To see the other types of publications on this topic, follow the link: Electromagnetic and thermal optimisation.

Journal articles on the topic 'Electromagnetic and thermal optimisation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Electromagnetic and thermal optimisation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Xu, Jiazhu, Andreas Kubis, Ke Zhou, Zhijun Ye, and Longfu Luo. "Electromagnetic field and thermal distribution optimisation in shell‐type traction transformers." IET Electric Power Applications 7, no. 8 (2013): 627–32. http://dx.doi.org/10.1049/iet-epa.2013.0112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shankapal, S. R., Parikshith Mallya, Jayashree Shivkumar, and N. Venkateswaran. "Design Analysis of Brushless Direct Current Generator." Defence Science Journal 67, no. 4 (2017): 437. http://dx.doi.org/10.14429/dsj.67.11546.

Full text
Abstract:
<p class="p1">In this work, optimisation of a brushless direct current (BLDC) generator design was undertaken by carrying out an electromagnetic and computational fluid dynamic study. The studies were carried out for different loading-overloading conditions and angular speeds, keeping in consideration the required electrical and thermal parameters, firstly for the initial design and then for optimised designs. In the initial phase, transient electromagnetic simulations were done using Ansys Maxwell to estimate power output, flux densities, heat losses et al. In the next phase, steady sta
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Ruiye, Peng Cheng, Hai Lan, Weili Li, David Gerada, and Yingyi Hong. "Stator Non-Uniform Radial Ventilation Design Methodology for a 15 MW Turbo-Synchronous Generator Based on Single Ventilation Duct Subsystem." Energies 14, no. 10 (2021): 2760. http://dx.doi.org/10.3390/en14102760.

Full text
Abstract:
Within large turboalternators, the excessive local temperatures and spatially distributed temperature differences can accelerate the deterioration of electrical insulation as well as lead to deformation of components, which may cause major machine malfunctions. In order to homogenise the stator axial temperature distribution whilst reducing the maximum stator temperature, this paper presents a novel non-uniform radial ventilation ducts design methodology. To reduce the huge computational costs resulting from the large-scale model, the stator is decomposed into several single ventilation duct s
APA, Harvard, Vancouver, ISO, and other styles
4

Srikanth, Kavirayani. "Enhanced electromagnetic swarm yields better optimisation." International Journal of Swarm Intelligence 4, no. 2 (2019): 127. http://dx.doi.org/10.1504/ijsi.2019.10025729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Srikanth, Kavirayani. "Enhanced electromagnetic swarm yields better optimisation." International Journal of Swarm Intelligence 4, no. 2 (2019): 127. http://dx.doi.org/10.1504/ijsi.2019.104088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

. El-Awad, Mohamed M. "Computer-Aided Thermal Design Optimisation." International Journal of Innovative Research in Science, Engineering and Technology 5, no. 1 (2016): 1–8. http://dx.doi.org/10.15680/ijirset.2016.0501001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tkocz, Jozef, and Steven Dixon. "Electromagnetic acoustic transducer optimisation for surface wave applications." NDT & E International 107 (October 2019): 102142. http://dx.doi.org/10.1016/j.ndteint.2019.102142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xiaowei, G., M. Lin, and S. Yiqin. "Electromagnetic field optimisation procedure for the microwave oven." International Journal of Electronics 97, no. 3 (2010): 339–47. http://dx.doi.org/10.1080/00207210903289391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yao, Shujun, Shuo Zhang, and Wanhua Guo. "Electromagnetic transient parallel simulation optimisation based on GPU." Journal of Engineering 2019, no. 16 (2019): 1737–42. http://dx.doi.org/10.1049/joe.2018.8587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bila, S., D. Baillargeat, M. Aubourg, et al. "Direct electromagnetic optimisation method for microwave filter design." Electronics Letters 35, no. 5 (1999): 400. http://dx.doi.org/10.1049/el:19990265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Holdsworth, S. D. "Optimisation of thermal processing — A review." Journal of Food Engineering 4, no. 2 (1985): 89–116. http://dx.doi.org/10.1016/0260-8774(85)90014-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ghassemi, M., and R. Pasandeh. "Thermal and electromagnetic analysis of an electromagnetic launcher." IEEE Transactions on Magnetics 39, no. 3 (2003): 1819–22. http://dx.doi.org/10.1109/tmag.2003.809862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sato, Takahiro, Kota Watanabe, and Hajime Igarashi. "A modified immune algorithm with spatial filtering for multiobjective topology optimisation of electromagnetic devices." COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 33, no. 3 (2014): 821–33. http://dx.doi.org/10.1108/compel-09-2012-0174.

