To see the other types of publications on this topic, follow the link: Electromagnetic wave polarization.

Dissertations / Theses on the topic 'Electromagnetic wave polarization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 dissertations / theses for your research on the topic 'Electromagnetic wave polarization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Hoshino, Toshihiro, Katsumi Kato, Naoki Hayakawa, and Hitoshi Okubo. "A novel technique for detecting electromagnetic wave caused by partial discharge in GIS." IEEE, 2001. http://hdl.handle.net/2237/6747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wallace, Jon. "Modeling Electromagnetic Wave Propagation in Electrically Large Structures." BYU ScholarsArchive, 2003. https://scholarsarchive.byu.edu/etd/91.

Full text
Abstract:
Existing unified numerical electromagnetic methods are often unable to analyze electrically large structures due to the amount of memory and processing power required, necessitating approximate analyses with limited applicability. In this research a hybrid modeling methodology is adopted to solve these complex problems more efficiently than unified numerical methods and more accurately than analytical methods. Electromagnetic modeling problems are divided into two or more levels of scale. Each level analyzes a specific level of detail and only promotes the required information to the next level. The method is demonstrated by successful application to three important problems: (1) remote sensing of snow, (2) modeling an optical Bragg resonator, and (3) modeling the MIMO wireless channel. First, complex snow media is analyzed with a hybrid FDTD/radiative transfer model. FDTD is used to compute phase matrices and extinction coefficients required for radiative transfer. Comparison with exact analytical methods proves the validity of the FDTD method for modest domain sizes ([5λ^3]) and number of Monte Carlo realizations (32). The method is used to illustrate a penetrating sphere model, which is not possible with existing analysis techniques. Backscatter from the resulting model is about 3 times higher than that of existing dense-medium theories, underlying the importance of exact characterization of the media. Second, a hybrid FD/FDTD/S-parameter analysis is developed to model a large (10^4 section) optical Bragg resonator: a simple FD method computes propagation constants and field profiles, FDTD analysis provides reflection and transmission coefficients for the single section, and S-parameter analysis combines the sections to obtain the complete device response. A detailed study on error suggests that the method provides better than 2% accuracy in reflection and transmission response. Third, a hybrid electromagnetic/SVA model is developed to study the indoor MIMO wireless channel. A MIMO measurement platform is discussed for simultaneous probing of up to 16 transmit and receive antennas, which was required to assess the validity of later modeling. FDTD or MOM antenna analysis coupled with the SVA model gives capacity predictions which match measured data. The model is used to explore the impact of antenna spacing, directivity, and polarization on channel capacity. Closely spaced antennas lead to an approximate halving of receive power. Directivity effectively doubles receive power for aligned transmit and receive. Dual polarization increases system capacity anywhere from 10% to 70%, depending on the spacing of elements and the amount of multipath richness. This analysis of MIMO systems underlines the need for models that describe both multipath richness and average receive power.
APA, Harvard, Vancouver, ISO, and other styles
3

Taouk, Habib B. "Optical wave propagation in active media." Ohio : Ohio University, 1991. http://www.ohiolink.edu/etd/view.cgi?ohiou1173729381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Karlsson, Roger. "Theory and Applications of Tri-Axial Electromagnetic Field Measurements." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dogan, Doganay. "Dual Polarized Slotted Waveguide Array Antenna." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613016/index.pdf.

Full text
Abstract:
An X band dual polarized slotted waveguide antenna array is designed with very high polarization purity for both horizontal and vertical polarizations. Horizontally polarized radiators are designed using a novel non-inclined edge wall slots whereas the vertically polarized slots are implemented using broad wall slots opened on baffled single ridge rectangular waveguides. Electromagnetic model based on an infinite array unit cell approach is introduced to characterize the slots used in the array. 20 by 10 element planar array of these slots is manufactured and radiation fields are measured. The measurement results of this array are in very good accordance with the simulation results. The dual polarized antenna possesses a low sidelobe level of -35 dB and is able to scan a sector of ±
35 degrees in elevation. It also has a usable bandwidth of 600 MHz.
APA, Harvard, Vancouver, ISO, and other styles
6

Bezerra, Josà Wagner de Oliveira. "Estudo numÃrico/experimental de antena ressoadora dielÃtrica circularmente polarizada com alimentaÃÃo por sonda Ãnica." Universidade Federal do CearÃ, 2012. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8101.

