To see the other types of publications on this topic, follow the link: Electrogenerated.

Journal articles on the topic 'Electrogenerated'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Electrogenerated.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Forster, Robert J., Paolo Bertoncello, and Tia E. Keyes. "Electrogenerated Chemiluminescence." Annual Review of Analytical Chemistry 2, no. 1 (July 19, 2009): 359–85. http://dx.doi.org/10.1146/annurev-anchem-060908-155305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ouyang, Jiangbo, and Allen J. Bard. "Electrogenerated chemiluminescence." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 222, no. 1-2 (May 1987): 331–42. http://dx.doi.org/10.1016/0022-0728(87)80297-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brina, Rossella, and Allen J. Bard. "Electrogenerated chemiluminescence." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 238, no. 1-2 (December 1987): 277–95. http://dx.doi.org/10.1016/0022-0728(87)85180-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Chi-Woo, Jiangbo Ouyang, and Allen J. Bard. "Electrogenerated chemiluminescence." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 244, no. 1-2 (April 1988): 319–24. http://dx.doi.org/10.1016/0022-0728(88)80115-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McCord, Paul, and Allen J. Bard. "Electrogenerated chemiluminescence." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 318, no. 1-2 (November 1991): 91–99. http://dx.doi.org/10.1016/0022-0728(91)85296-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fiorani, Andrea, Giovanni Valenti, Irkham, Francesco Paolucci, and Yasuaki Einaga. "Quantification of electrogenerated chemiluminescence from tris(bipyridine)ruthenium(ii) and hydroxyl ions." Physical Chemistry Chemical Physics 22, no. 27 (2020): 15413–17. http://dx.doi.org/10.1039/d0cp02005b.

Full text
Abstract:
In this work, we quantify the electrogenerated chemiluminescence arising from the reaction of electrogenerated tris(bipyridine)ruthenium(iii) with hydroxyl ions, in terms of emission intensity and reaction rate.
APA, Harvard, Vancouver, ISO, and other styles
7

Yaschenko, N. N., S. V. Zhitar, and E. G. Zinovjeva. "Determination of phenolic compounds in medicinal preparations by galvanostatic coulometry." Chimica Techno Acta 8, no. 1 (April 13, 2021): 20218110. http://dx.doi.org/10.15826/chimtech.2021.8.1.10.

Full text
Abstract:
In this work, the possibility of using reactions of electrogenerated titrants with phenolic compounds was studied and a method for their coulometric determination in medicaments by galvanostatic coulometry was developed. The research objects were: rutin, salicylic acid and drugs containing phenolic compounds such as «Ascorutin», «Salicylic Paste» and «Salicylic Ointment» of Russian manufacture. Electrogenerated halogens (Cl2, Br2 and I2) and hexacyanoferrate(III)-ions were used as titrants. It was found that for the quantitative determination of phenolic acids, the optimal reagent is electrogenerated bromine, for rutin - electrogenerated bromine and iodine, and for ascorbic acid - any of the studied electrogenerated titrants (Cl2, Br2, I2 and [Fe(CN)6]3-). The correct definition was checked by the «entered-found» method, the error does not exceed 2%. As experimental studies have shown, our method of coulometric titration with electrogenated bromine and iodine is characterized by good reproducibility of results, expression, accuracy and can be used to determine phenolic compounds in drugs, for example, «Ascorutin» tablets. It should be noted that by our procedure it is possible to determine the spectrum of phenol-containing compounds (rutin, ascorbic and salicylic acids) in drugs without their preliminary separation. Therefore, the coulometric method using electrogenerated titrants can be recommended for the determination of salicylic, ascorbic acids and rutin in dosage forms. The proposed method is accurate and eliminates the experiment error in comparison with the Pharmacopoeic method.
APA, Harvard, Vancouver, ISO, and other styles
8

Qi, Honglan, and Chengxiao Zhang. "Electrogenerated Chemiluminescence Biosensing." Analytical Chemistry 92, no. 1 (December 2, 2019): 524–34. http://dx.doi.org/10.1021/acs.analchem.9b03425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Suzuki, Shohei, Mitsuko Kato, and Shoichi Nakajima. "Application of electrogenerated triphenylmethyl anion as a base for alkylation of arylacetic esters and arylacetonitriles and isomerization of allylbenzenes." Canadian Journal of Chemistry 72, no. 2 (February 1, 1994): 357–61. http://dx.doi.org/10.1139/v94-055.

