, University of Essex, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292876.
Full textPieterse, Cornelius Louwrens. "Mathematical and numerical analysis of electrospraying electrodynamics." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95529.
Full textENGLISH ABSTRACT: The electrodynamics of arbitrary, point-to-plane electrospraying geometries, were investigated in this research both analytically and numerically. Electrospraying is the process during which particles of sizes in the nanometre range are simultaneously generated and charged by means of an applied electrostatic field. A high electrostatic potential is applied to a conductive capillary needle, which overcomes the force exerted by the liquid surface tension. One of the primary limitations of this process are corona discharges. The effect of corona discharges have not been studied quantitatively, even though it is frequently reported in the electrospraying literature. The main objective of this research was to understand the corona discharge thresholds associated with electrospraying. Previously, only one theoretical, and two empirical investigations studied this phenomenon, over a time period of approximately forty years. It was clear that by better understanding these thresholds, electrospraying could be applied much more effectively. A corona discharge threshold model is proposed, using either a numerical or analytical model for the calculation of polarization fields. When compared with the experimental results of other researchers, both these two models have average relative percentage errors of approximately 15%. These are the first models proposed in the literature for the calculation of electrospraying corona thresholds. A new method to determine surface tension using electrospraying is described theoretically. In addition to this method, the calculation of corona discharge thresholds have various applications. For example, the dynamics of electrostatic ion thrusters are much better described, powder production by means of electrospraying can be optimised, and pattern generation using pulsed electrospraying cone-jets can be optimised as well.
AFRIKAANSE OPSOMMING: Die elektrodinamika van arbitrêre, punt-tot-vlak elektrosproei geometrieë was beide analities en numeries ondersoek in hierdie tesis. Dit is die proses waartydens nanodeeltjies gelyktydig gegenereer en elektrostaties gelaai word. Deur 'n hoë elektriese potensiaal aan te lê tot 'n geleidende kapillêr, is dit moontlik om die krag van die oppervlakte spanning te oorkom. Een van die primêre beperkings van elektrosproei is corona ontladings. Die effek van corona ontladings was nog nie kwantitatief bestudeer nie, selfs al word dit dikwels rapporteer in die elektrosproei literatuur. Die primêre doel van hierdie navorsing was om die corona ontlading drempels te verstaan wat geassosieer word met elektrosproei. In die verlede was daar nog net een teoretiese, en twee empiriese ondersoeke gewees wat hierdie verskynsel bestuur het, oor 'n tydperk van ongeveer veertig jaar. Dit was duidelik dat deur 'n beter begrip te hê van hierdie elektrosproei drempels, kan hierdie proses baie meer doeltreffend toegepas word. In hierdie tesis word 'n corona ontlading drempel model voorgestel, wat gebruik maak van 'n analitiese of numeriese model om die polarisasie velde te bereken. Wanneer vergelyk met die resultate van ander navorsers, het beide die modelle 'n gemiddelde relatiewe persentasie fout van ongeveer 15%. Hierdie is die eerste modelle wat voorgestel word vir die berekening van corona ontlading drempels. Deur gebruik te maak van elektrosproei, word 'n nuwe metode ook voorgestel om die oppervlakte spanning te bereken. In byvoeging tot hierdie, het die berekening van corona ontlading drempels vele ander toepassings. As 'n voorbeeld, die dinamika van elektrostatiese ioon stuwers word beter beskryf, en poeier produksie deur middel van elektrosproei kan optimeer word.
Lepert, Guillaume. "Integrated optics for coupled-cavity quantum electrodynamics." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/11175.
Full textFrenzel, Alex J. "Terahertz Electrodynamics of Dirac Fermions in Graphene." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467397.
Full textPhysics
Walker, Philip. "Radiation and reaction in scalar quantum electrodynamics." Thesis, University of York, 2010. http://etheses.whiterose.ac.uk/996/.
Full textBarlow, Thomas Michael. "Cavity quantum electrodynamics of fibre-cavity networks." Thesis, University of Leeds, 2015. http://etheses.whiterose.ac.uk/12646/.
Full textRaji, Rufai Odutayo. "Nonlinear low frequency wave phenomena in space plasmas." Thesis, University of the Western Cape, 2013. http://hdl.handle.net/11394/4036.
