Journal articles on the topic 'Electrolyte flow'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Electrolyte flow.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Alphonse, Phil-Jacques, Mert Tas, and Gülşah Elden. "Numerical Investigation of Supporting Electrolyte Using in a Vanadium Redox Flow Battery." ECS Meeting Abstracts MA2022-01, no. 48 (2022): 2032. http://dx.doi.org/10.1149/ma2022-01482032mtgabs.
Full textWu, Xiongwei, Jun Liu, Xiaojuan Xiang, Jie Zhang, Junping Hu, and Yuping Wu. "Electrolytes for vanadium redox flow batteries." Pure and Applied Chemistry 86, no. 5 (2014): 661–69. http://dx.doi.org/10.1515/pac-2013-1213.
Full textBaktiyar, Moch Hanif, Anggita Adiningrum, Fatin Septianingsih, and Bambang Poerwadi. "Utilization of Methylene Blue and Banana Peels as RFB Components (Redox Flow Battery)." Rekayasa Bahan Alam dan Energi Berkelanjutan 5, no. 1 (2021): 10–16. http://dx.doi.org/10.21776/ub.rbaet.2021.005.01.02.
Full textXiao, Zhiyuan, Ruiping Zhang, Mengyue Lu, et al. "Numerical Simulation of Impact of Different Redox Couples on Flow Characteristics and Electrochemical Performance of Deep Eutectic Solvent Electrolyte Flow Batteries." Batteries 11, no. 1 (2025): 18. https://doi.org/10.3390/batteries11010018.
Full textGad, M. S., A. K. El Soly, Subhav Singh, Kamal Sharma, Saurav Dixit, and Md irfanul Haque Siddiqui. "Examining oxyhydrogen gas generation experimentally using wet cell design." PLOS One 20, no. 6 (2025): e0324921. https://doi.org/10.1371/journal.pone.0324921.
Full textMazúr, Petr, Jiří Charvát, Jindřich Mrlík, et al. "Evaluation of Electrochemical Stability of Sulfonated Anthraquinone-Based Acidic Electrolyte for Redox Flow Battery Application." Molecules 26, no. 9 (2021): 2484. http://dx.doi.org/10.3390/molecules26092484.
Full textPopov, A. I., V. I. Novikov, D. N. Ivanov, and I. A. Kozyrskiy. "Analysis of Temperature Characteristics of Electrolytic-Plasma Discharge in Jet Processing of a Metal Anode." Advanced Engineering Research (Rostov-on-Don) 25, no. 2 (2025): 99–111. https://doi.org/10.23947/2687-1653-2025-25-2-99-111.
Full textDabrowski, L., M. Marciniak, and T. Szewczyk. "Analysis of Abrasive Flow Machining with an Electrochemical Process Aid." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 220, no. 3 (2006): 397–403. http://dx.doi.org/10.1243/095440506x77571.
Full textGeorge, Thomas Young, Isabelle C. Thomas, Naphtal O. Haya, John P. Deneen, Cliffton Wang, and Michael J. Aziz. "A Membrane-Electrolyte System Approach to Understanding Ionic Conductivity and Crossover in Aqueous Organic and Metalorganic Flow Batteries." ECS Meeting Abstracts MA2023-01, no. 3 (2023): 762. http://dx.doi.org/10.1149/ma2023-013762mtgabs.
Full textTang, Hongmei, Zhe Qu, Yaping Yan, et al. "Unleashing energy storage ability of aqueous battery electrolytes." Materials Futures 1, no. 2 (2022): 022001. http://dx.doi.org/10.1088/2752-5724/ac52e8.
Full textBau, Haim H. "Applications of Magneto Electrochemistry and Magnetohydrodynamics in Microfluidics." Magnetochemistry 8, no. 11 (2022): 140. http://dx.doi.org/10.3390/magnetochemistry8110140.
Full textRashitov, Ilia, Aleksandr Voropay, Grigoriy Tsepilov, et al. "Vanadium Redox Flow Battery Stack Balancing to Increase Depth of Discharge Using Forced Flow Attenuation." Batteries 9, no. 9 (2023): 464. http://dx.doi.org/10.3390/batteries9090464.
Full textShan, Shuhua, Mihir N. Parekh, Rong Kou, Donghai Wang, and Christopher D. Rahn. "Increasing the Cycle Life of Zinc Metal Anodes and Nickel-Zinc Cells Using Flow-Through Alkaline Electrolytes." Journal of The Electrochemical Society 171, no. 3 (2024): 032503. http://dx.doi.org/10.1149/1945-7111/ad2cc2.