Full text
Abstract:
Phenylacetic esters and phenylacetonitriles were alkylated with alkyl halides, at the position α to an ester or nitrile, either at room temperature (20 °C) or at −78 °C, by making use of electrogenerated triphenylmethyl anion (trityl anion). Double-bond isomerization of allylbenzenes was also effectively accomplished by use of this electrogenerated base (EGB).
APA, Harvard, Vancouver, ISO, and other styles
10

Richter, Mark M., and Allen J. Bard. "Electrogenerated Chemiluminescence. 58. Ligand-Sensitized Electrogenerated Chemiluminescence in Europium Labels." Analytical Chemistry 68, no. 15 (January 1996): 2641–50. http://dx.doi.org/10.1021/ac960211f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

S. de Lima, Renata, Alex A. C. de Carvalho, Josealdo Tonholo, Phabyanno R. Lima, and Carmem L. P. S. Zanta. "The Oxidation Efficiency of Commercial, Electrogenerated and Electrogenerated In Situ Hypochlorite." Revista Virtual de Química 10, no. 4 (2018): 851–62. http://dx.doi.org/10.21577/1984-6835.20180062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bollo, Soledad, Luis Núñez-Vergara, and Juan A. Squella. "Electrogenerated Nitro Radical Anions." Journal of The Electrochemical Society 151, no. 10 (2004): E322. http://dx.doi.org/10.1149/1.1786076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ichia, Laila Sheeney-Haj, Eugenii Katz, Julian Wasserman, and Itamar Willner. "Magneto-switchable electrogenerated biochemiluminescence." Chemical Communications, no. 2 (December 20, 2001): 158–59. http://dx.doi.org/10.1039/b109782m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Quickenden, T. I., and K. Hansongnern. "Electrogenerated chemiluminescence from violanthrone." Journal of Bioluminescence and Chemiluminescence 10, no. 2 (March 1995): 103–6. http://dx.doi.org/10.1002/bio.1170100206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Choi, Jai-Pil, and Allen J. Bard. "Electrogenerated chemiluminescence (ECL) 79." Analytica Chimica Acta 541, no. 1-2 (June 2005): 141–48. http://dx.doi.org/10.1016/j.aca.2004.11.075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Debad, Jeff D., Sang Kwon Lee, Xiaoxin Qiao, Robert A. Pascal, Jr., Allen J. Bard, George W. Francis, József Szúnyog, and Bengt Långström. "Electrogenerated Chemiluminescence. 60. Spectroscopic Properties and Electrogenerated Chemiluminescence of Decaphenylanthracene and Octaphenylnaphthalene." Acta Chemica Scandinavica 52 (1998): 45–50. http://dx.doi.org/10.3891/acta.chem.scand.52-0045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Fuhrmann, B., and U. Spohn. "A PC-based titrator for flow gradient titrations." Journal of Automatic Chemistry 15, no. 6 (1993): 209–16. http://dx.doi.org/10.1155/s1463924693000276.

Full text
Abstract:
This paper describes a PC (personal computer) based titrator which was developed for gradient flow titrations. Concentration gradients were generated electrolytically or volumetrically in small tubes. Complete titration curves can be recorded on-line and evaluated automatically. The titrator can be used with all liquid flow detectors with low axial dispersion. The titrator was evaluated for the titration of thiosulphate with electrogenerated triiodide and for the titration of ammonia with electrogenerated hypobromite after continuous gas dialytic separation of ammonia from the sample solution.
APA, Harvard, Vancouver, ISO, and other styles
18

Muthuraman, G., AG Ramu, YH Cho, EJ McAdam, and IS Moon. "Electrochemically generated bimetallic reductive mediator Cu1+[Ni2+(CN)4]1− for the degradation of CF4 to ethanol by electro-scrubbing." Waste Management & Research: The Journal for a Sustainable Circular Economy 36, no. 11 (October 10, 2018): 1043–48. http://dx.doi.org/10.1177/0734242x18804642.