Full textIn this thesis, using multispecies fluid plasma models, nonlinear electrostatic solitary wave fluctuations will be investigated in magnetized plasmas. The different models used for the investigation will be guided by the satellite observations in different regions of the Earth magnetosphere. These investigations will enable us to attempt theoretical explanations for the nonlinear potential structures observed in the satellite data. Multispecies plasma consisting of cool and hot electrons with Maxwellian distributions and fluid ions will be considered to study low frequency solitons. The ions will be considered as magnetized. The study will be extended to include magnetized oxygen ions. The model will be modified for regions of the magnetosphere consisting of two ions having Maxwellian distributions and magnetized electrons. The nonthermal distributions of energetic hot electrons and the Maxwellian distributions of cool electrons with magnetized cold ions fluid will also be considered. For all the models, the effect of ion and electron densities, temperatures, magnetic field strength and propagation angle will be studied during the investigation of soliton structures. In all the above mentioned studies, arbitrary amplitude theory is carried out by the Sagdeev pseudo-potential method. Further investigations on the charateristics and existence domains of the solitons is found both analytically and numerically, using satellite data where applicable
Carlson, Andrew F. "Optimal orbit maneuvers with electrodynamic tethers." Thesis, Monterey, Calif. : Naval Postgraduate School, 2006. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Sep%5FCarlson.pdf.
Full textThesis Advisor(s): Ross, I. Michael ; Danielson, Don A. "June 2006." Description based on title screen as viewed on November 7, 2007. Includes bibliographical references (p. 65-67). Also available in print.
Wild, James. "Electrodynamics of the auroral ionosphere during magnetospheric substorms." Thesis, University of Leicester, 2000. http://hdl.handle.net/2381/30641.
Full textHo, Andy C. T. "Imaginary charge quantum electrodynamics : a running coupling analysis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0005/NQ34551.pdf.
Full textNadeau, Raymond. "Two-loop effective potential of supersymmetric quantum electrodynamics." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75872.
Full textBraverman, Boris. "Cavity quantum electrodynamics with ensembles of ytterbium-171." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120364.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 313-328).
In this thesis, I present the realization of a system applying the tools of cavity quantum electrodynamics to an atomic optical lattice clock. We design and implement a unique experimental cavity structure, with a small radius of curvature mirror on one side and a large mirror on the other side. With this structure, we are able to probe ytterbium-171 atoms in both the weak and strong coupling regimes of cavity quantum electrodynamics. This asymmetric micromirror structure simultaneously offers strong light-atom coupling, mechanical robustness, and excellent access to a large cavity volume. We develop a simple but accurate model for strong light-atom interactions in our system, which allows us to predict the performance of both cavity-assisted quantum non demolition measurements of the atomic state, and the back-action of the probing light onto the atomic state. We find theoretically, and confirm experimentally, that probing the atom-cavity system with two frequencies at the vacuum Rabi peaks of a system with strong collective light-atom coupling generates the largest possible entanglement between the probing light and the atomic state. With this scheme, we demonstrate atomic number measurements within a factor of 2 of the quantum Fisher information limit. By using the quantum back-action of the probing light on the atomic ensemble, we perform squeezing by cavity feedback. We produce states with -11±1 dB of variance squeezing and 14±1 dB of anti squeezing. Using theoretical simulations, we show that states with near-unitary squeezing offer significant advantages for improving atomic clocks compared to previous work. The ability to load large atomic ensembles in the strong coupling regime in our system offers several routes to the generation of highly entangled non-Gaussian quantum states. Such states can be produced by heralded measurements, or by global atom-atom interactions based on unitary spin squeezing. Altogether, we realize a system of unprecedented versatility and great potential for performing a large variety of hybrid atomic clock and cavity QED experiments.
by Boris Braverman.
Ph. D.
Golyk, Vladyslav Alexander. "Non-equilibrium fluctuation induced-phenomena in quantum electrodynamics." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/91076.
Full text138
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 120-129).
We study fluctuation-induced phenomena in systems out of thermal equilibrium, resulting from the stochastic nature of quantum and thermal fluctuations of electromagnetic currents and waves. Specifically, we study radiative heat transfer and Casimir forces by applying the scattering formalism that expresses results solely in terms of the classical scattering matrices of the objects. For example, we obtain exact formulas for the heat radiation emitted by long cylindrical objects, as well as for Casimir forces that arise between them. We apply our results to explore the dependence of these phenomena on size and material properties of cylinders. While the scattering formalism is very general and technically can be employed for arbitrary shapes, in practice it is very time-consuming to apply it to the most experimentally-relevant and complex case of objects at close proximity. We examine easier ways to compute the heat transfer in such case. In particular, we develop a small distance expansion for the heat transfer between gently curved objects, in terms of the ratio of distance to radius of curvature. This expansion allows us to rigorously justify the widely used approach of "proximity transfer approximation", and to quantify corrections to it in the limit of small separation. Moreover, we study the role of surface roughness, and show that it may change the distance dependence of the heat transfer as well as Casimir forces between curved objects at proximity. Finally, as an alternative approach we construct general Green-Kubo relations that connect radiative heat transfer, non-equilibrium Casimir forces and vacuum friction between arbitrary objects to fluctuations in equilibrium which may be easier to consider from the perspective of experiment and simulations.
by Vladyslav Alexander Golyk.