Full text
Abstract:
Purpose – In the development of electromagnetic devices, multiobjective topology optimisation is effective to obtain diverse design candidates for production models. However, multiobjective topology optimisation has not widely been performed because it is difficult to obtain resultant shapes for engineering realisation due to large search spaces. The purpose of this paper is to present a new multiobjective topology optimisation method. Design/methodology/approach – This paper presents a new multiobjective topology optimisation method in which the Immune Algorithm is modified for multiobjecrive
APA, Harvard, Vancouver, ISO, and other styles
14

Xiao, Song, Yinjiang Li, Mihai Rotaru, and Jan K. Sykulski. "Considerations of uncertainty in robust optimisation of electromagnetic devices." International Journal of Applied Electromagnetics and Mechanics 46, no. 2 (2014): 427–36. http://dx.doi.org/10.3233/jae-141954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sooriyadevan, P., D. A. McNamara, A. Petosa, and A. Ittipiboon. "Electromagnetic modelling and optimisation of a planar holographic antenna." IET Microwaves, Antennas & Propagation 1, no. 3 (2007): 693. http://dx.doi.org/10.1049/iet-map:20045069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Li, D., J. Zhu, N. K. Nikolova, M. H. Bakr, and J. W. Bandler. "Electromagnetic optimisation using sensitivity analysis in the frequency domain." IET Microwaves, Antennas & Propagation 1, no. 4 (2007): 852. http://dx.doi.org/10.1049/iet-map:20060303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Xiao, Song, Mihai Rotaru, and Jan K. Sykulski. "Strategies for balancing exploration and exploitation in electromagnetic optimisation." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 32, no. 4 (2013): 1176–88. http://dx.doi.org/10.1108/03321641311317004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Gallardo, J. A., and D. A. Lowther. "The optimisation of electromagnetic devices using niching genetic algorithms." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 18, no. 3 (1999): 285–97. http://dx.doi.org/10.1108/03321649910274865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Xiao, Song, Mihai Rotaru, and Jan K. Sykulski. "Correlation matrices in kriging assisted optimisation of electromagnetic devices." IET Science, Measurement & Technology 9, no. 2 (2015): 189–96. http://dx.doi.org/10.1049/iet-smt.2014.0194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Stander, J. N., G. Venter, and M. J. Kamper. "High fidelity multidisciplinary design optimisation of an electromagnetic device." Structural and Multidisciplinary Optimization 53, no. 5 (2015): 1113–27. http://dx.doi.org/10.1007/s00158-015-1375-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Turky, Ayad Mashaan, and Salwani Abdullah. "A multi-population electromagnetic algorithm for dynamic optimisation problems." Applied Soft Computing 22 (September 2014): 474–82. http://dx.doi.org/10.1016/j.asoc.2014.04.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Huo, Mengzhen, Yimin Deng, and Haibin Duan. "Cauchy-Gaussian pigeon-inspired optimisation for electromagnetic inverse problem." International Journal of Bio-Inspired Computation 17, no. 3 (2021): 182. http://dx.doi.org/10.1504/ijbic.2021.114875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Duan, Haibin, Mengzhen Huo, and Yimin Deng. "Cauchy-Gaussian pigeon-inspired optimisation for electromagnetic inverse problem." International Journal of Bio-Inspired Computation 17, no. 3 (2021): 182. http://dx.doi.org/10.1504/ijbic.2021.10037531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ivanchenko, Vladimir, Alexander Bagulya, Samer Bakr, et al. "Geant4 electromagnetic physics progress." EPJ Web of Conferences 245 (2020): 02009. http://dx.doi.org/10.1051/epjconf/202024502009.

Full text
Abstract:
The Geant4 electromagnetic (EM) physics sub-packages are a component of LHC experiment simulations. During long shutdown 2 for LHC, these packages are under intensive development and we report progress of EM physics in Geant4 versions 10.5 and 10.6, which includes faster computation, more accurate EM models, and extensions to the validation suite. New approaches are developed to simulate radiation damage for silicon vertex detectors and for configuration of multiple scattering per detector region. Improvements in user interfaces developed for low-energy and the Geant4-DNA project are used also
APA, Harvard, Vancouver, ISO, and other styles
25

Bezzubtseva, M. M., and V. S. Volkov. "THERMAL CHARACTERISTICS OF ELECTROMAGNETIC MIXERS." Научное обозрение. Технические науки (Scientific Review. Technical Sciences), no. 3 2020 (2020): 10–13. http://dx.doi.org/10.17513/srts.1287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhao, H., J. A. Souza, and J. C. Ordonez. "THERMAL MODEL FOR ELECTROMAGNETIC LAUNCHERS." Revista de Engenharia Térmica 7, no. 2 (2008): 60. http://dx.doi.org/10.5380/reterm.v7i2.61779.