Full text
Abstract:
Remediation of electronic gas CF4 using commercially available technologies results in another kind of greenhouse gas and corrosive side products. This investigation aimed to develop CF4 removal at room temperature with formation of useful product by attempting an electrogenerated Cu1+[Ni2+(CN)4]1− mediator. The initial electrolysis of the bimetallic complex at the anodized Ti cathode demonstrated Cu1+[Ni2+(CN)4]1− formation, which was confirmed by additional electron spin resonance results. The degradation of CF4 followed mediated electrochemical reduction by electrogenerated Cu1+[Ni2+(CN)4]1−. The removal efficiency of CF4 of 95% was achieved by this electroscrubbing process at room temperature. The spectral results of online and offline Fourier transform infrared analyzer, either in gas or in solution phase, demonstrated that the product formed during the removal of CF4 by electrogenerated Cu1+[Ni2+(CN)4]1− by electroscrubbing was ethanol (CH3CH2OH), with a small amount of trifluoroethane (CF3CH3) intermediate.
APA, Harvard, Vancouver, ISO, and other styles
19

Martín-Yerga, Daniel, and Agustín Costa-García. "Stabilization of electrogenerated copper species on electrodes modified with quantum dots." Physical Chemistry Chemical Physics 19, no. 7 (2017): 5018–27. http://dx.doi.org/10.1039/c6cp07957a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chen, Ming-Ming, Wei Zhao, Meng-Jiao Zhu, Xiang-Ling Li, Cong-Hui Xu, Hong-Yuan Chen, and Jing-Juan Xu. "Spatiotemporal imaging of electrocatalytic activity on single 2D gold nanoplates via electrogenerated chemiluminescence microscopy." Chemical Science 10, no. 15 (2019): 4141–47. http://dx.doi.org/10.1039/c9sc00889f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lai, Rebecca Y., James J. Fleming, Brad L. Merner, Rudolf J. Vermeij, Graham J. Bodwell, and Allen J. Bard. "Electrogenerated Chemiluminescence. 74. Photophysical, Electrochemical, and Electrogenerated Chemiluminescent Studies of Selected Nonplanar Pyrenophanes." Journal of Physical Chemistry A 108, no. 3 (January 2004): 376–83. http://dx.doi.org/10.1021/jp0367981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ouyang, Jiangbo, and Allen J. Bard. "Electrogenerated Chemiluminescence. 50. Electrochemistry and Electrogenerated Chemiluminescence of Micelle Solubilized Os(bpy)32+." Bulletin of the Chemical Society of Japan 61, no. 1 (January 1988): 17–24. http://dx.doi.org/10.1246/bcsj.61.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lai, Rebecca Y., and Allen J. Bard. "Electrogenerated Chemiluminescence 71. Photophysical, Electrochemical, and Electrogenerated Chemiluminescent Properties of Selected Dipyrromethene−BF2Dyes." Journal of Physical Chemistry B 107, no. 21 (May 2003): 5036–42. http://dx.doi.org/10.1021/jp034578h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zhao, Ying, Qiang Zhang, Ke Chen, Hongfang Gao, Honglan Qi, Xianying Shi, Yajun Han, Junfa Wei, and Chengxiao Zhang. "Triphenothiazinyl triazacoronenes: donor–acceptor molecular graphene exhibiting multiple fluorescence and electrogenerated chemiluminescence emissions." Journal of Materials Chemistry C 5, no. 17 (2017): 4293–301. http://dx.doi.org/10.1039/c7tc00314e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Liu, Tongjun, and Zhenglong Li. "An electrogenerated base for the alkaline oxidative pretreatment of lignocellulosic biomass to produce bioethanol." RSC Adv. 7, no. 75 (2017): 47456–63. http://dx.doi.org/10.1039/c7ra08101d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhou, Jigang, Jun Zhu, Jack Brzezinski, and Zhifeng Ding. "Tunable electrogenerated chemiluminescence from CdSe nanocrystals." Canadian Journal of Chemistry 87, no. 1 (January 1, 2009): 386–91. http://dx.doi.org/10.1139/v08-180.