Ph. D.
Dakers, Paul A. "Superlattice electrodynamics as a source of Terahertz radiation." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/10228.
Full textHolland, Eric T. "Cavity State Reservoir Engineering in Circuit Quantum Electrodynamics." Thesis, Yale University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10012490.
Full textEngineered quantum systems are poised to revolutionize information science in the near future. A persistent challenge in applied quantum technology is creating controllable, quantum interactions while preventing information loss to the environment, decoherence. In this thesis, we realize mesoscopic superconducting circuits whose macroscopic collective degrees of freedom, such as voltages and currents, behave quantum mechanically. We couple these mesoscopic devices to microwave cavities forming a cavity quantum electrodynamics (QED) architecture comprised entirely of circuit elements. This application of cavity QED is dubbed Circuit QED and is an interdisciplinary field seated at the intersection of electrical engineering, superconductivity, quantum optics, and quantum information science. Two popular methods for taming active quantum systems in the presence of decoherence are discrete feedback conditioned on an ancillary system or quantum reservoir engineering. Quantum reservoir engineering maintains a desired subset of a Hilbert space through a combination of drives and designed entropy evacuation. Circuit QED provides a favorable platform for investigating quantum reservoir engineering proposals. A major advancement of this thesis is the development of a quantum reservoir engineering protocol which maintains the quantum state of a microwave cavity in the presence of decoherence. This thesis synthesizes strongly coupled, coherent devices whose solutions to its driven, dissipative Hamiltonian are predicted a priori. This work lays the foundation for future advancements in cavity centered quantum reservoir engineering protocols realizing hardware efficient circuit QED designs.
Zhang, Ou. "Effective field theories for quantum chromo- and electrodynamics." Thesis, The University of Arizona, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10247445.
Full textEffective field theories (EFTs) provide frameworks to systematically improve perturbation expansions in quantum field theory. This improvement is essential in quantum chromodynamics (QCD) predictions, both at low energy in the description of low momentum hadron-hadron scattering and at high energy in the description of electron-positron, proton-proton, proton-electron collisions. It is also important in quantum electrodynamics (QED), when electrons interact with a high-intensity, long-wavelength classical field. I introduce the principles and methods of effective field theory and describe my work in three EFTs: First, in the perturbative QCD region, I use soft collinear effective theory (SCET) to prove that strong interaction soft radiation is universal and to increase the QCD accuracy to next-to-next-to-next-to leading logarithm order for new particle searches in hadron colliders. I also compute a new class of non-perturbative, large logarithmic enhancement arising near the elastic limits of deep inelastic scattering and Drell-Yan processes. Second, in the QCD confinement region, I use heavy hadron chiral perturbation theory to study near-threshold enhancements in the scattering of D and π mesons near the threshold for the excited D-meson state, D*, as well as in the scattering of D and D* mesons near the threshold for the exotic hadron X(3872). This work provides a clear picture of the hadronic molecule X(3872) and more profound understanding of the nuclear force between hadrons. Finally, inspired by SCET, I construct a new electron-laser effective field theory to describe highly-relativistic electrons traveling in strong laser fields, extract the universal distribution of electrons in strong electromagnetic backgrounds and its evolution in energy from the separated momentum scales of emitted photons and classical radiation, and predict the rate of wide angle photon emission. I conclude with limitations of EFT methods and some perspectives on what new work may be achieved with these EFTs.
Zhang, Ou, and Ou Zhang. "Effective Field Theories for Quantum Chromo- and Electrodynamics." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621825.
