Journal articles on the topic 'Electrolyte gated transistors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Electrolyte gated transistors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Piro, Benoit, Jérémy le Gall, Roberta Brayner, Giorgio Mattana, and Vincent Noël. "Driving Electrolyte-Gated Organic Field-Effect Transistors with Redox Reactions." Proceedings 60, no. 1 (2020): 31. http://dx.doi.org/10.3390/iecb2020-07049.
Full textXie, Dongyu, Xiaoci Liang, Di Geng, Qian Wu, and Chuan Liu. "An Enhanced Synaptic Plasticity of Electrolyte-Gated Transistors through the Tungsten Doping of an Oxide Semiconductor." Electronics 13, no. 8 (2024): 1485. http://dx.doi.org/10.3390/electronics13081485.
Full textQiu, Haiyang, Dandan Hao, Hui Li, et al. "Transparent and biocompatible In2O3 artificial synapses with lactose–citric acid electrolyte for neuromorphic computing." Applied Physics Letters 121, no. 18 (2022): 183301. http://dx.doi.org/10.1063/5.0124219.
Full textLago, Nicolò, Marco Buonomo, Federico Prescimone, Stefano Toffanin, Michele Muccini, and Andrea Cester. "Direct Comparison of the Effect of Processing Conditions in Electrolyte-Gated and Bottom-Gated TIPS-Pentacene Transistors." Electronic Materials 3, no. 4 (2022): 281–90. http://dx.doi.org/10.3390/electronicmat3040024.
Full textMorais, Rogério, Douglas Henrique Vieira, Maykel dos Santos Klem, et al. "Printed in-plane electrolyte-gated transistor based on zinc oxide." Semiconductor Science and Technology 37, no. 3 (2022): 035007. http://dx.doi.org/10.1088/1361-6641/ac48da.
Full textMonalisha, P., Shengyao Li, Shwetha G. Bhat, Tianli Jin, P. S. Anil Kumar, and S. N. Piramanayagam. "Synaptic behavior of Fe3O4-based artificial synapse by electrolyte gating for neuromorphic computing." Journal of Applied Physics 133, no. 8 (2023): 084901. http://dx.doi.org/10.1063/5.0120854.
Full textLiu, Huixuan, and Rongri Tan. "Fabrication of Flexible In-Plane Gate Nanowire Transistor on a Paper Substrate." Journal of Nanoscience and Nanotechnology 21, no. 9 (2021): 4857–60. http://dx.doi.org/10.1166/jnn.2021.19075.
Full textYu, Ji-Man, Chungryeol Lee, Joon-Kyu Han, et al. "Multi-functional logic circuits composed of ultra-thin electrolyte-gated transistors with wafer-scale integration." Journal of Materials Chemistry C 9, no. 22 (2021): 7222–27. http://dx.doi.org/10.1039/d1tc01486b.
Full textGiovannitti, Alexander, Dan-Tiberiu Sbircea, Sahika Inal, et al. "Controlling the mode of operation of organic transistors through side-chain engineering." Proceedings of the National Academy of Sciences 113, no. 43 (2016): 12017–22. http://dx.doi.org/10.1073/pnas.1608780113.
Full textLeonardi, Francesca, Adrián Tamayo, Stefano Casalini, and Marta Mas-Torrent. "Modification of the gate electrode by self-assembled monolayers in flexible electrolyte-gated organic field effect transistors: work function vs. capacitance effects." RSC Advances 8, no. 48 (2018): 27509–15. http://dx.doi.org/10.1039/c8ra05300f.
Full textSingh, M., K. Manoli, A. Tiwari, et al. "The double layer capacitance of ionic liquids for electrolyte gating of ZnO thin film transistors and effect of gate electrodes." Journal of Materials Chemistry C 5, no. 14 (2017): 3509–18. http://dx.doi.org/10.1039/c7tc00800g.
Full textMuñoz, Jose, Francesca Leonardi, Tayfun Özmen, et al. "Carbon-paste nanocomposites as unconventional gate electrodes for electrolyte-gated organic field-effect transistors: electrical modulation and bio-sensing." Journal of Materials Chemistry C 7, no. 47 (2019): 14993–98. http://dx.doi.org/10.1039/c9tc04929k.
