Dissertations / Theses on the topic 'Électrodynamique quantique en cavité'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Électrodynamique quantique en cavité.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Deléglise, Samuel. "Reconstruction complète d'états non-classiques du champ en électrodynamique quantique en cavité." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2009. http://tel.archives-ouvertes.fr/tel-00477136.
Full textDe, Santis Lorenzo. "Single photon generation and manipulation with semiconductor quantum dot devices." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS034/document.
Full textQuantum phenomena can nowadays be engineered to realize fundamentally new applications. This is the field of quantum technology, which holds the promise of revolutionizing computation, communication and metrology. By encoding the information in quantum mechanical systems, it appears to be possible to solve classically intractable problems, achieve absolute security in distant communications and beat the classical limits for precision measurements. Single photons as quantum information carriers play a central role in this field, as they can be easily manipulated and can be used to implement many quantum protocols. A key aspect is the interfacing between photons and matter quantum systems, a fundamental operation both for the generation and the readout of the photons. This has been driving a lot of research toward the realization of efficient atom-cavity systems, which allows the deterministic and reversible transfer of the information between the flying photons and the optical transition of a stationary atom. The realization of such systems in the solid-state gives the possibility of fabricating integrated and scalable quantum devices. With this objective, in this thesis work, we study the light-matter interface provided by a single semiconductor quantum dot, acting as an artificial atom, deterministically coupled to a micropillar cavity. Such a device is shown to be an efficient emitter and receiver of single photons, and is used to implement basic quantum functionalities.First, under resonant optical excitation, the device is shown to act as a very bright source of single photons. The strong acceleration of the spontaneous emission in the cavity and the electrical control of the structure, allow generating highly indistinguishable photons with a record brightness. This new generation of single photon sources can be used to generate path entangled NOON states. Such entangled states are important resources for sensing application, but their full characterizatiob has been scarcely studied. We propose here a novel tomography method to fully characterize path entangled N00N state and experimentally demonstrate the method to derive the density matrix of a two-photon path entangled state. Finally, we study the effect of the quantum dot-cavity device as a non-linear filter. The optimal light matter interface achieved here leads to the observation of an optical nonlinear response at the level of a single incident photon. This effect is used to demonstrate the filtering of single photon Fock state from classical incident light pulses. This opens the way towards the realization of efficient photon-photon effective interactions in the solid state, a fundamental step to overcome the limitations arising from the probabilistic operations of linear optical gates that are currently employed in quantum computation and communication
Bernu, Julien. "Mesures QND en électrodynamique quantique en cavité : production et décohérence d'états de Fock : effet Zénon." Paris 6, 2008. https://tel.archives-ouvertes.fr/tel-00351299.
Full textWe have implemented a Quantum Non Demolition measurement of the photon number of a field stored in a cavity of damping time T=0. 13s. We send circular Rydberg atoms in the cavity. A dispersive interaction shifts the atomic frequency linearly in the photon number. This light-shift is detected by atomic Ramsey interferometry. The cavity damping time is long enough to observe the quantum jumps induced by relaxation. By a statistical analysis of the different trajectories, we carry out a partial tomography of this process responsible for the decoherence of the Fock states |n> within a time T/n. The projection of the initially coherent field onto a Fock state during a measurement completely blurs the field phase simultaneously. This back-action can freeze the coherent growth of the field by quantum Zeno effect
Hagenmuller, David. "Electrodynamique quantique en cavité d'un système d'électrons bidimensionnel sous champ magnétique." Paris 7, 2012. http://www.theses.fr/2012PA077263.
Full textIn this thesis manuscript, we present a theory describing the coupling between the quantized electromagnetic field of a cavity resonator and the cyclotron transition between Landau levels in a two¬dimensional electron gas in presence of a perpendicular magnetic field. We show that such a system can reach an unprecedented ultrastrong coupling regime, where the vacuum Rabi frequency (quantifying the strength of the light-matter interaction) can be comparable or bigger than the cyclotron transition frequency for large enough filling factor. Our theoretical predictions have been demonstrated by spectacular experimental results. Moreover, we have generalized the theory to the case of graphene, whose low-energy excitations are described by a massless Dirac Hamiltonian. We show that the ultrastrong coupling can be also achieved for graphene, leading to strong qualitative differences with respect te the case of massive fermions in a semiconductor
Baksic, Alexandre. "Transitions de phase quantiques dans le régime de couplage ultrafort de l'electrodynamique quantique." Paris 7, 2014. http://www.theses.fr/2014PA077165.
Full textQuantum Electrodynamics describes the interaction of light with matter at atomic scale. By placing atoms inside a cavity, it is possible to increase the amplitude of their interaction with vacuum electromagnetic fluctuation. It is even possible to increase it in such a way that a quantum superradiant phase transition occurs, the system passing from a phase called normal (atoms in their ground state and vacuum of photons) to a phase called superradiant (macroscopic number of atomic and photonic excitations in the ground state). However, this theoretical prediction seems prohibited by the "No-go theorem" for superradiant phase transitions. We reconsidered some of the assumptions that led to this theorem and showed that with those new assumptions the superradiant phase transition can occur. We also took advantage of a new field, Circuit Quantum Electrodynamics, which focuses on the behaviour of "artificial" atoms made out of superconducting materials, which are more flexible and controllable than "real" atoms. This greater flexibility, allowed us to consider a new type of superradiant phase transition that led to a richer phase diagram than the traditional one
Besga, Benjamin. "Micro-cavité Fabry Perot fibrée : une nouvelle approche pour l'étude des polaritons dans des hétérostructures semi-conductrices." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-01059382.
Full textBraive, Rémy. "Contrôle de l'émission spontanée dans les cristaux photoniques." Paris 7, 2008. http://www.theses.fr/2008PA077141.
Full textTo control spontaneous emission, the invetigated solution is the use of the purcell effect. It allows an acceleration of spontaneous emission especially in the laser mode. The ratio of spontaneous emission in the mode over the total spontaneous emission is called β. An increased of this ratio can be achieved with a high q-factor and a small volume. Photonic crystals are able to fulfill these criterions depending on the design. In this study, we are focused on the double heterostructure cavity. By changing the size of the defect, we were able to show saturation of spontaneous emission and laser effect. β have been tunned from 0. 44 to 0. 93 as a function of the defect. A cavity with a β factor of 0. 67 has been used to study the temporal response of the cavity to a pulsed excitation for various pump power. Above threshold, the response is limited by either the time capture of quantum dots or photons lifetime in the cavity. Both of them are of the order of 20 ps, which explain the gaussian shape observed. This characteristic allows us to obtain a repetition rate with direct modulations as high as 10 ghz. For a single pulse excitation, we determine an enhancement linewidth factor of 3 and a linear displacement of the wavelenght during the pluse duration. When we study the repetition rate, the same behavior is observed independently of the pulse
Gehr, Roger Peter. "Cavity based high-fidelity and non-destructive single atom detection on an atom chip." Paris 6, 2011. http://www.theses.fr/2011PA066087.