Full textErmakova, L. E., B. P. Sharfarets, S. P. Dmitriev, and V. E. Kurochkin. "IMPLEMENTATION OF AN ACOUSTO-ELECTRIC CONVERTER. 1. DEPENDENCE OF ELECTROKINETIC PHENOMENA ON THE STRUCTURE OF MEMBRANE MATERIALS IN AQUEOUS ELECTROLYTE SOLUTIONS." NAUCHNOE PRIBOROSTROENIE 32, no. 4 (2022): 20–34. http://dx.doi.org/10.18358/np-32-4-i2034.
Full textChakraborty, Monalisa, Mariona Battestini Vives, Omar Abdelaziz, Christian Hulteberg, Rakel Lindstrom, and Amirreza Khataee. "Lignin-Based Electrolytes for Redox Flow Batteries." ECS Meeting Abstracts MA2023-02, no. 1 (2023): 138. http://dx.doi.org/10.1149/ma2023-021138mtgabs.
Full textSchofield, Kalvin, and Petr Musilek. "State of Charge and Capacity Tracking in Vanadium Redox Flow Battery Systems." Clean Technologies 4, no. 3 (2022): 607–18. http://dx.doi.org/10.3390/cleantechnol4030037.
Full textKüttinger, Michael, Paulette A. Loichet Torres, Emeline Meyer, Peter Fischer, and Jens Tübke. "Systematic Study of Quaternary Ammonium Cations for Bromine Sequestering Application in High Energy Density Electrolytes for Hydrogen Bromine Redox Flow Batteries." Molecules 26, no. 9 (2021): 2721. http://dx.doi.org/10.3390/molecules26092721.
Full textTian, Wenxin, Hao Du, Jianzhang Wang, et al. "A Review of Electrolyte Additives in Vanadium Redox Flow Batteries." Materials 16, no. 13 (2023): 4582. http://dx.doi.org/10.3390/ma16134582.
Full textKhan, Safyan Akram, Muhammad Mansha, Shahid Ali, et al. "Improved Formulation and Optimization of Sodium Polysulfide/Bromine Electrolytes for Redox Flow Battery." ECS Meeting Abstracts MA2023-01, no. 3 (2023): 785. http://dx.doi.org/10.1149/ma2023-013785mtgabs.
Full textAkhatov, M. F., R. K. Galimova, R. R. Mardanov, A. A. Nizameev, and N. A. Loginov. "Properties of Electric Discharge of a Jet Anode and an Electrolytic Cathode." Journal of Physics: Conference Series 2270, no. 1 (2022): 012004. http://dx.doi.org/10.1088/1742-6596/2270/1/012004.
Full textZhou, Xiaoyu, Kei Hanafusa, Ryota Tatsumi, Yongrong Dong, and Kiyoaki Moriuchi. "Complex-Type Fe-Cr Redox Flow Battery: Identification of Challenges." ECS Meeting Abstracts MA2024-02, no. 9 (2024): 1387. https://doi.org/10.1149/ma2024-0291387mtgabs.
Full textMaleki, Meysam, and Marc-Antoni Goulet. "Boosting the Energy Density of Anthraquinone-Based Negolyte for Redox Flow Batteries through Mixing Strategy." ECS Meeting Abstracts MA2025-01, no. 45 (2025): 2400. https://doi.org/10.1149/ma2025-01452400mtgabs.
Full textPrieto-Diaz, Pablo Angel, Ange Anicet Maurice, and Marcos Vera. "Modelling the Electrolyte Flow in the Tanks of Vanadium Redox Flow Batteries: A CFD Perspective." ECS Meeting Abstracts MA2022-01, no. 48 (2022): 2009. http://dx.doi.org/10.1149/ma2022-01482009mtgabs.
Full textProkhorov, Konstantin, Alexander Burdonov, and Peter Henning. "Study of flow regimes and gas holdup in a different potentials medium in an aerated column." E3S Web of Conferences 192 (2020): 02013. http://dx.doi.org/10.1051/e3sconf/202019202013.
Full textTian, Yuheng, Jiangzhou Xie, Maria Skyllas-Kazacos, Jiangzhou Xie, and Chris Menictas. "Enhancing Electrolyte Stability and Performance in Vanadium Redox Flow Batteries through Inorganic Additives Investigation." ECS Meeting Abstracts MA2024-02, no. 1 (2024): 2. https://doi.org/10.1149/ma2024-0212mtgabs.