Full textZhang, Minghao, Yan Wang, Hao Liu, Wenshuo Wu, Guorui Yin, and Jie Su. "IO/IGZO heterojunction artificial synaptic transistors gated by LiZrO solid electrolyte for multifunctional neuromorphic applications." Nanotechnology 36, no. 18 (2025): 185705. https://doi.org/10.1088/1361-6528/adc607.
Full textHe, Yongli, Yixin Zhu, and Qing Wan. "Oxide Ionic Neuro-Transistors for Bio-inspired Computing." Nanomaterials 14, no. 7 (2024): 584. http://dx.doi.org/10.3390/nano14070584.
Full textQi, Hong-Fang, and Juan Wen. "Transient characteristics emulated in modified graphene-oxide solid electrolyte gated synaptic transistors." Journal of Physics: Conference Series 2370, no. 1 (2022): 012013. http://dx.doi.org/10.1088/1742-6596/2370/1/012013.
Full textKang, Dong-Hee, Jun-Gyu Choi, Won-June Lee, et al. "Aqueous electrolyte-gated solution-processed metal oxide transistors for direct cellular interfaces." APL Bioengineering 7, no. 2 (2023): 026102. http://dx.doi.org/10.1063/5.0138861.
Full textHuang, Heyi, Chen Ge, Zhuohui Liu, et al. "Electrolyte-gated transistors for neuromorphic applications." Journal of Semiconductors 42, no. 1 (2021): 013103. http://dx.doi.org/10.1088/1674-4926/42/1/013103.
Full textHong, Kihyon, Dong Heon Choo, Han Ju Lee, Jae Yong Park, and Jong-Lam Lee. "Substrate-free, stretchable electrolyte gated transistors." Organic Electronics 87 (December 2020): 105936. http://dx.doi.org/10.1016/j.orgel.2020.105936.
Full textKim, Beom Joon, Euyheon Hwang, Moon Sung Kang, and Jeong Ho Cho. "Electrolyte-Gated Graphene Schottky Barrier Transistors." Advanced Materials 27, no. 39 (2015): 5875–81. http://dx.doi.org/10.1002/adma.201502020.
Full textHuang, Wei, Jianhua Chen, Gang Wang, et al. "Dielectric materials for electrolyte gated transistor applications." Journal of Materials Chemistry C 9, no. 30 (2021): 9348–76. http://dx.doi.org/10.1039/d1tc02271g.
Full textS. Barbosa, M., F. M. B. Oliveira, X. Meng, F. Soavi, C. Santato, and M. O. Orlandi. "Tungsten oxide ion gel-gated transistors: how structural and electrochemical properties affect the doping mechanism." Journal of Materials Chemistry C 6, no. 8 (2018): 1980–87. http://dx.doi.org/10.1039/c7tc04529h.
Full textCho, Kyung Gook, Min Su Kim, Dong Hyun Park, and Keun Hyung Lee. "Spray-Printed Sub-1 V and Flexible Electrolyte-Gated Inverters." Journal of Flexible and Printed Electronics 3, no. 1 (2024): 103–10. http://dx.doi.org/10.56767/jfpe.2024.3.1.103.
Full textLee, Dong-Hee, Hamin Park, and Won-Ju Cho. "Synaptic Transistors Based on PVA: Chitosan Biopolymer Blended Electric-Double-Layer with High Ionic Conductivity." Polymers 15, no. 4 (2023): 896. http://dx.doi.org/10.3390/polym15040896.
Full textKuleshov, B. S., E. G. Zavyalova, E. Yu Poymanova, A. A. Abramov, S. A. Ponomarenko, and E. V. Agina. "Multisensors based on electrolyte-gated organic field-effect transistors with aptamers as recognition elements: current state of research." Russian Chemical Reviews 93, no. 4 (2024): RCR5116. http://dx.doi.org/10.59761/rcr5116.
Full textJeong, Jaehoon, Surya Abhishek Singaraju, Jasmin Aghassi‐Hagmann, Horst Hahn, and Ben Breitung. "Adhesive Ion‐Gel as Gate Insulator of Electrolyte‐Gated Transistors." ChemElectroChem 7, no. 13 (2020): 2735–39. http://dx.doi.org/10.1002/celc.202000305.