Full text
Abstract:
This paper presents a 3D model for the determination of the temperature field in an electromagnetic launcher. The large amounts of energy that are dissipated into the structure of an electromagnetic launcher during short periods of time lead to a complicated thermal management situation. Effective thermal management strategies are necessary in order to maintain temperatures under acceptable limits. This paper constitutes an attempt to determine the temperature response of the launcher. A complete three-dimensional model has been developed. It combines rigid body movement, electromagnetic effec
APA, Harvard, Vancouver, ISO, and other styles
27

Tixador, P., G. David, T. Chevalier, G. Meunier, and K. Berger. "Thermal-electromagnetic modeling of superconductors." Cryogenics 47, no. 11-12 (2007): 539–45. http://dx.doi.org/10.1016/j.cryogenics.2007.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hrisca, Liviu, and Wim J. C. Melis. "Pump Speed Optimisation for Solar Thermal System." Solar Energy 172 (September 2018): 212–18. http://dx.doi.org/10.1016/j.solener.2018.03.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lewis, R. W., M. T. Manzari, and D. T. Gethin. "Thermal optimisation in the sand casting process." Engineering Computations 18, no. 3/4 (2001): 392–417. http://dx.doi.org/10.1108/02644400110387082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, F., M. De Bole, X. Wu, Y. Xie, N. Vijaykrishnan, and M. J. Irwin. "On-chip bus thermal analysis and optimisation." IET Computers & Digital Techniques 1, no. 5 (2007): 590. http://dx.doi.org/10.1049/iet-cdt:20060116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Habash, Riadh W. Y., Rajeev Bansal, Daniel Krewski, and Hafid T. Alhafid. "Thermal Therapy, Part IV: Electromagnetic and Thermal Dosimetry." Critical Reviews™ in Biomedical Engineering 35, no. 1-2 (2007): 123–82. http://dx.doi.org/10.1615/critrevbiomedeng.v35.i1-2.30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Mognaschi, M. E. "Micro biogeography‐inspired multi‐objective optimisation for industrial electromagnetic design." Electronics Letters 53, no. 22 (2017): 1458–60. http://dx.doi.org/10.1049/el.2017.3072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wu, Xiaoshan, Jianmei Lei, Xu Li, and Xiaohui Shi. "Analysis and optimisation of electromagnetic interference in motor drive system." International Journal of Electric and Hybrid Vehicles 12, no. 1 (2020): 15. http://dx.doi.org/10.1504/ijehv.2020.10025990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wu, Xiaoshan, Xiaohui Shi, Xu Li, and Jianmei Lei. "Analysis and optimisation of electromagnetic interference in motor drive system." International Journal of Electric and Hybrid Vehicles 12, no. 1 (2020): 15. http://dx.doi.org/10.1504/ijehv.2020.104261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Dong, D., T. D. Humphries, D. A. Sheppard, et al. "Thermal optimisation of metal hydride reactors for thermal energy storage applications." Sustainable Energy & Fuels 1, no. 8 (2017): 1820–29. http://dx.doi.org/10.1039/c7se00316a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Geng, X., X. Li, F. B. Liu, H. B. Li, and Z. H. Jiang. "Optimisation of electromagnetic field and flow field in round billet continuous casting mould with electromagnetic stirring." Ironmaking & Steelmaking 42, no. 9 (2015): 675–82. http://dx.doi.org/10.1179/1743281215y.0000000015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhang, Bo, Qiao Chen, Quan Liang Cao, et al. "Electromagnetic-Thermal Modeling of Electromagnetic Brake Using Finite-Element Analysis." Applied Mechanics and Materials 392 (September 2013): 290–94. http://dx.doi.org/10.4028/www.scientific.net/amm.392.290.

Full text
Abstract:
A DC-excited high torque electromagnetic brake has been designed for high-speed train in WHMFC. An electromagnetic-thermal analysis model for electromagnetic brake analysis has been developed, taking into account the specific heat capacity-temperature relation, nonlinear magnetization-saturation and the skin effect. With simplification, the complex transient electromagnetic-thermal process has been successfully solved. This paper follows a previous work in which analysis was performed with electromagnetic analysis only.
APA, Harvard, Vancouver, ISO, and other styles
38

Apollonskiy, Stanislav M. "Ensuring electromagnetic safety at high-speed maglev transport." Transportation systems and technology 3, no. 3 (2017): 90–110. http://dx.doi.org/10.17816/transsyst20173390-110.