Full textbin Rosley, Mohammad Nazry, Noreffendy bin Tamaldin, M. F. B. Abdollah, and Z. M. Zulfattah. "The Effects of Voltage Flow and pH Value in Alkaline Electrolyser System to Performance." Applied Mechanics and Materials 773-774 (July 2015): 440–44. http://dx.doi.org/10.4028/www.scientific.net/amm.773-774.440.
Full textIvanova, A. M., P. A. Arkhipov, A. V. Rudenko, O. Yu Tkacheva, and Yu P. Zaikov. "Formation of ledge in aluminum electrolyzer." Izvestiya Vuzov. Tsvetnaya Metallurgiya (Universities' Proceedings Non-Ferrous Metallurgy), no. 5 (October 25, 2019): 23–31. http://dx.doi.org/10.17073/0021-3438-2019-5-23-31.
Full textDresp, Sören, Trung Ngo Thanh, Malte Klingenhof, Sven Brückner, Philipp Hauke, and Peter Strasser. "Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds." Energy & Environmental Science 13, no. 6 (2020): 1725–29. http://dx.doi.org/10.1039/d0ee01125h.
Full textRoznyatovskaya, Nataliya, Jens Noack, Heiko Mild, et al. "Vanadium Electrolyte for All-Vanadium Redox-Flow Batteries: The Effect of the Counter Ion." Batteries 5, no. 1 (2019): 13. http://dx.doi.org/10.3390/batteries5010013.
Full textTugirumubano, Alexandre, Kyoung Soo Kim, Hee Jae Shin, Chang Hyeon Kim, Lee Ku Kwac, and Hong Gun Kim. "The Design and Performance Study of Polymer Electrolyte Membrane Using 3-D Mesh." Key Engineering Materials 737 (June 2017): 393–97. http://dx.doi.org/10.4028/www.scientific.net/kem.737.393.
Full textRincón Castrillo, Erick Daniel, José Ricardo Bermúdez Santaella, Luis Emilio Vera Duarte, and Juan José García Pabón. "Modeling and simulation of an electrolyser for the production of HHO in Matlab- Simulink®." Respuestas 24, no. 2 (2019): 6–15. http://dx.doi.org/10.22463/0122820x.1826.
Full textHuang, Si, Yinping Li, Xilin Shi, et al. "Key Issues of Salt Cavern Flow Battery." Energies 17, no. 20 (2024): 5190. http://dx.doi.org/10.3390/en17205190.
Full textLiu, Tianbiao. "Half-Cell Flow Batteries: A Powerful Approach to Evaluating Cycling Stability of a Redox Active Electrolyte." ECS Meeting Abstracts MA2022-01, no. 3 (2022): 485. http://dx.doi.org/10.1149/ma2022-013485mtgabs.
Full textModak, Sanat Vibhas, Flora Tseng, Joseph Valle, Jeff Sakamoto, and David G. Kwabi. "Evaluating the Stability and Performance of Nasicon in Low-Cost High Charge Density Redox Flow Battery Electrolytes." ECS Meeting Abstracts MA2022-02, no. 46 (2022): 1707. http://dx.doi.org/10.1149/ma2022-02461707mtgabs.
Full textKunar, Sandip, S. Mahata, and B. Bhattacharyya. "Influence of electrolytes on surface texture characteristics generated by electrochemical micromachining." Journal of Micromanufacturing 1, no. 2 (2018): 124–33. http://dx.doi.org/10.1177/2516598418765355.
Full textBerling, Sabrina, Jose Manuel Hidalgo, Sotirios Mavrikis, et al. "Adaptation of a Vanadium Redox Flow Battery for Thermal Applications Using a Solid Capacity Booster." ECS Meeting Abstracts MA2023-02, no. 59 (2023): 2851. http://dx.doi.org/10.1149/ma2023-02592851mtgabs.
Full textZhang, Wenhong, Le Liu, and Lin Liu. "An on-line spectroscopic monitoring system for the electrolytes in vanadium redox flow batteries." RSC Advances 5, no. 121 (2015): 100235–43. http://dx.doi.org/10.1039/c5ra21844f.
Full textZhang, Xukun, Fancheng Meng, Linquan Sun, Zhaowu Zhu, Desheng Chen, and Lina Wang. "Influence of Several Phosphate-Containing Additives on the Stability and Electrochemical Behavior of Positive Electrolytes for Vanadium Redox Flow Battery." Energies 15, no. 21 (2022): 7829. http://dx.doi.org/10.3390/en15217829.
Full textAquigeh, Ivan Newen, Merlin Zacharie Ayissi, and Dieudonné Bitondo. "Multiphysical Models for Hydrogen Production Using NaOH and Stainless Steel Electrodes in Alkaline Electrolysis Cell." Journal of Combustion 2021 (March 19, 2021): 1–11. http://dx.doi.org/10.1155/2021/6673494.
Full textLeiden, Alexander, Stefan Kölle, Sebastian Thiede, Klaus Schmid, Martin Metzner, and Christoph Herrmann. "Model-based analysis, control and dosing of electroplating electrolytes." International Journal of Advanced Manufacturing Technology 111, no. 5-6 (2020): 1751–66. http://dx.doi.org/10.1007/s00170-020-06190-0.
Full textGerhardt, Michael Robert, Alejandro O. Barnett, Thulile Khoza, et al. "An Open-Source Continuum Model for Anion-Exchange Membrane Water Electrolysis." ECS Meeting Abstracts MA2023-01, no. 36 (2023): 2002. http://dx.doi.org/10.1149/ma2023-01362002mtgabs.
Full textMouron, Spencer T., Trung Van Nguyen, and Woodrow Dean. "Composition and Chemical/Electrochemical Properties of Supersaturated Vanadium (IV/V) Sulfate Supersaturated Electrolytes." ECS Meeting Abstracts MA2025-01, no. 4 (2025): 475. https://doi.org/10.1149/ma2025-014475mtgabs.
Full textWang, Guoqian, Shan Jiang, Shoudong Ni, and Yan Zhang. "Study of Mass Transfer Enhancement of Electrolyte Flow Field by Rotating Cathode in Through-Mask Electrochemical Micromachining." Micromachines 14, no. 7 (2023): 1398. http://dx.doi.org/10.3390/mi14071398.
Full textMenne, Valentina. "Short Flow Length for Flow through Electrodes in Redox Flow Batteries Enhances Performance Characteristics." ECS Meeting Abstracts MA2025-01, no. 4 (2025): 481. https://doi.org/10.1149/ma2025-014481mtgabs.
Full textZhao, Wanxiang, Chengjie Xu, Mingya Chen, et al. "Impact of Multiple Inlet and Outlet Structures of Bipolar Plate Channel on the Mass Transport in ALK Electrolyzers." Energies 18, no. 11 (2025): 2771. https://doi.org/10.3390/en18112771.
Full textJameson, Alexander, and Elod Gyenge. "Comparison of Zinc Bromine and Zinc Iodine Flow Batteries: From Electrolde to Electrolyte." ECS Meeting Abstracts MA2022-01, no. 48 (2022): 2000. http://dx.doi.org/10.1149/ma2022-01482000mtgabs.
Full textNolte, Oliver, Ivan A. Volodin, Christian Stolze, Martin D. Hager, and Ulrich S. Schubert. "Trust is good, control is better: a review on monitoring and characterization techniques for flow battery electrolytes." Materials Horizons 8, no. 7 (2021): 1866–925. http://dx.doi.org/10.1039/d0mh01632b.
Full textNguyen, Trung Van, Yuanchao Li, and Mike L. Perry. "Densification, Precipitation, and Dissolution of Vanadium Electrolyte for Vanadium Redox Flow Battery Systems." ECS Meeting Abstracts MA2023-01, no. 3 (2023): 728. http://dx.doi.org/10.1149/ma2023-013728mtgabs.
Full textPrieto-Diaz, Pablo Angel, Giacomo Marini, Matteo Rugna, et al. "Electrolyte Gradients and Capacity Drop in Large Flow Battery Tanks: From Experiments to Fluid-Dynamic Investigations." ECS Meeting Abstracts MA2024-01, no. 3 (2024): 525. http://dx.doi.org/10.1149/ma2024-013525mtgabs.
Full textWaters, Scott E., Jonathan R. Thurston, Robert W. Armstrong, Brian H. Robb, Michael Marshak, and David Reber. "Design Principles for Flow Batteries: Cation Dependent Membrane Resistance and Active Species Solubility." ECS Meeting Abstracts MA2022-02, no. 27 (2022): 1054. http://dx.doi.org/10.1149/ma2022-02271054mtgabs.
Full text