Full textPenasa, Mariane. "Mesure au-delà de la limite quantique standard de l'amplitude d'un champ électromagnétique dans le domaine micro-onde." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066528/document.
Full textAs an essential intermediary between theories and their experimental proofs, measurement is meaningfull if the precision of its results is high. The main emphasis of metrology in laboratories is therefore on increasing as much as possible the precision of the experimental evaluation of a parameter. Quantum noise that affects the measurement establishes a quantitative limit on the maximal precision that can be achieved with classical states: the standard quantum limit (SQL). Quantum metrology aims at using quantum features to beat this limit and to approach the physically ultimate limit called Heisenberg limit. This thesis presents a measurement strategy for an electromagnetic field containing less than one photon, which is based on the use of atom-field correlations in a cavity quantum electrodynamics experiment. The idea is to measure the amplitude of the small field by probing the disturbance caused on an entangled mesoscopic state that is already stored in the superconducting cavity. We demonstrated that our measurement strategy is in principle optimal thanks to two tools: the Fisher information (that depends on the measurement process) and the quantum Fisher information (that does not), which define the precision tanks to Cramér-Rao like equations. The measurement signal subsequently largely exceeded the level of accuracy obtained with classical states and we got as closed to the Heisenberg limit as the experimental imperfections allowed us
Demory, Justin. "Initialisation de spin et rotation de polarisation dans une boîte quantique en microcavité." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS006/document.
Full textSingle photons are ideal candidates to carry quantum information and the major challenge that optical quatum computing must face is to engineer photon matter interaction. A promising way to do so is to implement an efficient spin-photon interface making use of the polarization rotation (so-called Faraday or Kerr rotation) induced by a single spin. Thanks to the polarization rotation, it is possible to transfer the spin state into a polarization state. However, observations of Kerr rotation induced by a single spin were reported only recently, with rotation angles in the few 10-3 degree range.Cavity-QED effects are used to demonstrate a giant exaltation of the spin-photon interaction. The device is a single semiconductor quantum dot spin inserted inside a micropillar, a geometry which currently constitutes the most efficient photonic interface between an external laser beam and a confined cavity mode. Further, quantum dots confine a spin state of charge carrier which can be initialized and optically measured.In this thesis, I realized an experimental setup used to initialize a spin state confined in the quantum dot and to analyze the polarization rotation induced by this spin state. I demonstrated that it was possible to initialize the spin state confined in quantum dot with a circularly polarized beam. Having a well-known spin state, I observed the polarization rotation of ± 6 ° induced by a single spin. This macroscopic polarization rotation is three orders of magnitude three orders of magnitude higher than the previous state of artIn parallel of this experimental work, I studied theoretically spin initialization and polarization rotation phenomenon in our systems. I developed analytical models to characterize and predict the resonant excitation and polarization rotation experiences. Thanks to this theoretical work, I determined realistic parameters for the device to realize an optimal spin-photon interface.This novel way of interfacing a flying qubit and a solid-state quantum memory opens the road for a wide range of applications for quantum information processing and long-distance quantum communication
Saharyan, Astghik. "Modèles effectifs pour l'optique quantique à photon unique." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCK003.
Full textOver the last decades, quantum optics has evolved from high-quality-factor cavities in the early experiments toward new cavity designs involving leaky modes. Despite efficient models to describe standard experiments, photon leakage is most of the time treated phenomenologically, which restricts the interpretation of the results and does not allow systematic studies. In this manuscript, we take a different approach, and starting from first principles, we derive effective models that allow complete characterization of a leaking single photon produced in the cavity and propagating in free space. We propose an atom-cavity scheme for single-photon generation, and we rigorously analyze the outgoing single photon in time and frequency domains for different coupling regimes. We extend the analysis by studying more realistic cavity models, namely taking into account the multilayer dielectric structure of cavity mirrors. We evaluate the dipole coupling strength between a single emitter and the radiation field within such an optical cavity. Our model allows one to freely vary the resonance frequency of the cavity, the frequency of light or atomic transition addressing it, and the design wavelength of the dielectric mirror. In particular, we show that due to the effects induced by the multilayer nature of the cavity mirror, even in the standardly defined high-finesse cavity regime, the cavity-reservoir system description might differ from the one where the structure of the mirror is neglected. For very short cavities, the effective length used to determine the cavity mode volume and the lengths defining the resonances are different, and also found to diverge appreciably from the geometric length of the cavity. Only for cavities much longer than their resonant wavelength does the mode volume asymptotically approach that normally assumed from their geometric length. Based on these results, we define a generalized cavity response function and cavity-reservoir coupling function, which account for the geometric structure of the cavity mirror. This allows us to define an effective reflectivity for the cavity with a multilayer mirror as if it had a negligible structure. We estimate the error of such a definition by considering cavities of different lengths and mirror structures. Finally, we apply this model to characterize a single photon produced in such a cavity and propagating outside in free space
Signoles, Adrien. "Manipulations cohérentes d'états de Rydberg elliptiques par dynamique Zénon quantique." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066614/document.
Full textIn this manuscript, we describe the realization of a new experimental setupto manipulate with a well-polarized radiofrequency electric field the internal state of aRydberg atom inside the Stark manifold. We used this setup to transfer with a nearly 1efficiency the atoms from a optically-accessible low-m state to the high angular momentumcircular Rydberg state. We then tried to induce new quantum dynamics of the atomicstate and we showed the quantum Zeno dynamics in a large Hilbert space. By applying awell-choose microwave field, one can restrict the atomic evolution induced by the radiofrequencyfield to a subspace of the Stark manifold. This confined dynamics is very differentfrom a classical dynamics. The system periodically evolves to a « Schrödinger cat state ».We experimentally observed this evolution in the phase space and mesured the atomicWigner function at the cat state . This is the first demonstration of the non-classicalaspect of the quantum Zeno dynamics in a non-trivial Hilbert space
Hohmann, Leander. "Using optical fibre cavities to create multi-atom entanglement by quantum zeno dynamics." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066053/document.
Full textIn this thesis, we show how an optical microcavity setup can create multiparticle entanglement in an ensemble of neutral atoms by means of quantum Zeno dynamics (QZD).Our setup combines an atom chip with a fibre Fabry-Perot (FFP) resonator and allows us to load an ensemble of Rb87 atoms into a single node of an intracavity dipole trap, coupling the atoms strongly and identically to the cavity light field which enables us to perform a quantum non-destructive measurement of their collective state.We realise QZD by modifying the dynamics of the collective state (encoded in atomic hyperfine states addressed with MW radiation) by means of frequent cavity measurements at optical frequency. This QZD is shown to create multiparticle entanglement in a fast and deterministic scheme. To analyse the created states, we reconstruct the symmetric part of the atomic density matrix from 2d measurements of the ensemble's Husimi Q-distribution. We give a time-resolved account of the creation of states with at least 3-11 entangled atoms and fidelity of up to 0.37 with respect to a W state of 36 atoms. Studying the influence of measurement strength and experimental imperfections, we show that our experiments are well described by simple models with no free parameters.This thesis also presents work towards improved FFP cavities. We discuss the problem of frequency splitting of polarisation eigenmodes in cavities made from two fibres microfabricated with a CO2 laser. We show that this effect depends on the symmetry of the microfabricated structures and demonstrate that it can be controlled both at the level of fabrication and when assembling a cavity
Caillet, Xavier. "Une microcavité semiconductrice source de photons jumeaux contrapropageants à température ambiante." Paris 7, 2009. http://www.theses.fr/2009PA077218.
Full textThis work is devoted to the conception and demonstration of a semiconductor waveguide emitting counterpropagating twin photons for Quantum Information. Several criteria make it a promising device: integrability, compactness, room temperature operation, high collection efficiency, spectral width of the generated photons, and the easy control of the degree of frequency correlation. Some of these properties stems from the original geometry of the device: the generated photons are created by Parametric Fluorescence inside a non-linear waveguide, optically pumped by the top. The idea at the ongin of this work is the integration of a microcavity with a structure based on counterpropagating geometry, which allows to optimise the performances of the source. After a brief introduction of the research field, a complete study of the properties of the device is shown which ended in the design of an optimized structure. The realized samples were characterized through optical losses measurements in the waveguide regime and through Second Harmonic Generation experiments. A Parametric Fluorescence experiment was then conducted in order to estimate the performances of the new device. The integration of a vertical microcavity allowed in particular a two orders of magnitude increase of the source conversion efficiency. The quality of the generated quantum state was verified via a Hong-Ou-Mandel experiment which is a indistinguability test between two photons. The good visibility obtained opens the way to a large number of Quantum Information experiments using this source
Sayrin, Clément. "Préparation et stabilisation d'un champ non classique en cavité par rétroaction quantique." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00654082.
Full textRauschenbeutel, Arno. "ATOMES ET CAVITÉ : PRÉPARATION ET MANIPULATION D'ÉTATS INTRIQUÉS COMPLEXES." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2001. http://tel.archives-ouvertes.fr/tel-00000826.
Full textcouplé, la phase reste inchangée. Nous démontrons ce changement de phase et nous faisons varier sa valeur en désaccordant la fréquence du mode par rapport à la transition atomique. De plus, nous vérifions que la dynamique préserve la cohérence des sous-systèmes, menant ainsi à un état intriqué si les deux sont initialement préparés dans des superpositions d'états. Nous interprétons le processus en termes d'une porte logique quantique et nous analysons ses limitations. Dans une deuxième expérience, nous préparons et analysons un état intriqué entre deux atomes et le champ en effectuant des opérations successives et réversibles. Le premier atome est intriqué avec le champ en interagissant avec ce dernier pendant un quart d'oscillation de Rabi. Le deuxième atome effectue ensuite, comme dans la première expérience, une oscillation de Rabi complète. Etant préparé dans une superposition de l'état couplé et de l'état non-couplé, il s'intrique également avec le champ, et donc avec le premier atome. Des mesures dans deux bases orthogonales sont effectuées sur l'état intriqué à trois systèmes résultant. Une analyse des signaux expérimentaux est présentée, confirmant que l'état préparé n'est effectivement pas séparable. Nous discutons des perspectives ouvertes par ces expériences pour le traitement
quantique de l'information.
Dmytruk, Olesia. "Quantum transport in a correlated nanostructure coupled to a microwave cavity." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS335/document.
Full textIn this thesis, we study theoretically various physical properties of nanostructures that are coupledto microwave cavities. Cavity quantum electrodynamics (QED) with a quantum dot has been proven to be a powerful experimental technique that allows to study the latter by photonic measurements in addition to electronic transport measurements. In this thesis, we propose to use the cavity microwave field to extract additional information on the properties of quantum conductors: optical transmission coefficient gives direct access to electronic susceptibilities of these quantum conductors. We apply this general framework to different mesoscopic systems coupled to a superconducting microwave cavity, such as a tunnel junction, a quantum dot coupled to the leads, a topological wire and a superconducting ring. Cavity QED can be used to probe the finite frequency admittance of the quantum dot coupled to the microwave cavity via photonic measurements. Concerning the topological wire, we found that the cavity allows for determining the topological phase transition, the emergence of Majorana fermions, and also the parity of the ground state. For the superconducting ring, we propose to study the Josephson effect and the transition from the latter to the fractional Josephson effect, which is associated with the emergence of the Majorana fermions in the system, via the optical response of the cavity. The proposed framework allows to probe a broad range of nanostructures, including quantum dots and topological superconductors, in a non-invasive manner. Furthermore, it gives new information on the properties of these quantum conductors, which was not available in transport experiments
Nogues, Gilles. "Détection sans destruction d'un seul photon. Une expérience d'électrodynamique quantique en cavité." Phd thesis, Université Pierre et Marie Curie - Paris VI, 1999. http://tel.archives-ouvertes.fr/tel-00001864.
Full textincidents pour convertir leur énergie en un signal détectable.
Cette destruction n'est cependant pas imposée par les lois
quantiques fondamentales et des stratégies de mesure quantique
non-destructive ont été proposées qui permettent la mesure répétée
de champs électromagnétiques. Nous présentons la détection sans
absorption d'un seul photon stocké dans une cavité micro-onde
supraconductrice. Nous utilisons à cette fin des atomes de Rydberg
circulaires, très fortement couplés au champ. Durant son
interaction avec le mode de la cavité, un atome est capable
d'absorber un photon puis de le réémettre. Il s'agit des
oscillations de Rabi quantiques. À la fin de ce cycle
absorption--émission, le photon est encore présent dans la cavité
mais le système atome--champ a gardé une trace de son évolution
dans la phase de sa fonction d'onde qui a tourné de 180°. Nous
détectons ce déphasage grâce à un dispositif d'interférométrie
atomique. Un ensemble d'expériences permet de prouver les
corrélations entre l'atome et l'état du champ et le caractère
non-destructif de la mesure. Une analyse précise des performances
du dispositif et de ses applications possibles pour l'optique
quantique est menée.
Diniz, Igor. "Electrodynamique quantique des les atomes artificiels supraconducteurs." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00771451.
Full textOllivier, Harold. "Eléments de théorie de l'information quantique, décohérence et codes correcteurs d'erreurs." Palaiseau, Ecole polytechnique, 2004. http://www.theses.fr/2004EPXX0027.
Full textMaioli, Paolo. "Détection non destructive d'un atome unique par interaction dispersive avec un champ mésoscopique dans une cavité." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2004. http://tel.archives-ouvertes.fr/tel-00007691.
Full textMunsch, Mathieu. "Étude du régime de Purcell pour une boîte quantique unique dans une microcavité semiconductrice : vers une non-linéarité optique géante." Phd thesis, Grenoble 1, 2009. http://www.theses.fr/2009GRE10313.
Full textCavity Quantum Electrodynamics (CQED) studies the light-matter interaction at the most fundamental level, ie when matter is well described by a two-level system and when light can be reduced to a single mode of the electromagnetic eld. The rst eects of CQED have been demonstrated in the 80ies in the eld of atomic physics. Thanks to impressive progress in micro and nanoscale fabrication techniques, Purcell eect and strong coupling could be reached for articial atoms coupled to semiconducting cavities during the past decade. Those systems are interesting for their high scalability and their potential for on-chip realisation. Within this context, semiconducting quantum dots (QD) are very promising candidates. However, due to the solid surrounding matrix, which is a source of decoherence, those systems diverge from the paradigm of atomic physics. For QDs in particular, this coupling can be important and thus highly modies the results. We propose here to study the measurement of the Purcell factor, which is an important factor of merit for CQED, in the case of a QD embedded in a micropillar type cavity. Several approaches are presented, which are compared to one-another, and which take into account the specicities of QDs. We show that the use of a more precise model is necessary to interpret the obtained results. The last chapter is devoted to an interesting application for this type of systems which consists in using the saturation of the quantum dot to implement a optical non-linearity at the single photon level
Berceau, Paul. "Propagation de photons sous champs magnétiques intenses : étude expérimentale de la biréfringence magnétique du vide quantique." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1906/.
Full textIn this work, we present a metrology experiment whose goal is to measure the vacuum magnetic birefringence. It consists in measuring the ellipticity induced by a pulsed transverse magnetic field on a laser beam initially linearly polarized. This ellipticity is proportional to the square of the magnetic field, to the length of the optical path in the medium, and to its magnetic birefringence. In particular, quantum electrodynamics theory predicts a value for the birefringence of the vacuum that is extremely small; its measurement is thus an experimental challenge. This thesis presents the detailed characterization of the high precision ellipsometer. It combines a very high finesse Fabry-Perot cavity, on which is locked a Nd:YAG laser, with pulsed magnets delivering strong transverse magnetic field. We then show the results of our measurements of nitrogen Cotton-Mouton effect. These measurements allow us to precisely calibrate our experimental setup. A detailed error budget is given, and the the entirety of the systematic effects is identified. In the end we give the results of the first magnetic field pulses that have been carried out in vacuum, as well as the sensitivity of the experimental setup, and the improvements that have to be brought on it. We finally present a further work to this experiment, making an excursion beyond the Standard Model. We study the possibility of oscillations of photons into massive particles called axions. We particularly give the results of the "light shinning through the wall experiment" using X-rays and carried out at the ESRF of Grenoble
Six, Pierre. "Estimation d'état et de paramètres pour les systèmes quantiques ouverts." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM019/document.
Full textIn recent years, the scientifical community has succeeded in experimentally building simple quantum systems on which series of measurements are successively acquired along quantum trajectories, without any reinitialization of their state (density operator) by the physicist. The subject of this thesis is to adapt the quantum tomography techniques (state and parameters estimation) to this frame, in order to take into account the feedback of the measurement on the state, the decoherence and experimental imperfections.During the measurement process, the evolution of the quantum state is then governed by a hidden-state Markov process (Belavkin quantum filters). Concerning continuous-time measurements, we begin by showing how to discretize the stochastic master equation, while preserving the positivity and the trace of the quantum state, and so reducing to discrete-time quantum filters. Then, we develop,starting from trajectories of discrete-time measurements, some maximum-likelihood estimation techniques for initial state and parameters. This estimation is coupled with its confidence interval. When it concerns the value of parameters (quantum process tomography), we provide a result of robustness using the formalism of particular filters, and we propose a maximization technique based on the calculus of gradient by adjoint method, which is well adapted to the multi-parametric case. When the estimation concerns the initial state (quantum state tomography), we give an explicit formulation of the likelihood function thanks to the adjoint states, show that its logarithm is a concave function of the initial state and build an intrinsic expression of the variance, obtained from asymptotic developments of Bayesian means, lying on the geometry of the space of density operators.These estimation techniques have been applied and experimentally validated for two types of quantum measurements: discrete-time non-destructive measurements of photons in the group of cavity quantum electro-dynamics of LKB at Collège de France, diffusive measurements of the fluorescence of a supra-conducting qubit in the quantum electronics group of LPA at ENS Paris
Bertet, Patrice. "Atomes et Cavité : Complémentarité et Fonctions de Wigner." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2002. http://tel.archives-ouvertes.fr/tel-00002496.
Full textmécanique quantique. Il prédit que, dans une expérience d'interférométrie, toute
tentative pour déterminer quel chemin la particule choisit entre les deux lames
séparatrices brouille inévitablement les franges d'interférence. Dans ce mémoire,
nous présentons une expérience qui illustre ce principe dans un interféromètre de
Ramsey. Des atomes de Rydberg circulaires sont soumis à deux impulsions micro-onde
résonantes sur une transition atomique, qui jouent le rôle de lames séparatrices en
énergie. On observe alors des franges d'interférence dans la probabilité de détecter
l'atome dans un état donné. Dans notre expérience, l'une des deux impulsions est
effectuée dans le mode d'une cavité supraconductrice. Grâce au couplage fort entre
l'atome et la cavité, nous avons pu effectuer l'impulsion même lorsque le champ dans
la cavité contient très peu de photons en moyenne (N<1, impulsion quantique). Les
franges ont alors un contraste réduit car l'état de la cavité mesure celui de
l'atome au sein de l'interféromètre. Cette mesure est de moins en moins efficace
lorsque N augmente. Le contraste des franges augmente donc, jusqu'à atteindre le
contraste intrinsèque d'un interféromètre de Ramsey classique lorsque N>>1. Un
modèle simple, qui ne tient compte que de l'intrication entre l'atome et la cavité,
reproduit quantitativement les observations. Un des intérêts majeurs du dispositif
d'électrodynamique quantique en cavité est de permettre la génération d'états
non-classiques du champ. Il est alors particulièrement intéressant de les
caractériser complètement. Nous présentons en dernière partie de ce mémoire une
méthode directe pour mesurer la fonction de Wigner d'un état quelconque de la
cavité, et son application à un état de Fock à un photon.
Jeantet, Adrien. "Cavity quantum electrodynamics with carbon nanotubes." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC010/document.
Full textCarbon nanotubes are extensively investigated for their amazing mechanical and electronic properties. Optically, they are excellent candidates for on-demand single-photon sources because they can be electrically excited and they can emit anti-bunched light at room temperature in the telecoms bands. However, their emission efficiency is low, its origins remain unclear and the spectral shape of their photoluminescence is complicated. In this work, we build an original setup combining a confocal microscope and a fiber based micro-cavity which is both spatially and spectrally tunable. With this device, we observed the rise of cavity quantum electrodynamics effects by analyzing the evolution of the dipole-cavity coupling as a function of the cavity volume. We obtained a strong acceleration of the spontaneous emission rate, due to Purcell factors above 100. The associated effective efficiency of the source reaches up to 50%, leading to a brightness of up to 10%, while keeping excellent anti-bunching features. We observe the effect of the cavity coupling as a function of the cavity detuning, and develop a model to account for emitters undergoing exciton-phonon coupling in the presence of a cavity. We show that our single-photon source is tunable on a range of frequencies more than a hundred times higher than the cavity spectral width, opening the way to extensive multiplexing. Further strengthening of the coupling may open the way to the very rich physics of one-dimensional cavity polaritons. And conversely, cavity polaritons could be a tool to understand better the diffusion, and localization properties of excitons in carbon nanotubes. Finally, the original setup build here is extremely versatile and could be used to coupled other types of emitters, such as nano-diamonds or molecules
Lebouteiller, Claire. "Dispositif pour le chargement rapide d'une cavité miniaturisée : vers un registre de qubits atomiques." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066100/document.
Full textThe study of quantum entanglement is a very active research field. Cavity quantum electrodynamics systems are versatile tools allowing for instance entanglement in mesoscopic systems, that is to say with about a hundred particles. The purpose of the new experimental setup built during this thesis is to reach the single atom manipulation and detection level while working with mesoscopic ensembles, collectively coupled to the cavity mode. Toward this goal, three new experimental techniques have been developed to enable reliable and fast data acquisition rate, essential to reconstruct entangled states by quantum tomography means. First, robust extended cavity diode lasers have been constructed, allowing acquisitions that last for days. Then, a pulsed atomic source has been set up, it combines the advantages of fast magneto-optical trap loading and long lifetime in conservative traps by modulating the pressure inside a single vacuum chamber apparatus on a short timescale. Finally, to ensure the fast transport of cold atomic ensembles from the magneto-optical trap to the cavity position, a dipole trap moved with an acousto-optic deflector has been built. This allows a transport over few centimetres leaving the full optical access to the atomic cloud for other manipulations. Thanks to this new experimental setup, we hope to contribute to the understanding of the rich physics lying beyond multi-particle entangled systems
Huang, Meng-Zi. "Spin squeezing and spin dynamics in a trapped-atom clock." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS134.
Full textAtomic sensors are among the best devices for precision measurements of time, electric and magnetic fields, and inertial forces. However, all atomic sensors that utilise uncorrelated particles are ultimately limited by quantum projection noise, as is already the case for state-of-the-art atomic clocks. This so-called standard quantum limit (SQL) can be overcome by employing entanglement, a prime example being the spin-squeezed states. Spin squeezing can be produced in a quantum non-demolition (QND) measurement of the collective spin, particularly with cavity quantum electrodynamical (cQED) interactions. In this thesis, I present the second-generation trapped-atom clock on a chip (TACC) experiment, where we combine a metrology-grade compact clock with a miniature cQED platform to test quantum metrology protocols at a metrologically-relevant precision level. In a standard Ramsey spectroscopy, the stability of the apparatus is confirmed by a fractional frequency Allan deviation of 6E-13 at 1 s. We demonstrate spin squeezing by QND measurement, reaching 8(1) dB for 1.7E4 atoms, currently limited by decoherence due to technical noise. Cold collisions between atoms play an important role at this level of precision, leading to rich spin dynamics. Here we find that the interplay between cavity measurements and collisional spin dynamics manifests itself in a quantum amplification effect of the cavity measurement. A simple model is proposed, and is confirmed by initial measurements. New experiments in this direction may shed light on the surprising many-body physics in this sytem of interacting cold atoms
Osnaghi, Stefano. "Réalisation d' états intriqués dans une collision atomique assistée par une cavité." Paris 6, 2002. https://tel.archives-ouvertes.fr/tel-00002072.
Full textHaas, Florian. "Creation of entangled states of a set of atoms in an optical cavity." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2014. http://tel.archives-ouvertes.fr/tel-00968861.
Full textBerceau, Paul. "Propagation de photons sous champs magnétiques intenses - Etude expérimentale de la biréfringence magnétique du vide quantique." Phd thesis, Université Paul Sabatier - Toulouse III, 2012. http://tel.archives-ouvertes.fr/tel-00766215.
Full textDiniz, Igor. "Quantum electrodynamics in superconducting artificial atoms." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENY048/document.