Full text
Abstract:
Electrochemical behavior and related optoelectronic properties of CdSe nanocrystals (NCs) in aprotic solutions have been investigated. NCs of 2.50 ± 0.50 nm diameter were synthesized using a modified procedure in which the temperatures at the time of Se precursor injection and NC growth were controlled. The electrochemical band gap was found to agree with those determined by UV–vis absorption spectroscopy and by the tunneling current-voltage spectrum in the literature. Electrogenerated chemiluminescence of the NCs with peak maxima at 1.90 eV (red, 653 nm) and 2.55 eV (blue, 486 nm) can be generated and altered by scanning the voltage between –1.60 and –1.80 V and between –2.00 and –2.20 V, respectively. The results demonstrate the potential capability of the NCs for light emission tuned by the applied potential.Key words: CdSe nanocrystals, electrochemistry, electrogenerated chemiluminescence, UV–vis spectroscopy, photoluminescence.
APA, Harvard, Vancouver, ISO, and other styles
27

Galván-Miranda, Elizabeth K., Hiram M. Castro-Cruz, J. Arturo Arias-Orea, Matteo Iurlo, Giovanni Valenti, Massimo Marcaccio, and Norma A. Macías-Ruvalcaba. "Synthesis, photophysical, electrochemical and electrochemiluminescence properties of A2B2 zinc porphyrins: the effect of π-extended conjugation." Physical Chemistry Chemical Physics 18, no. 22 (2016): 15025–38. http://dx.doi.org/10.1039/c6cp01926a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zhao, Ying, Dong Xue, Honglan Qi, and Chengxiao Zhang. "Twisted configuration pyrene derivative: exhibiting pure blue monomer photoluminescence and electrogenerated chemiluminescence emissions in non-aqueous media." RSC Advances 7, no. 37 (2017): 22882–91. http://dx.doi.org/10.1039/c7ra01586k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Shin, Sangbaie, Yun Sung Park, Sunghwan Cho, Insang You, In Seok Kang, Hong Chul Moon, and Unyong Jeong. "Effect of ion migration in electro-generated chemiluminescence depending on the luminophore types and operating conditions." Chemical Science 9, no. 9 (2018): 2480–88. http://dx.doi.org/10.1039/c7sc03996d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Morales, Daniela V., Catalina N. Astudillo, Veronica Anastasoaie, Baptiste Dautreppe, Bruno F. Urbano, Bernabé L. Rivas, Chantal Gondran, et al. "A cobalt oxide–polypyrrole nanocomposite as an efficient and stable electrode material for electrocatalytic water oxidation." Sustainable Energy & Fuels 5, no. 18 (2021): 4710–23. http://dx.doi.org/10.1039/d1se00363a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Soulsby, Lachlan C., David J. Hayne, Egan H. Doeven, David J. D. Wilson, Johnny Agugiaro, Timothy U. Connell, Lifen Chen, et al. "Mixed annihilation electrogenerated chemiluminescence of iridium(iii) complexes." Physical Chemistry Chemical Physics 20, no. 28 (2018): 18995–9006. http://dx.doi.org/10.1039/c8cp01737a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gu, Jianmin, Jingxiao Wu, Yahui Gao, Tianhui Wu, Qing Li, Aixue Li, Jian-Yao Zheng, Bin Wen, and Faming Gao. "Electrogenerated chemiluminescence logic gate operations based on molecule-responsive organic microwires." Nanoscale 9, no. 29 (2017): 10397–403. http://dx.doi.org/10.1039/c7nr02347b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chen, Xiaojiao, Yao He, Youyu Zhang, Meiling Liu, Yang Liu, and Jinghong Li. "Ultrasensitive detection of cancer cells and glycan expression profiling based on a multivalent recognition and alkaline phosphatase-responsive electrogenerated chemiluminescence biosensor." Nanoscale 6, no. 19 (2014): 11196–203. http://dx.doi.org/10.1039/c4nr03053b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kerr, Emily, Egan H. Doeven, David J. D. Wilson, Conor F. Hogan, and Paul S. Francis. "Considering the chemical energy requirements of the tri-n-propylamine co-reactant pathways for the judicious design of new electrogenerated chemiluminescence detection systems." Analyst 141, no. 1 (2016): 62–69. http://dx.doi.org/10.1039/c5an01462j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kirschbaum-Harriman, Stefanie, Axel Duerkop, and Antje J. Baeumner. "Improving ruthenium-based ECL through nonionic surfactants and tertiary amines." Analyst 142, no. 14 (2017): 2648–53. http://dx.doi.org/10.1039/c7an00197e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zholudov, Yuriy, Natalia Lysak, Dmytro Snizhko, Olena Reshetniak, and Guobao Xu. "Electrochemiluminescence analysis of tryptophan in aqueous solutions based on its reaction with tetraphenylborate anions." Analyst 145, no. 9 (2020): 3364–69. http://dx.doi.org/10.1039/d0an00229a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fang, Yi-Min, Jing Song, Juan Li, Yi-Wei Wang, Huang-Hao Yang, Jian-Jun Sun, and Guo-Nan Chen. "Electrogenerated chemiluminescence from Au nanoclusters." Chem. Commun. 47, no. 8 (2011): 2369–71. http://dx.doi.org/10.1039/c0cc04180g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shan, Kun, Ping Zhou, Jiqing Cai, Renke Kang, Kang Shi, and Dongming Guo. "Electrogenerated chemical polishing of copper." Precision Engineering 39 (January 2015): 161–66. http://dx.doi.org/10.1016/j.precisioneng.2014.08.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gao, Wenyue, Stéphane Jeanneret, Dajing Yuan, Thomas Cherubini, Lu Wang, Xiaojiang Xie, and Eric Bakker. "Electrogenerated Chemiluminescence for Chronopotentiometric Sensors." Analytical Chemistry 91, no. 7 (March 5, 2019): 4889–95. http://dx.doi.org/10.1021/acs.analchem.9b00787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kariv-Miller, Essie, Vesna Svetličić, and Phillip B. Lawin. "Electrogenerated R4N(Hg)5 films." Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 83, no. 4 (1987): 1169. http://dx.doi.org/10.1039/f19878301169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Richter, Mark M., Jeff D. Debad, Durwin R. Striplin, G. A. Crosby, and Allen J. Bard. "Electrogenerated Chemiluminescence. 59. Rhenium Complexes." Analytical Chemistry 68, no. 24 (January 1996): 4370–76. http://dx.doi.org/10.1021/ac9606160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Maus, Russell G., and R. Mark Wightman. "Microscopic Imaging with Electrogenerated Chemiluminescence." Analytical Chemistry 73, no. 16 (August 2001): 3993–98. http://dx.doi.org/10.1021/ac010128e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