Full textCardoso, Lucas Tavares. "Towards renormalizability of string-localized massive quantum electrodynamics." Universidade Federal de Juiz de Fora (UFJF), 2017. https://repositorio.ufjf.br/jspui/handle/ufjf/5621.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-08-24T12:02:18Z (GMT) No. of bitstreams: 1 lucastavarescardoso.pdf: 837625 bytes, checksum: 3abd29cb3035fdd6ec6e11d4ea0ae1ae (MD5)
Made available in DSpace on 2017-08-24T12:02:18Z (GMT). No. of bitstreams: 1 lucastavarescardoso.pdf: 837625 bytes, checksum: 3abd29cb3035fdd6ec6e11d4ea0ae1ae (MD5) Previous issue date: 2017-08-03
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
A construção de campos com localização em cordas foi realizada rigorosamente há pouco mais de uma década. Nesta abordagem, os campos são operadores em algum espaço de Hilbert, e portanto não há graus de liberdade não-físicos tais como "ghosts". Além de permitir a construção de campos carregados inteiramente num espaço espaço de Hilbert, os campos com localização em cordas exibem um bom comportamento no regime ultravioleta e, entre outras características, são possíveis candidatos para descreverem consistentemente a matéria escura. No intuito de obter uma prova da renormalizabilidade em modelos perturbativos no esquema de Epstein-Glaser com campos quânticos localizados em cordas, é necessário evidenciar a liberdade que se tem ao definir produtos temporalmente ordenados do Lagrangeano de interação. Este trabalho proporciona um primeiro passo significativo nesta direção. O problema básico é a presença de um conjunto aberto de n-uplas de cordas que não podem ser cronologicamente ordenadas. Nós resolvemos este problema ao mostrar que quase todas (i.e. exceto num subconjunto de medida nula) tais configurações de cordas podem ser dissecadas num número finito de pedaços, os quais por sua vez podem ser cronologicamente ordenados. Com isso, tem-se que o produto temporalmente ordenado de fatores lineares de campos está fixo fora de um conjunto de medida nula de configurações de cordas. A construção do ordenamento temporal geométrico de cordas é feita de modo a servir para o estudo da renormalizabilidade de quaisquer teorias quânticas de campos com localização em cordas.
The construction of string-localized fields was rigorously accomplished a little over a decade ago. In this approach, the fields are operators in some Hilbert space, and therefore there are no unphysical degrees of freedom such as ghosts. In addition to allowing the construction of charged fields entirely in a Hilbert space, the string-localized fields exhibit, in general, a good behavior in the ultraviolet regime and, among other features, the class (representation) of string-localized fields with m = 0 and s = oo are possible candidates to consistently describe dark matter. In order to obtain a proof of renormalizability of perturbative models in the Epstein—Glaser scheme with string-localized quantum fields, one needs to know what freedom one has to define time-ordered products of the interaction Lagrangian. This work provides a first significant step in that direction. The basic issue is the presence of an open set of n-tuples of strings which cannot be chronologically ordered. We resolve it by showing that almost all (i.e. outside a null set) such string configurations can be dissected into finitely many pieces which can indeed be chronologically ordered. This fixes the time-ordered products of linear field factors outside a nullset of string configurations. The construction of the geometric time ordering of strings is realized in such a way that it will serve to study the renormalizability of any quantum field theories with string-localized fields
Asker, Andreas. "Axion Electrodynamics and Measurable Effects in Topological Insulators." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-67519.
Full textStokes, Adam. "On gauge freedom and subsystems in quantum electrodynamics." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/6833/.
Full textFlatten, Lucas Christoph. "Quantum electrodynamics of semiconducting nanomaterials in optical microcavities." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:a5f4797f-ea23-49e4-bd1e-2483154508d6.
Full textWohlwend, Christian Stephen. "Modeling the Electrodynamics of the Low-Latitude Ionosphere." DigitalCommons@USU, 2008. https://digitalcommons.usu.edu/etd/11.
Full textWatts, Frank. "The effect of electrical potential on drop formation : a basis for an automated interfacial tensionmeter." Thesis, Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/10122.
Full textWood, Jeffrey C. "An analysis of mixed finite element methods for Maxwell's equations on non-uniform meshes." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282161.
Full textBrown, Solly. "The photon model of the quantum electromagnetic field /." [St. Lucia, Qld.], 2001. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16777.pdf.
Full textMarghitu, Octav. "Auroral arc electrodynamics with FAST satellite and optical data." [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967869188.
Full textLópez, Bara Fernando Ignacio. "Electrodynamics and phase transitions in materials with magnetic monopoles." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/665231.
Full textThe work is addressed to analyze two parts that are intimately related. The first one refers to studying the global states and characteristics of their magnetic structures of the compounds called spin-ices and in the second part the behaviors under the electromagnetic interaction in infinite media and in confined systems are analyzed. The main novelty in these compounds is the existence of excited global states at low-temperatures in which structural entities that mimic the behavior of magnetic monopoles arise. In the first part, the low temperature excited states or quasiparticles are studied in compounds of the type (REE)₂Ti₂ O₇, where REE refers to one of the 15 lanthanides, fundamentally Dy₂Ti₂O₇ andHo₂Ti₂O₇. At these temperatures (between 0.05 K and 0.17 K) there is a phase transition with characteristics similar to a Bose Einstein condensate whose individual components are in the form of magnetic dipoles (two monopoles, one with positive magnetic charge and the other negative connected by the "Coulomb interaction" and separated by a distance equivalent to the high of each tetrahedron of the crystalline structure which we described in the text). By increasing the temperature, said dipoles are broken forming a magnetic plasma of free and quasi-free positive and negative magnetic charges whose statistic is of the Fermi-Dirac type. The thermodynamic transition processes are described by analytical models for low energy excitation states and we describe the successive phase transitions. We determine the thermodynamic potentials, specific heat and entropy in which we can show the two possible phase transitions that occur in these compounds. In the second part, we make an analysis of the modified Maxwell equations as well as the generalized Lorentz force in the presence of these magnetic charges. The solution of these equations allows us to obtain data that may have empirical interest in order to detect magnetic monopoles in other natural compounds. We study the transverse electromagnetic propagation in these materials by adding a strong external electric field with which we deduce the density of monopoles per unit volume and the effective mass of the same. We deduce the solutions of these dual Maxwell equations in confined media with rectangular and circular symmetries. In these media in the magnetic plasma phase we obtain the non-linear equation of the system order parameter. The characteristics and properties of the solutions of the modified Maxwell equations are determined in the form of TM modes, obtaining magnetic conductivity as a function of frequency (called magnetricity), magnetic susceptibility, as well as peaks in electromagnetic absorption and other data such as the frequencies of precession and the characteristic frequency of plasma or frequency of plasmon. The achieving of these two frequencies allows us to determine the specific mass assigned to these quasiparticles, being physical magnitude is basic for determining and justifying the conduction properties. The fundamental objective of this part is to perform a systematic analysis to detect in other materials the presence of these possible effective magnetic charges that may appear and have appeared in other artificial compounds even at room temperature, with the practical interest that this novelty may have. The last objective of this second part of the thesis is to make a prospective to study the possibilities of new materials with which to build "magnetronic" devices that allow to transmit energy and information.
Helmer, Ferdinand. "Quantum information processing and measurement in circuit quantum electrodynamics." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-102919.
Full textTignone, Edoardo. "Cavity quantum electrodynamics : from photonic crystals to Rydberg atoms." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAF008/document.
Full textIn the first chapter of this thesis, we study a quasiperiodic array of dielectric membranes inside a high-finesse Fabry-Pérot cavity. We work within the framework of the transfer matrix formal- ism. We show that, in a transmissive regime, the introduction of a quadratic spatial defect in the membrane positions enhances both the linear and quadratic optomechanical couplings between optical and mechanical degrees of freedom. Finally, we propose a theoretical model to simulate a one-dimensional quasiperiodic photonic crystal. In the second chapter of this thesis, we consider the problem of the transport of an exciton through a one-dimensional chain of two-level systems. We embed the chain of emitters in a transverse optical cavity and we show that, in the strong coupling regime, a ultrafast ballistic transport of the exciton is possible via the polaritonic modes rather than ordinary hopping. Due to the hybrid nature of polaritons, the transport efficiency is particularly robust against disorder and imperfections in the system. In the third chapter of this thesis, we consider an ordered array of cold atoms trapped in an optical lattice inside a hollow-core photonic crystal fiber. We study photon-photon interactions mediated by hard-core repulsion between excitons. We show that, in spite of underlying repulsive interac- tion, photons in the scattering states demonstrate bunching, which can be controlled by tuning the interatomic separation. We interpret this bunching as the result of scattering due to the mismatch of the quantization volumes for excitons and photons, and discuss the dependence of the effect on experimentally relevant parameters. In the fourth chapter of the thesis, we extend the results of the previous chapter to Rydberg atoms
Striet, Jelper. "Alice electrodynamics on the gauging of charge conjugation symmetry /." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2003. http://dare.uva.nl/document/67123.
Full textDutra, Sergio Mendes. "Generation and detection of fields in cavity quantum electrodynamics." Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307569.
Full text