Full textJeong, Jaehoon, Surya Abhishek Singaraju, Jasmin Aghassi‐Hagmann, Horst Hahn, and Ben Breitung. "Adhesive Ion‐Gel as Gate Insulator of Electrolyte‐Gated Transistors." ChemElectroChem 7, no. 13 (2020): 2692. http://dx.doi.org/10.1002/celc.202000687.
Full textYuen, Jonathan D., Anoop S. Dhoot, Ebinazar B. Namdas, et al. "Electrochemical Doping in Electrolyte-Gated Polymer Transistors." Journal of the American Chemical Society 129, no. 46 (2007): 14367–71. http://dx.doi.org/10.1021/ja0749845.
Full textStelmach, Emilia, Ewa Jaworska, Vijay D. Bhatt, et al. "Electrolyte gated transistors modified by polypyrrole nanoparticles." Electrochimica Acta 309 (June 2019): 65–73. http://dx.doi.org/10.1016/j.electacta.2019.04.034.
Full textRosenblatt, Sami, Yuval Yaish, Jiwoong Park, Jeff Gore, Vera Sazonova, and Paul L. McEuen. "High Performance Electrolyte Gated Carbon Nanotube Transistors." Nano Letters 2, no. 8 (2002): 869–72. http://dx.doi.org/10.1021/nl025639a.
Full textButh, Felix, Andreas Donner, Matthias Sachsenhauser, Martin Stutzmann, and Jose A. Garrido. "Biofunctional Electrolyte-Gated Organic Field-Effect Transistors." Advanced Materials 24, no. 33 (2012): 4511–17. http://dx.doi.org/10.1002/adma.201201841.
Full textBi, Jinming, Yanran Li, Rong Lu, Honglin Song, and Jie Jiang. "Electrolyte-gated optoelectronic transistors for neuromorphic applications." Journal of Semiconductors 46, no. 2 (2025): 021401. https://doi.org/10.1088/1674-4926/24090042.
Full textSeol, Kyoung Hwan, Seung Ju Lee, Kyung Gook Cho, Kihyon Hong, and Keun Hyung Lee. "Highly conductive, binary ionic liquid–solvent mixture ion gels for effective switching of electrolyte-gated transistors." Journal of Materials Chemistry C 6, no. 41 (2018): 10987–93. http://dx.doi.org/10.1039/c8tc03076f.
Full textFu, Yang Ming, Tianye Wei, Joseph Brownless, Long Huang, and Aimin Song. "Synaptic transistors with a memory time tunability over seven orders of magnitude." Applied Physics Letters 120, no. 25 (2022): 252903. http://dx.doi.org/10.1063/5.0095730.
Full textColuccio, Maria Laura, Salvatore A. Pullano, Marco Flavio Michele Vismara, et al. "Emerging Designs of Electronic Devices in Biomedicine." Micromachines 11, no. 2 (2020): 123. http://dx.doi.org/10.3390/mi11020123.
Full textLiu, Jiang, Fangchao Zhao, Huaping Li, and Qibing Pei. "Electrolyte-gated light-emitting transistors: working principle and applications." Materials Chemistry Frontiers 2, no. 2 (2018): 253–63. http://dx.doi.org/10.1039/c7qm00258k.
Full textSayago, J., F. Soavi, Y. Sivalingam, F. Cicoira, and C. Santato. "Low voltage electrolyte-gated organic transistors making use of high surface area activated carbon gate electrodes." J. Mater. Chem. C 2, no. 28 (2014): 5690–94. http://dx.doi.org/10.1039/c4tc00864b.
Full textAlthagafi, Talal M., Saud A. Algarni, Abdullah Al Naim, Javed Mazher, and Martin Grell. "Precursor-route ZnO films from a mixed casting solvent for high performance aqueous electrolyte-gated transistors." Physical Chemistry Chemical Physics 17, no. 46 (2015): 31247–52. http://dx.doi.org/10.1039/c5cp03326h.
Full textWan, Xiang, Qiujie Yuan, Lianze Sun, Kunfang Chen, Dongyoon Khim, and Zhongzhong Luo. "Reservoir Computing Enabled by Polymer Electrolyte-Gated MoS2 Transistors for Time-Series Processing." Polymers 17, no. 9 (2025): 1178. https://doi.org/10.3390/polym17091178.
Full textLee, Donghui, Yunji Jung, Myeongjin Ha, Hyungju Ahn, Keun Hyung Lee, and Myungeun Seo. "High-conductivity electrolyte gate dielectrics based on poly(styrene-co-methyl methacrylate)/ionic liquid." Journal of Materials Chemistry C 7, no. 23 (2019): 6950–55. http://dx.doi.org/10.1039/c9tc01610d.
Full textThiemann, S., S. J. Sachnov, M. Gruber, et al. "Spray-coatable ionogels based on silane-ionic liquids for low voltage, flexible, electrolyte-gated organic transistors." J. Mater. Chem. C 2, no. 13 (2014): 2423–30. http://dx.doi.org/10.1039/c3tc32465f.
Full textLiu, Rui, Li Qiang Zhu, Wei Wang, Xiao Hui, Zhao Ping Liu, and Qing Wan. "Biodegradable oxide synaptic transistors gated by a biopolymer electrolyte." Journal of Materials Chemistry C 4, no. 33 (2016): 7744–50. http://dx.doi.org/10.1039/c6tc02693a.
Full textMackin, Charles, and Tomás Palacios. "Correction: Large-scale sensor systems based on graphene electrolyte-gated field-effect transistors." Analyst 143, no. 2 (2018): 580. http://dx.doi.org/10.1039/c7an90100c.
Full textCarvalho, José, Viorel Dubceac, Paul Grey, et al. "Fully Printed Zinc Oxide Electrolyte-Gated Transistors on Paper." Nanomaterials 9, no. 2 (2019): 169. http://dx.doi.org/10.3390/nano9020169.
Full textKim, Beom Joon, Euyheon Hwang, Moon Sung Kang, and Jeong Ho Cho. "Transistors: Electrolyte-Gated Graphene Schottky Barrier Transistors (Adv. Mater. 39/2015)." Advanced Materials 27, no. 39 (2015): 5849. http://dx.doi.org/10.1002/adma.201570258.
Full textKarimi, Hediyeh, Rubiyah Yusof, Mohammad Taghi Ahmadi, et al. "Capacitance Variation of Electrolyte-Gated Bilayer Graphene Based Transistors." Journal of Nanomaterials 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/836315.
Full textXu, Haihua, Ying Lv, Yongchun Deng, and Qingqing Zhu. "In situ probing electronic dynamics at organic bulk heterojunction/aqueous electrolyte interfaces by charge modulation spectroscopy." Physical Chemistry Chemical Physics 20, no. 2 (2018): 1267–75. http://dx.doi.org/10.1039/c7cp06675a.
Full textBandiello, E., M. Sessolo, and H. J. Bolink. "Aqueous electrolyte-gated ZnO transistors for environmental and biological sensing." J. Mater. Chem. C 2, no. 48 (2014): 10277–81. http://dx.doi.org/10.1039/c4tc02075h.
Full textQin, Wei, Byung Ha Kang, Jong Bin An, and Hyun Jae Kim. "Indium oxide nanomesh-based electrolyte-gated synaptic transistors." Journal of Information Display 22, no. 3 (2021): 179–85. http://dx.doi.org/10.1080/15980316.2021.1911866.
Full textLi, Sheng, Lin Gao, Changjian Liu, Haihong Guo, and Junsheng Yu. "Biomimetic Neuromorphic Sensory System via Electrolyte Gated Transistors." Sensors 24, no. 15 (2024): 4915. http://dx.doi.org/10.3390/s24154915.
Full textValitova, Irina, Prajwal Kumar, Xiang Meng, Francesca Soavi, Clara Santato, and Fabio Cicoira. "Photolithographically Patterned TiO2 Films for Electrolyte-Gated Transistors." ACS Applied Materials & Interfaces 8, no. 23 (2016): 14855–62. http://dx.doi.org/10.1021/acsami.6b01922.
Full text