Full text
Abstract:
High-speed ground maglev transport creates electromagnetic interference of wide frequency spectrum during the movement. Electromagnetic interference spreads both in the surrounding environment and within the transport itself. Mathematically, electromagnetic interference is a vector (and in some cases tensor) field, where the functions are magnetic and electrical tenseness. Purpose. The purpose of the work is to ensure electromagnetic safety of high-speed ground maglev transport’s technical means and people (passengers and staff) by means of optimisation synthesis. Objective. The objective of t
APA, Harvard, Vancouver, ISO, and other styles
39

Israel, M., V. Zaryabova, and M. Ivanova. "Electromagnetic field occupational exposure: Non-thermal vs. thermal effects." Electromagnetic Biology and Medicine 32, no. 2 (2013): 145–54. http://dx.doi.org/10.3109/15368378.2013.776349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Chatterjee, D., and T. W. Manikas. "On-chip thermal optimisation by whitespace reallocation using a constrained particle-swarm optimisation algorithm." IET Circuits, Devices & Systems 4, no. 3 (2010): 251. http://dx.doi.org/10.1049/iet-cds.2009.0049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Baumgartner, U., W. Renhart, K. Preis, and C. Magele. "Particle swarm optimisation for Pareto optimal solutions in electromagnetic shape design." IEE Proceedings - Science, Measurement and Technology 151, no. 6 (2004): 499–502. http://dx.doi.org/10.1049/ip-smt:20040631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wei, Xiao‐Kun, Wei Shao, Cheng Zhang, Jia‐Lin Li, and Bing‐Zhong Wang. "Improved self‐adaptive genetic algorithm with quantum scheme for electromagnetic optimisation." IET Microwaves, Antennas & Propagation 8, no. 12 (2014): 965–72. http://dx.doi.org/10.1049/iet-map.2014.0034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pilgrim, James, and Sean Kelly. "Thermal and economic optimisation of windfarm export cable." Journal of Engineering 2019, no. 18 (2019): 4991–95. http://dx.doi.org/10.1049/joe.2018.9272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Volobuev, Andrey N., Eugene S. Petrov, and Eugene L. Ovchinnikov. "Thermal Electromagnetic Radiation of Rarefied Gas." Journal of Modern Physics 04, no. 03 (2013): 299–305. http://dx.doi.org/10.4236/jmp.2013.43040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Nazari, Borzoo. "Electromagnetic thermal corrections to Casimir energy." Modern Physics Letters A 31, no. 22 (2016): 1650127. http://dx.doi.org/10.1142/s0217732316501273.

Full text
Abstract:
In [B. Nazari, Mod. Phys. Lett. A 31, 1650007 (2016)], we calculated finite temperature corrections to the energy of the Casimir effect of two conducting parallel plates in a general weak gravitational field. The calculations was done for the case a scalar field was present between the plates. Here we find the same results in the presence of an electromagnetic field.
APA, Harvard, Vancouver, ISO, and other styles
46

Elmfors, Per, and Bo-Sture Skagerstam. "Electromagnetic fields in a thermal background." Physics Letters B 348, no. 1-2 (1995): 141–48. http://dx.doi.org/10.1016/0370-2693(95)00124-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Brandt, F. T., and J. Frenkel. "Nonlinear Electromagnetic Interactions in Thermal QED." Physical Review Letters 74, no. 10 (1995): 1705–7. http://dx.doi.org/10.1103/physrevlett.74.1705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Blohbaum, J. "Optimisation methods for an inverse problem with time-harmonic electromagnetic waves: an inverse problem in electromagnetic scattering." Inverse Problems 5, no. 4 (1989): 463–82. http://dx.doi.org/10.1088/0266-5611/5/4/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kut, T., A. Lücken, S. Dickmann, and D. Schulz. "Common mode chokes and optimisation aspects." Advances in Radio Science 12 (November 10, 2014): 143–48. http://dx.doi.org/10.5194/ars-12-143-2014.

Full text
Abstract:
Abstract. Due to the increasing electrification of modern aircraft, as a result of the More Electric Aircraft concept, new strategies and approaches are required to fulfil the strict EMC aircraft standards (DO-160/ED-14–Sec. 20). Common mode chokes are a key component of electromagnetic filters and often oversized because of the unknown impedance of the surrounding power electronic system. This oversizing results in an increase of weight and volume. It has to be avoided as far as possible for mobile applications. In this context, an advanced method is presented to measure these impedances unde
APA, Harvard, Vancouver, ISO, and other styles
50

Joulain, Karl, Younès Ezzahri, and Jose Ordonez-Miranda. "Quantum Thermal Rectification to Design Thermal Diodes and Transistors." Zeitschrift für Naturforschung A 72, no. 2 (2017): 163–70. http://dx.doi.org/10.1515/zna-2016-0350.

Full text
Abstract:
AbstractWe study in this article how heat can be exchanged between two-level systems, each of them being coupled to a thermal reservoir. Calculations are performed solving a master equation for the density matrix using the Born–Markov approximation. We analyse the conditions for which a thermal diode and a thermal transistor can be obtained as well as their optimisation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!