Full textCette thèse porte sur deux problèmes théoriques d'électrodynamique quantique en circuits supraconducteurs. Nous avons d'abord étudié les conditions d'obtention du couplage fort entre un résonateur et une distribution continue d'émetteurs élargie de façon inhomogène. Le développement de ce formalisme est fortement motivé par les récentes propositions d'utiliser des ensembles de degrés de liberté microscopiques pour réaliser des mémoires quantiques. En effet, ces systèmes bénéficient du couplage collectif au résonateur, tout en conservant les propriétés de relaxation d'un seul émetteur. Nous discutons l'influence de l'élargissement inhomogène sur l'existence et les propriétés de cohérence des pics polaritoniques obtenus dans le régime de couplage fort. Nous constatons que leur cohérence dépend de façon critique de la forme de la distribution et pas uniquement de sa largeur. En tenant compte de l'élargissement inhomogène, nous avons pu simuler avec une grande précision de nombreux résultats expérimentaux pionniers sur un ensemble de centres NV. La modélisation s'est révélée un outil puissant pour obtenir les propriétés des ensembles de spins couplés à un résonateur. Nous proposons également une méthode originale de mesure de l'état de qubits Josephson fondée sur un SQUID DC avec une inductance de boucle élevée. Ce système est décrit par un atome artificiel avec des niveaux d'énergie en forme de diamant où nous définissons les qubits logique et ancilla couplés entre eux par un terme Kerr croisé. En fonction de l'état du qubit logique, l'ancilla est couplée de manière résonante ou dispersive au résonateur, ce qui provoque un contraste important dans l'amplitude du signal micro-onde transmis par le résonateur. Les simulations montrent que cette méthode originale peut être plus rapide et peut aussi avoir une plus grande fidélité que les méthodes actuellement utilisées dans la communauté des circuits supraconducteurs
Long, Romain. "Couplage d'une microsphère accordable et d'une "puce à atomes" : vers des expériences "intégrées" d'électrodynamique quantique en cavité optique." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00006175.
Full textPour réaliser une interaction atome-champ contrôlée, il est nécessaire de rendre la microsphère accordable. Par l'application d'une contrainte mécanique sur la sphère, nous avons pu accorder un mode de galerie sur 400 GHz. De plus, en miniaturisant le
dispositif de couplage, nous pouvons exciter un mode de la sphère dans une chambre ultra-vide, où les atomes froids sont manipulés.
D'autre part, une puce multi-couches nous permet de réaliser un convoyeur magnétique, transportant les atomes entre une zone de chargement du piège et la cavité, soit sur une distance de 6 cm à une vitesse de 10 cm/s. En effectuant 2 allers-retours,
les atomes ont parcouru une distance totale de 24 cm. Ce transport d'atomes piégés nous permet de résoudre l'un des principaux problèmes du couplage d'atomes froids
avec les modes d'une microsphère.
Palacios-Laloy, Agustin. "Bits quantiques supraconducteurs et résonateurs : test de l'intégralité de Legget-Garg et lecture en un coup." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2010. http://tel.archives-ouvertes.fr/tel-00815078.
Full textPasserat, de Silans Thierry. "Interaction atome-surface : Interaction de Van der Waals entre un atome exité et une surface diélectrique thermiquement émissive : Oscillations de Bloch pour un atome adsorbé." Paris 13, 2009. http://scbd-sto.univ-paris13.fr/secure/edgalilee_th_2009_passerat_de_silans.pdf.
Full textIn this thesis we have studied different aspects of the interaction between an atom and a dielectric surface. We have experimentally searched situations where the long range van der Waals interaction changes with the vacuum temperature as governed by its surrounding environnement. Such a situation occurs when the thermal surface emission resonantly couples in the near field to an atomic absorption. Our research deals with the interaction between a Cs(8P) atom and a CaF2 surface, and was performed through selective reflection spectroscopy. Until now, experimental values for C3 coefficient of the van der Waals interaction are in contradiction with the theoretical predictions. We have nevertheless refined our theoretical predictions by introducing in the calculations the temperature evolution of the dielectric constant, as obtained from new temperature dependent measurements of the surface reflectivity for CaF2, BaF2 and sapphire. We have also observed, in an auxiliary saturated absorption experiment, new lines around the 6S1/2→8P transitions, that we have attributed to dimers specifically formed by our lasers beams. Such lines appear for unusually low vapour densities. At a shorter distance range of atom-surface interaction, where the interaction potential combines van der Waals attraction and repulsion in the immediate vicinity of the surface, we have analysed the possibility of observing Bloch oscillations, on the basis of calculations for a He atom adsorbed on a LiF surface and submitted to an external force
Chervy, Thibault. "Strong coupling regime of cavity quantum electrodynamics and its consequences on molecules and materials." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF033/document.
Full textThis thesis presents an exploratory study of several aspects of strong light-matter coupling in molecular materials. Different properties inherited from such a coupling are demonstrated, opening the way to numerous applications, ranging from energy transfer to the generation of non-linear optical signals and to the development of chiral polaritonic networks. Through the topics covered, the idea of a light-matter coupling strength competing with the different frequencies of relaxation of the molecules proves to be crucial. Thus, the predominance of the coherent coupling to the electromagnetic field appears as a new mean of modifying the quantum properties of molecular systems, opening the way to a new chemistry of materials in optical cavities
Auffeves, Alexia. "Oscillation de Rabi à la frontière classique-quantique et génération de chats de Schrödinger." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2004. http://tel.archives-ouvertes.fr/tel-00006406.
Full textde superpositions mésoscopiques d'états, communéments
appelés "Chats de Schrödinger", est l'un des enjeux
majeurs de l'Electrodynamique Quantique en Cavité. Dans ce
mémoire nous présentons une nouvelle technique pour
générer des superpositions mésoscopiques d'états du champ
électromagnétique dans le mode d'une cavité supraconductrice
de grand facteur de qualité. Nous observons qu'un atome de
Rydberg interagissant de façon résonnante avec un champ
cohérent contenant quelques dizaines de photons scinde celui-ci
en deux composantes de phases opposées +/-phi où phi
est inversement proportionnel à la racine du nombre de photons.
Les phases du champ et du dipôle atomique sont intriquées.
L'objet microscopique qu'est l'atome laisse ainsi son empreinte
sur l'objet mésoscopique qu'est le champ. Cet effet, dû à la
granularité du champ, disparaît à la limite classique. Nous
avons vérifié la corrélation entre la phase atomique et la
phase du champ, puis préparé une superposition de deux champs
cohérents de phases opposées. Nous avons analysé la
distribution de phase du champ par une technique de détection
homodyne. Nous avons ensuite estimé la cohérence des
superpositions réalisées. La distance des chats préparés
par cette technique est de l'ordre de 20 photons. Tester la
non-localité de la Mécanique Quantique constitue également
une motivation de nos expériences. On présente une étude
théorique et numérique de violation des inégalités de Bell
avec des états cohérents intriqués préparés dans les
modes de deux cavités distinctes.
Amini, Hadis. "Stabilisation des systèmes quantiques à temps discrets et stabilité des filtres quantiques à temps continus." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2012. http://pastel.archives-ouvertes.fr/pastel-00803170.
Full textGehr, Roger. "Détection non-destructive et de haute fidelité d'atomes uniques à l'aide d'un résonateur sur une puce à atomes." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00593418.
Full textMétillon, Valentin. "Tomographie par trajectoires d'états délocalisés du champ micro-onde de deux cavités." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE051.
Full textQuantum state estimation, or tomography, is a key component of quantum technologies, allowing to characterise quantum operations and to extract information on the results of quantum information processes. The usual tomography techniques rely on ideal, single-shot measurements of the unknown state. In this work, we use a new approach, called trajectory quantum tomography, where the quantum trajectory of each realization of the state is recorded through a series of measurements, including experimental imperfections and decoherence. This strategy increases the extracted amount of information and allows to build new measurements for a set of feasible measurements.Using the tools of cavity quantum eletrodynamics, we have prepared entangled states of microwave photons spread on two separated modes. We have then performed a trajectory tomography of these states, in a large Hilbert space. We have proved that this method allows to estimate the state, to develop faster strategies for extracting information on specific coherences of the state and to compute error bars on the components of the estimated density matrix
Meunier, Tristan. "Oscillations de Rabi induites par un renversement du temps : un test de la cohérence d'une superposition quantique mésoscopique." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2004. http://tel.archives-ouvertes.fr/tel-00011329.
Full textNous présentons une étude expérimentale de cette intrication avec un atome de Rydberg circulaire et une cavité micro-onde supraconductrice. Pour sonder le champ, nous avons développé une mesure de la fonction ‘Q', appliquée à différents états : état à un photon, état cohérent. Nous avons ainsi mesuré la distance entre les composantes de phase produites par l'oscillation de Rabi. Cette mesure, au contraire de l'observation des résurgences, ne prouve pas la cohérence de la superposition. Nous avons donc induit ces résurgences par une transformation de l'état atomique, se ramenant à un renversement du temps, et obtenu ainsi une preuve de la création de superpositions quantiques mésoscopiques.
Aiello, Gianluca. "Quantum dynamics of a high impedance microwave cavity strongly coupled to a Josephson junction." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP089.
Full textThe purpose of this thesis is to investigate the properties and the dynamics of a high impedance microwave cavity galvanically coupled to a DC biased Josephson junction. The cavity is realized in granular Aluminum, a disordered superconductor with high kinetic inductance, which allowed us to obtain modes with a high quality factor (up to 30000) and a large characteristic impedance up to 5 kOhm in the GHz range. The occupation and the properties of the cavity modes are strongly affected by the charge tunneling processes occurring in the junction connected to the cavity. Because the characteristic impedance of the modes is comparable to the quantum of resistance, high order non-linear processes are observed. At low voltages compared to the superconducting gap of the junction, the dominant process is the inelastic tunneling of Cooper pairs, which populates the different cavity modes. We directly measure the photon emission in one mode at 6 GHz and observe more than 70 emission peaks as a function of bias voltage, a clear signature of the high non-linearity. At larger voltages close to the gap, quasiparticle tunneling dominates. This dissipative process modifies both the resonance frequency and the linewidth of the modes. A quantum treatment of this dissipative process in terms of Lamb shift and quantum jumps is required to quantitatively explain our measurements. These results show the potential of granular Aluminum to realize microwave quantum optics experiments in a regime where charge transport and microwave photons are strongly coupled
Janvier, Camille. "Coherent manipulation of Andreev Bound States in an atomic contact." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS217/document.
Full textLocalized electronic states, called Andreev bound states, appear in weak-links placed between superconducting electrodes. The experiments presented in this thesis explore the coherence properties of these states. Single atom contacts between aluminum electrodes are used as weak links. In order to isolate and probe these states, the atomic contacts are integrated in amicrowave cavity.In a first series of experiments, it is shown that Andreev states can be used to define a quantumbit, “the Andreev qubit”, which is controlled using microwave pulses.Measurements of the lifetime and coherence time of this qubit are thoroughly analyzed.In a second series of experiments, the interaction between the Andreev qubit and the microwave cavity are used to determine the number of photons present in the cavity as a function of the power of microwave pulses at its eigenfrequency.Finally, quantum and parity jumps are observed in continuous measurements of the state of the Andreev dot
Assémat, Frédéric. "Manipulation d'états quantiques de la lumière par l'intermédiaire d'un atome de Rydberg unique." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS016.
Full textThe manipulation of non-classical states is of great interest both from a fundamental perspective but also for their potential applications in domains such as quantum information, quantum communication or metrology. It is then essential to be able to prepare quantum systems in such states and control their evolution. The field of cavity quantum electrodynamics is very well suited to study non-classical states of light. It relies on the strong coupling of a two-level system on one side and one mode of the electromagnetic field on the other side. This thesis introduces a new experiment of cavity quantum electrodynamics combining a beam of slow atoms prepared in Rydberg circular states and the electromagnetic mode of a superconducting cavity. This new set-up allows us to improve significantly the interaction time between the atom and the field. Thanks to this, we obtained our first experimental results that we are presenting in this manuscript. Firstly, we use the resonant interaction between the atom and the field to generate a Schrödinger cat state, superposition of two coherent field of opposite phases. This field is then characterized thanks to its Rabi oscillation signal. Secondly, we make use of the long interaction time in the dispersive regime to achieve a resolution of the dressed state spectrum of the system up to 8 photons. Thanks to this resolution we were finally able to engineer quantum states such as the superposition of 0 and 2 photons
Contamin, Lauriane. "Mise en évidence de textures de spin synthétiques par des mesures de transport et de champ microonde." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE020.
Full textIn this thesis, we have studied carbon nanotube-based nanocircuits integrated in a microwave cavity architecture. Our device is compatible with the simultaneous measurement of both the current through the nanocircuit and the frequency shift of the cavity. These two signals give complementary information about the device. In the two experiments presented in this thesis, the carbon nanotube was positioned above a magnetic material containing several magnetization domains. The resulting magnetic stray field’s axis oscillates along the carbon nanotube length. For the confined electrons, this is equivalent to both a synthetic spin-orbit interaction and a Zeeman effect. This synthetic effect is evidenced in two ways. In a first experiment, we have measured the evolution of the nanotube’s energy levels when the magnetic material is progressively magnetized by an external magnetic field, thus destroying the oscillations of the stray field. In this experiment, the carbon nanotube had a very transparent contact to a superconducting metal, in addition to the synthetic spin-orbit interaction and Zeeman effect. These ingredients are a pre-requisite to observe Majorana quasiparticles in a one-dimensional nanoconductor. Those quasiparticles are under intense study for their potential use in quantum computing. In the second experiment, we have realized a double quantum dot in which each dot similarly lays above an oscillating magnetic field. The internal transitions of this DQD are measured with the microwave cavity signal. We evidenced a strong dispersion of the energy of the double quantum dots’ internal transitions with a small external magnetic field. This dispersion can be explained by a Zeeman effect in which the Landé factor, g, has been strongly renormalized by the synthetic spin-orbit interaction
Flottat, Thibaut. "Bosons couplés à des spins 1/2 sur réseau." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4080/document.
Full textStrongly correlated systems, where new surprising phases of matter may appear both in the context of ultra-cold atoms and cavity quantum electrodynamics, are the focus of intense experimental and theoritical activity. In this thesis we present a study of two models of bosons with two or zero internal states, that is to say spin-1/2 or spin-0 bosons. These particles can move around a lattice, and they are locally coupled to immobile spins 1/2. Our interest was to determine the ground state phase diagram, study phase properties and quantum phase transitions. We used two methods: an approximate one using a mean field approach and the other using quantum Monte-Carlo simulations, which provides numerically exact results. The first model, namely the bosonic Kondo lattice model, is in the context of ultra-cold atoms in optical lattices. We found that its physics is close to that of the Bose-Hubbard model, exhibiting Mott and superfluid phases. The local coupling strengthens the insulating behaviour of the system and magnetism emerges through indirect or direct coupling between bosons. Thermal effects, inherent in experiments, are also studied. The second model, which is in the context of light-matter interaction, describes a situation of an ultra-strong coupling between spin-0 bosons (photons) and local spins 1/2 (two levels atoms) and is known as the Rabi lattice model. The phase diagram generally consists of only two phases: a coherent phase and a compressible incoherent one. The locals
Desjardins, Matthieu. "Exploring quantum circuits with a cQed architecture : application to compressibility measurements." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEE044/document.
Full textOn-chip electronic circuits at cryogenic temperature are instrumental to studying the quantum behavior of electrons. In particular, quantum dot circuits represent tunable model systems for the study of strong electronic correlations, epitomized by the Kondo effect. In this thesis, carbon nanotube based-quantum dot circuits are embedded in coplanar microwave cavities, with which circuit quantum electrodynamics (cQED) has reached a high degree of control of the light-matter interaction. Here, microwave cavity photons are used to probe the charge dynamics in the quantum dot circuit. More precisely, the high finesse cavity allows us to measure the compressibility of the electron gas in the dot with an unprecedented sensitivity. Simultaneous measurements of electronic transport and compressibility show that the Kondo resonance observed in the conductance is transparent to microwave photons. This reveals the predicted frozen charge dynamics in the quantum dot for this peculiar electron transport mechanism and illustrates that the many-body Kondo resonance in the conductance is associated to correlations arising from spin fluctuations of a frozen charge. A second quantum phenomenon addressed in this thesis is the possible emergence of a new quasi-particle in condensed matter, called Majorana bound state, which would be its own anti-particle. For that purpose, a ferromagnetic gate has been placed below a nanotube in order to generate a synthetic spin-orbit coupling. The observation of Andreev bound states in such a device is a first promising step towards the detection with a cQED architecture of Majorana bound states in a carbon nanotube
Huard, Benjamin. "Quantum information with superconducting circuits." Habilitation à diriger des recherches, Ecole Normale Supérieure de Paris - ENS Paris, 2014. http://tel.archives-ouvertes.fr/tel-01011096.
Full textCubaynes, Tino. "Shaping the spectrum of carbon nanotube quantum dots with superconductivity and ferromagnetism for mesoscopic quantum electrodynamics." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS195/document.
Full textIn this thesis, we study carbon nanotubes based quantum dot circuits embedded in a microwave cavity. This general architecture allows one to simultaneously probe the circuit via quantum transport measurements and using circuit quantum electrodynamics techniques. The two experiments realized in this thesis use metallic contacts of the circuit as a resource to engineer a spin sensitive spectrum in the quantum dots. The first one is a Cooper pair splitter which was originally proposed as a source of non local entangled electrons. By using cavity photons as a probe of the circuit internal dynamics, we observed a charge transition dressed by coherent Cooper pair splitting. Strong charge-photon coupling in a quantum dot circuit was demonstrated for the first time in such a circuit. A new fabrication technique has also been developed to integrate pristine carbon nanotubes inside quantum dot circuits. The purity and tunability of this new generation of devices has made possible the realization of the second experiment. In the latter, we uses two non-collinear spin-valves to create a coherent interface between an electronic spin in a double quantum dot and a photon in a cavity. Highly coherent spin transitions have been observed. We provide a model for the decoherence based on charge noise and nuclear spin fluctuations
Morellini, Umberto. "Quelques modèles non linéaires autour du vide de Dirac." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD015.
Full textThis doctoral thesis is mainly devoted to the mathematical study of the Dirac vacuum, potentially in presence of an electromagnetic field and a finite number of electrons. This system is described by means of non-linear models originating from mean-field approximations of quantum electrodynamics. In Chapter 2, we study the dynamics of a finite number of relativistic electrons interacting with finitely many classical nuclei in the Dirac sea, by proving a global well-posedness result for the corresponding Cauchy problem. In Chapter 3, we provide the first rigorous derivation of the one-loop effective magnetic Lagrangian at positive temperature, a non-linear functional describing the free energy of the Dirac vacuum in a classical magnetic field. Finally, in Chapter 4, we present some numerical results concerning a one-dimensional model describing a relativistic hydrogen-like atom. In particular, we present an approach to compute the vacuum polarisation as well as the Lamb shift in a finite basis set approximation