VENKATACHALAM, S. "Electrogenerated Gas Bubbles in Flotation." Mineral Processing and Extractive Metallurgy Review 8, no. 1-4 (February 1992): 47–55. http://dx.doi.org/10.1080/08827509208952677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Booker, Christina, Xin Wang, Samar Haroun, Jigang Zhou, Michael Jennings, Brian L Pagenkopf, and Zhifeng Ding. "Tuning of Electrogenerated Silole Chemiluminescence." Angewandte Chemie 120, no. 40 (September 22, 2008): 7845–49. http://dx.doi.org/10.1002/ange.200802034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Booker, Christina, Xin Wang, Samar Haroun, Jigang Zhou, Michael Jennings, Brian L Pagenkopf, and Zhifeng Ding. "Tuning of Electrogenerated Silole Chemiluminescence." Angewandte Chemie International Edition 47, no. 40 (September 22, 2008): 7731–35. http://dx.doi.org/10.1002/anie.200802034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Crespo, Gastón A., Günter Mistlberger, and Eric Bakker. "Electrogenerated Chemiluminescence for Potentiometric Sensors." Journal of the American Chemical Society 134, no. 1 (December 21, 2011): 205–7. http://dx.doi.org/10.1021/ja210600k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Myung, Noseung, Zhifeng Ding, and Allen J. Bard. "Electrogenerated Chemiluminescence of CdSe Nanocrystals." Nano Letters 2, no. 11 (November 2002): 1315–19. http://dx.doi.org/10.1021/nl0257824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Myung, Noseung, Xianmao Lu, Keith P. Johnston, and Allen J. Bard. "Electrogenerated Chemiluminescence of Ge Nanocrystals." Nano Letters 4, no. 1 (January 2004): 183–85. http://dx.doi.org/10.1021/nl0349810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Petrosyan, V. A., A. A. Fainzil'berg, M. E. Niyazymbetov, and V. N. Solkan. "Synthesis based on electrogenerated carbenes." Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 38, no. 5 (May 1989): 985–89. http://dx.doi.org/10.1007/bf00955430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Niyazymbetov, M. E., V. A. Petrosyan, A. A. Fainzil'berg, S. A. Shevelev, and V. V. Semenov. "Syntheses based on electrogenerated carbenes." Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 38, no. 5 (May 1989): 991–95. http://dx.doi.org/10.1007/bf00955431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography