Academic literature on the topic 'Electromagnetic braking'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electromagnetic braking.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electromagnetic braking"
Xiang, Chun, Jun-Cheng Wang, Yu-Feng Gu, Shi-Jin Zhang, and Shi-An Chen. "Experiment, Optimization, and Design of Electromagnetic Track Brake for High-Speed Railways System." Mathematical Problems in Engineering 2020 (March 9, 2020): 1–11. http://dx.doi.org/10.1155/2020/6957963.
Full textHe, Ren, Xiao Dan Gu, and Jun Shi. "Design of Double-Disc Friction and Electromagnetic Hybrid Brake System of Passenger Car." Applied Mechanics and Materials 610 (August 2014): 156–63. http://dx.doi.org/10.4028/www.scientific.net/amm.610.156.
Full textHuang, Shan, Jiusheng Bao, Shirong Ge, Yan Yin, and Tonggang Liu. "Design of a frictional–electromagnetic compound disk brake for automotives." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, no. 4 (July 15, 2019): 1113–22. http://dx.doi.org/10.1177/0954407019864210.
Full textZhang, Rui-Jun. "Structure design and coordinated control of electromagnetic and frictional braking system based on a hub motor." Science Progress 104, no. 1 (January 2021): 003685042199848. http://dx.doi.org/10.1177/0036850421998483.
Full textChen, En-Ping, Jiangfeng Cheng, Jia-Hung Tu, and Chun-Liang Lin. "Sensorless Driving/Braking Control for Electric Vehicles." Actuators 9, no. 1 (March 22, 2020): 22. http://dx.doi.org/10.3390/act9010022.
Full textDu, Jinfu, Xingrong Wu, and Jin Mao. "Fatigue Life Analysis of Main Reducer Gears for Battery Electric Bus Considering Regenerative Braking." Applied Sciences 12, no. 14 (July 17, 2022): 7205. http://dx.doi.org/10.3390/app12147205.
Full textAnantha Krishna, G. L., and K. M. Sathish Kumar. "Investigation on Eddy Current Braking Systems – A Review." Applied Mechanics and Materials 592-594 (July 2014): 1089–93. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.1089.
Full textBawane, Prof S. G., Moksh Khajuria, Vaibhav Sontakke, Chetan Gharjare, Aniket Dhakate, Hemraj Sonkusare, and Ramesh Rajput. "Design and Fabrication of Smart Electromagnetic Breaking System." International Journal for Research in Applied Science and Engineering Technology 10, no. 4 (April 30, 2022): 2606–12. http://dx.doi.org/10.22214/ijraset.2022.41629.
Full textBaharom, Mohamad Zairi, M. Z. Nuawi, and Gigih Priyandoko. "Parameter Analysis of Electromagnetic Braking Using Fully Nested and Two Way ANOVA." Applied Mechanics and Materials 663 (October 2014): 193–97. http://dx.doi.org/10.4028/www.scientific.net/amm.663.193.
Full textLi, Ai Ran, Yu Jin Fan, Teng Han, Zhe Kun Li, Pei Lin Zhao, and Jun Jie Wang. "Properties of Hydraulic Floating Caliper Brake for AGV Car." Applied Mechanics and Materials 644-650 (September 2014): 33–36. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.33.
Full textDissertations / Theses on the topic "Electromagnetic braking"
Hoffmann, Ulwin. "Direct grid connection and low voltage ride-through for a slip synchronous-permanent magnet wind turbine generator." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/19980.
Full textENGLISH ABSTRACT: The slip synchronous-permanent magnet generator (SS-PMG) is a direct-driven, direct-to-grid generator for wind turbine applications. This investigation focuses on achieving automated grid connection and low voltage ride-through for a small-scale SS-PMG. To reduce cost and complexity, components such as blade pitch controllers and frequency converters are avoided. Instead, electromagnetic braking is employed to control turbine speed prior to grid synchronisation and compensation resistances are used to facilitate grid fault ride-through. The conditions under which the SS-PMG can be successfully synchronised with the grid are determined, indicating a need for speed control. An evaluation of electromagnetic braking strategies reveals that satisfactory speed control performance can be achieved when employing back-to-back thyristors to switch in the braking load. Simulations show that controlled synchronisation can be executed successfully under turbulent wind conditions. All controllable parameters are held within safe limits, but the SS-PMG terminal voltage drop is higher than desired. Compensation is developed to allow the SS-PMG to ride through the voltage dip profile specified by the Irish distribution code. It is found that a combination of series and shunt resistances is necessary to shield the SS-PMG from the voltage dip, while balancing active power transfer. The flexibility offered by thyristor switching of the shunt braking load is instrumental in coping with turbulent wind conditions and unbalanced dips. The South African voltage dip profile is also managed with conditional success. Following on from the theoretical design, the grid connection controller is implemented for practical testing purposes. Protection functions are developed to ensure safe operation under various contingencies. Before testing, problems with the operation of the thyristors are overcome. Practical testing shows that grid synchronisation can be undertaken safely by obeying the theoretically determined conditions. The speed control mechanism is also shown to achieve acceptable dynamic performance. Finally, the SS-PMG is incorporated into a functioning wind turbine system and automated grid connection is demonstrated under turbulent wind conditions. Future investigations may be focused on optimal control strategies, alternative solid-state switching schemes, and reactive power control. Low voltage ride-through should also be optimised for the South African dip profile and validated experimentally.
AFRIKAANSE OPSOMMING: Die glip-sinchroon permanente magneet generator (GS-PMG) is ‘n direkte dryf, direkte netwerkgekoppelde generator vir windturbine toepassings. Hierdie ondersoek fokus op die bereiking van ’n ge-outomatiseerde netwerkkoppeling en lae spanning deurry vir ‘n kleinskaalse GS-PMG. Om kostes en kompleksiteit te verminder, word komponente soos lemsteekbeheerders en frekwensie-omsetters vermy. In plaas daarvan word elektromagnetiese remwerking gebruik om die turbine spoed, voorgaande net-werksinchronisasie, te beheer, en word kompensasieweerstande gebruik om netwerkfoutdeurry te handhaaf. Die omstandighede waaronder die GS-PMG suksesvol met die netwerk gesinchroniseer kan word, is vasgestel en dit het die behoefte aan spoedbeheer uitgewys. ‘n Evaluering van elektromagnetiese remstrategië wys uit dat ’n bevredigende spoedbeheervermoë verkry kan word as anti-parallelle tiristors gebruik word om die remlas te skakel. Simulasies wys dat beheerde netwerksinchronisasie suksesvol uitgevoer kan word, selfs onder turbulente windtoestande. Alle beheerbare parameters is binne veilige perke gehou, maar die GS-PMG se klemspanningsval is gevind as hoë as verwag. Kompensasie is ontwikkel om die GS-PMG toe te laat om deur die spanningsvalprofiel, soos gespesifieer deur die Ierse distribusiekode, te ry. Dit is gevind dat ‘n kombinasie van serie- en parallelle weerstande nodig is om die GS-PMG teen die spanningsval te beskerm, terwyl aktiewe drywingsoordrag gebalanseer word. Die buigbaarheid wat verkry word met die tiristorskakeling van die parallele weerstand is noodsaaklik in die hanteering van turbulente windtoestande en ongebalanseerde spanningsvalle. Die Suid-Afrikaanse spanningsvalprofiel is ook met voorwaardelike sukses hanteer. In opvolg van die teoretiese ontwerp is die netwerkkoppelingsbeheerder vir praktiese toetsdoeleindes in werking gestel. Beskermingsfunksies is ontwikkel om veilige werking onder verskeie gebeurlikhede te verseker. Die probleme met die werking van die tiristors is oorkom voor die aanvang van die toetse. Die praktiese toetse bewys dat netwerksinchronisasie veilig gedoen kan word deur die teoretiese bepaalde voorwaardes te volg. Dit is ook getoon dat met die spoedbeheermeganisme aanvaarbare dinamiese gedrag verkry kan word. Ten laaste is die GS-PMG in ‘n werkende windturbinestelsel geïnkorporeer en outomatiese netwerkkoppeling is onder turbulente windtoestande gedemonstreer. Toekomstige ondersoeke kan toegespits word op optimale beheerstrategië, alternatiewe vaste toestand skakelingskemas en reaktiewe drywingsbeheer. Lae spanning deurry moet nog vir die Suid- Afrikaanse spanningsprofiel ge-optimeer en eksperimenteel bevestig word.
Belgiovane, Domenic John Jr. "Advancing Millimeter-Wave Vehicular Radar Test Targets for Automatic Emergency Braking (AEB) Sensor Evaluation." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1511867574425366.
Full textBook chapters on the topic "Electromagnetic braking"
Pieńkowski, Krzysztof. "Electromagnetic Fields and Forces in a Linear Induction Motor during Direct Current Braking." In Electromagnetic Fields in Electrical Engineering, 237–42. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0721-1_43.
Full textCho, Seong-Mook, Hyoung-Jun Lee, Seon-Hyo Kim, Rajneesh Chaudhary, Brian G. Thomas, Duck-Hee Lee, Yong-Jin Kim, Woong-Ryul Choi, Sung-Kwang Kim, and Hui-Soo Kim. "Measurement of Transient Meniscus Flow in Steel Continuous Casters and Effect of Electromagnetic Braking." In Sensors, Sampling, and Simulation for Process Control, 59–66. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118061800.ch7.
Full textWang, WenHui, and Jiao Li. "A Method for Calculating Heat Energy and Braking Moment of Automobile Electromagnetic Retarder with Skin Effect." In Advances in Computer Science, Intelligent System and Environment, 289–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23753-9_46.
Full textJin, Kai, Surya P. Vanka, Brian G. Thomas, and Xiaoming Ruan. "Large Eddy Simulations of the Effects of Double-Ruler Electromagnetic Braking and Nozzle Submergence Depth on Molten Steel Flow in A Commercial Continuous Casting Mold." In CFD Modeling and Simulation in Materials Processing 2016, 159–66. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119274681.ch20.
Full textJin, Kai, Surya P. Vanka, Brian G. Thomas, and Xiaoming Ruan. "Large Eddy Simulations of the Effects of Double-Ruler Electromagnetic Braking and Nozzle Submergence Depth on Molten Steel Flow in a Commercial Continuous Casting Mold." In The Minerals, Metals & Materials Series, 159–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-65133-0_20.
Full textPerry, Michael P. "Torque and Braking in a Magnetic Field." In Low Frequency Electromagnetic Design, 151–208. Routledge, 2019. http://dx.doi.org/10.1201/9780203748626-4.
Full textLi, Hong, and Jiangwei Chu. "Performance Analysis of a New Vehicle Braking Energy Recovery System." In Advances in Energy Research and Development. IOS Press, 2022. http://dx.doi.org/10.3233/aerd220011.
Full textSCHATZMAN, Evry. "STELLAR ROTATION, DYNAMO, ELECTROMAGNETIC BRAKING, AGE AND LITHIUM BURNING." In Turbulence and Nonlinear Dynamics in MHD Flows, 1–18. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-444-87396-5.50004-3.
Full textKim, H. J., I. Muraoka, S. Torii, M. Watada, and D. Ebihara. "The dynamic braking characteristics of the vertical linear synchronous motor." In Advanced Computational and Design Techniques in Applied Electromagnetic Systems, 431–34. Elsevier, 1995. http://dx.doi.org/10.1016/b978-0-444-82139-3.50115-4.
Full textConference papers on the topic "Electromagnetic braking"
HOLT, A. "Electromagnetic braking for Mars spacecraft." In 22nd Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-1588.
Full textAhfock, T., and C. G. Wells. "A practical demonstration of electromagnetic braking." In 2007 Australasian Universities Power Engineering Conference (AUPEC). IEEE, 2007. http://dx.doi.org/10.1109/aupec.2007.4548077.
Full textAnwar, Sohel. "Anti-Lock Braking Control of an Electromagnetic Brake-by-Wire System." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79149.
Full textKachroo, Pushkin, and Qian Ming. "Modeling of electromagnetic brakes for enhanced braking capabilities." In Intelligent Systems & Advanced Manufacturing, edited by Marten J. de Vries, Pushkin Kachroo, Kaan Ozbay, and Alan C. Chachich. SPIE, 1998. http://dx.doi.org/10.1117/12.300850.
Full textPandey, Shivam, R. M. Holmukhe, Satyam Pandey, and D. P. Kothari. "Design, Fabrication and Parametric Analysis of Electromagnetic Braking System." In 2018 4th International Conference for Convergence in Technology (I2CT). IEEE, 2018. http://dx.doi.org/10.1109/i2ct42659.2018.9058220.
Full textZhang, Linshuai, Shuxiang Guo, Huadong Yu, Shuoxin Gu, Yu Song, and Miao Yu. "Electromagnetic braking-based collision protection of a novel catheter manipulator." In 2017 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2017. http://dx.doi.org/10.1109/icma.2017.8016078.
Full textvan den Brom, Helko, and Ronald van Leeuwen. "Calibrating Sensors to Measure Braking Chopper Currents in DC Traction Units." In 2020 Conference on Precision Electromagnetic Measurements (CPEM 2020). IEEE, 2020. http://dx.doi.org/10.1109/cpem49742.2020.9191822.
Full textHe, Ren. "Thermal Improvement of Integrated Electromagnetic and Friction Braking System of Trailers." In SAE WCX Digital Summit. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2021. http://dx.doi.org/10.4271/2021-01-0341.
Full textKarakoc, Kerem, Afzal Suleman, and Edward J. Park. "Development of an Automotive Magnetorheological Brake Via Optimization of Magnetic Circuit." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-44118.
Full textvan den Brom, Helko, Domenico Giordano, Danielle Gallo, Andreas Wank, and Yljon Seferi. "Accurate Measurement of Energy Dissipated in Braking Rheostats in DC Railway Systems." In 2020 Conference on Precision Electromagnetic Measurements (CPEM 2020). IEEE, 2020. http://dx.doi.org/10.1109/cpem49742.2020.9191917.
Full text