Full text
Abstract:
nÃo hÃ
A expansÃo das redes de telecomunicaÃÃes sem fio e o fenÃmeno da convergÃncia digital trazem a inerente necessidade da pesquisa de novos componentes que assegurem a sustentabilidade e a evoluÃÃo dos sistemas. Novos tipos de antenas, menores e mais eficientes, sÃo exigidas à medida que novos dispositivos vÃo surgindo. Neste contexto, as antenas ressoadoras dielÃtricas, construÃdas com novos materiais, aparecem como excelente opÃÃo para substituir as antenas metÃlicas tradicionais. Este trabalho apresenta uma proposta de antena ressoadora dielÃtrica circularmente polarizada, operando na frequÃncia central de 2,25 GHz, na qual um esquema de alimentaÃÃo por sonda Ãnica à empregado para excitar dois modos ressonantes em um dielÃtrico em forma de quarto de cilindro. Este leiaute permite a ativaÃÃo de modos de baixa ordem, com distribuiÃÃo ortogonal dos campos eletromagnÃticos, ressoando em frequÃncias prÃximas com uma diferenÃa de fase de 90Â. SÃo introduzidos conceitos da teoria eletromagnÃtica envolvendo cavidades ressonantes e caracterÃsticas dos materiais cerÃmicos que compÃem o dielÃtrico. AlÃm disso, os processos de modelagem por computador e de construÃÃo de um protÃtipo sÃo explicados. Os resultados sÃo discutidos comparativamente entre o modelo computacional e as medidas experimentais executadas em laboratÃrio. O estudo demonstra uma boa concordÃncia entre os resultados simulados e os experimentais e evidencia a viabilidade da antena para aplicaÃÃes que necessitem de polarizaÃÃo circular na regiÃo do espectro de frequÃncias prÃximas a 2,25 GHz.
The expansion of wireless telecommunications networks and the phenomenon of digital convergence bring the inherent need for research of new components to ensure the sustainability and evolution of the systems. New types of antenna, smaller and more efficient, are required as new devices emerge. In this context, the dielectric resonator antennas, built with new materials, appear as an excellent option to replace the conventional metallic antennas. This work presents a proposal for a circularly polarized dielectric resonator antenna to operate at the center frequency of 2.25 GHz in which a single probe feeding scheme is used to excite two resonant modes in a quarter-cylinder-shaped dielectric. This layout allows the activation of low-order modes with orthogonal distribution of electromagnetic fields, resonating at near frequencies with a 90Â phase difference. The concepts of electromagnetic theory related to resonant cavities and the characteristics of dielectric ceramic materials are introduced. Furthermore, the processes of computer modeling and constructing of a prototype are explained. The results are discussed by comparison between the computational model and experimental measurements performed in the laboratory. The study shows a good agreement between the simulated and experimental results and demonstrates the feasibility of the antenna for applications requiring circular polarization for operating at the region of the frequency spectrum close to 2.25 GHz.
APA, Harvard, Vancouver, ISO, and other styles
7

MAROUAN, YOUSSEF. "Etat de polarisation et caracteristiques de propagation moyennes d'emissions em naturelles dans un magnetoplasma froid : application aux donnees ebf du satellite aureol-3." Orléans, 1988. http://www.theses.fr/1988ORLE2040.

Full text
Abstract:
Observation supposee effectuee en un point fixe de l'espace. Cette observation consiste en la mesure simultanee d'au moins trois composantes du champ electromagnetique. Discussion des estimateurs du degre de polarisation proposes par samson. Simulation numerique. Identification experimentale des modes d'une onde multiple en propagation dans ce magnetoplasma (ou deux modes peuvent coexister), obtenue a partir des caracteristiques de polarisation des ondes. Application aux emissions tres basse frequence observees par satellite aureol-3
APA, Harvard, Vancouver, ISO, and other styles
8

Reinke, Charles M. "Simulation of Nonlinear Optical Effects in Photonic Crystals Using the Finite-Difference Time-Domain Method." Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16270.

Full text
Abstract:
The phenomenon of polarization interaction in certain nonlinear materials is presented, and the design of an all-optical logic device based on this concept is described. An efficient two-dimensional finite-difference time-domain code for studying third-order nonlinear optical phenomena is discussed, in which both the slowly varying and the rapidly varying components of the electromagnetic fields are considered. The algorithm solves the vector form Maxwell s equations for all field components and uses the nonlinear constitutive relation in matrix form as the equations required to describe the nonlinear system. The stability of the code is discussed and its accuracy demonstrated through the simulation of the self-phase modulation effect observed in Kerr media. Finally, the code is used to simulate polarization mixing in photonic crystal-based line defect and coupled resonator optical waveguides.
APA, Harvard, Vancouver, ISO, and other styles
9

Prade, Bernard. "Quelques aspects theoriques et experimentaux de la propagation des ondes electromagnetiques dans l'atmosphere et dans une fibre optique monomode." Paris 6, 1987. http://www.theses.fr/1987PA066061.

Full text
Abstract:
Cette these, menee dans le cadre d'un travail sur la transmission d'informations par voie optique, comporte deux parties; la premiere traite du bruit de polarisation introduit par l'atmosphere au repos ou en ecoulement; la seconde partie traite du couplage par champ evanescent dans les fibres monomodes
APA, Harvard, Vancouver, ISO, and other styles
10

Kadlec, Radim. "Analýza elektromagnetické vlny na rozhraní heterogenního prostředí." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-233658.

Full text
Abstract:
The proposed dissertation thesis contains an analysis of conditions on the boundary between layers having varied electromagnetic properties. The research is performed using consistent theoretical derivation of analytical formulas, and the underlying problem is considered also in view of multiple boundaries including the effect of the propagation of electromagnetic waves having different instantaneous speed. The author presents a survey and formulation of the basic characteristics of methods used for electromagnetic wave propagation analysis; in this respect, special emphasis is placed on radial models. The processing of the topic involved the designing and verification (using a set of different, layered planar materials) of algorithms to analyze the electromagnetic field components. The algorithm was assembled to enable simple evaluation of all components of the electromagnetic field in relation to the speed of the wave propagation in a heterogeneous environment. The proposed algorithms are compared by means of different numerical methods for the modelling of electromagnetic waves on the boundary between materials; moreover, electromagnetic field components in common points of the model were also subject to comparison. When in conjunction with tools facilitating the analysis of material response to the source of a continuous signal, the algorithms constitute a supplementary instrument for the design of a layered material. Such design enables the realization of, for example, recoilless plane, recoilless transition between different types of environment, and filters for both optical and radio frequencies.
APA, Harvard, Vancouver, ISO, and other styles
11

Nikolaou, Symeon. "Design and implementation of compact reconfigurable antennas for UWB and WLAN applications." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/24802.

Full text
Abstract:
Thesis (Ph.D.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2008.
Committee Chair: Manos M. Tentzeris; Committee Co-Chair: John Papapolymerou; Committee Member: Andrew F. Peterson; Committee Member: Chang-Ho Lee; Committee Member: John D. Cressler; Committee Member: Joy Laskar.
APA, Harvard, Vancouver, ISO, and other styles
12

Leong, Jonathan Ryan Kyoung Ho. "Characterization of the Polarization and Frequency Selective Bolometric Detector Architecture." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1232487119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

De, Voir Christopher S. "Wavelet Based Feature Extraction and Dimension Reduction for the Classification of Human Cardiac Electrogram Depolarization Waveforms." PDXScholar, 2005. https://pdxscholar.library.pdx.edu/open_access_etds/1740.

Full text
Abstract:
An essential task for a pacemaker or implantable defibrillator is the accurate identification of rhythm categories so that the correct electrotherapy can be administered. Because some rhythms cause a rapid dangerous drop in cardiac output, it is necessary to categorize depolarization waveforms on a beat-to-beat basis to accomplish rhythm classification as rapidly as possible. In this thesis, a depolarization waveform classifier based on the Lifting Line Wavelet Transform is described. It overcomes problems in existing rate-based event classifiers; namely, (1) they are insensitive to the conduction path of the heart rhythm and (2) they are not robust to pseudo-events. The performance of the Lifting Line Wavelet Transform based classifier is illustrated with representative examples. Although rate based methods of event categorization have served well in implanted devices, these methods suffer in sensitivity and specificity when atrial, and ventricular rates are similar. Human experts differentiate rhythms by morphological features of strip chart electrocardiograms. The wavelet transform is a simple approximation of this human expert analysis function because it correlates distinct morphological features at multiple scales. The accuracy of implanted rhythm determination can then be improved by using human-appreciable time domain features enhanced by time scale decomposition of depolarization waveforms. The purpose of the present work was to determine the feasibility of implementing such a system on a limited-resolution platform. 78 patient recordings were split into equal segments of reference, confirmation, and evaluation sets. Each recording had a sampling rate of 512Hz, and a significant change in rhythm in the recording. The wavelet feature generator implemented in Matlab performs anti-alias pre-filtering, quantization, and threshold-based event detection, to produce indications of events to submit to wavelet transformation. The receiver operating characteristic curve was used to rank the discriminating power of the feature accomplishing dimension reduction. Accuracy was used to confirm the feature choice. Evaluation accuracy was greater than or equal to 95% over the IEGM recordings.
APA, Harvard, Vancouver, ISO, and other styles
14

Watson, Francis Maurice. "Better imaging for landmine detection : an exploration of 3D full-wave inversion for ground-penetrating radar." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/better-imaging-for-landmine-detection-an-exploration-of-3d-fullwave-inversion-for-groundpenetrating-radar(720bab5f-03a7-4531-9a56-7121609b3ef0).html.

Full text
Abstract:
Humanitarian clearance of minefields is most often carried out by hand, conventionally using a a metal detector and a probe. Detection is a very slow process, as every piece of detected metal must treated as if it were a landmine and carefully probed and excavated, while many of them are not. The process can be safely sped up by use of Ground-Penetrating Radar (GPR) to image the subsurface, to verify metal detection results and safely ignore any objects which could not possibly be a landmine. In this thesis, we explore the possibility of using Full Wave Inversion (FWI) to improve GPR imaging for landmine detection. Posing the imaging task as FWI means solving the large-scale, non-linear and ill-posed optimisation problem of determining the physical parameters of the subsurface (such as electrical permittivity) which would best reproduce the data. This thesis begins by giving an overview of all the mathematical and implementational aspects of FWI, so as to provide an informative text for both mathematicians (perhaps already familiar with other inverse problems) wanting to contribute to the mine detection problem, as well as a wider engineering audience (perhaps already working on GPR or mine detection) interested in the mathematical study of inverse problems and FWI.We present the first numerical 3D FWI results for GPR, and consider only surface measurements from small-scale arrays as these are suitable for our application. The FWI problem requires an accurate forward model to simulate GPR data, for which we use a hybrid finite-element boundary-integral solver utilising first order curl-conforming N\'d\'{e}lec (edge) elements. We present a novel `line search' type algorithm which prioritises inversion of some target parameters in a region of interest (ROI), with the update outside of the area defined implicitly as a function of the target parameters. This is particularly applicable to the mine detection problem, in which we wish to know more about some detected metallic objects, but are not interested in the surrounding medium. We may need to resolve the surrounding area though, in order to account for the target being obscured and multiple scattering in a highly cluttered subsurface. We focus particularly on spatial sensitivity of the inverse problem, using both a singular value decomposition to analyse the Jacobian matrix, as well as an asymptotic expansion involving polarization tensors describing the perturbation of electric field due to small objects. The latter allows us to extend the current theory of sensitivity in for acoustic FWI, based on the Born approximation, to better understand how polarization plays a role in the 3D electromagnetic inverse problem. Based on this asymptotic approximation, we derive a novel approximation to the diagonals of the Hessian matrix which can be used to pre-condition the GPR FWI problem.
APA, Harvard, Vancouver, ISO, and other styles
15

Karri, Avinash. "Employment of dual frequency excitation method to improve the accuracy of an optical current sensor, by measuring both current and temperature." Thesis, University of North Texas, 2008. https://digital.library.unt.edu/ark:/67531/metadc9766/.

Full text
Abstract:
Optical current sensors (OCSs) are initially developed to measure relatively large current over a wide range of frequency band. They are also used as protective devices in the event a fault occurs due to a short circuit, in the power generation and distribution industries. The basic principal used in OCS is the Faraday effect. When a light guiding faraday medium is placed in a magnetic field which is produced by the current flowing in the conductor around the magnetic core, the plane of polarization of the linearly polarized light is rotated. The angle of rotation is proportional to the magnetic field strength, proportionality constant and the interaction length. The proportionality constant is the Verdet constant V (λ, T), which is dependent on both temperature and wavelength of the light. Opto electrical methods are used to measure the angle of rotation of the polarization plane. By measuring the angle the current flowing in the current carrying conductor can be calculated. But the accuracy of the OCS is lost of the angle of rotation of the polarization plane is dependent on the Verdet constant, apart from the magnetic field strength. As temperature increases the Verdet constant decreases, so the angle of rotation decreases. To compensate the effect of temperature on the OCS, a new method has been proposed. The current and temperature are measured with the help of a duel frequency method. To detect the line current in the conductor or coil, a small signal from the line current is fed to the reference of the lock in. To detect the temperature, the coil is excited with an electrical signal of a frequency different from the line frequency, and a small sample of this frequency signal is applied to the reference of the lock in. The temperature and current readings obtained are look up at the database value to give the actual output. Controlled environment is maintained to record the values in the database that maps the current and temperature magnitude values at the DSP lock in amplifier, to the actual temperature and current. By this method we can achieve better compensation to the temperature changes, with a large dynamic range and better sensitivity and accuracy.
APA, Harvard, Vancouver, ISO, and other styles
16

Cole, Benjamin. "On the Microphysical Properties of Ice Clouds as Inferred from the Polarization of Electromagnetic Waves." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-08-10144.

Full text
Abstract:
Uncertainties associated with the microphysical and radiative properties of ice clouds remain an active research area because of the importance these clouds have in atmospheric radiative transfer problems and the energy balance of the Earth. In this study, an adding/doubling model is used to simulate the top of atmosphere (TOA) radiance and full Stokes vector from an ice cloud at the wavelength lambda = 865 nm with many different combinations of assumed ice habits (shapes) and different degrees of ice surface roughness, and the polarized radiance at a wide range of scattering angles is derived. Simulated results are compared with polarized radiance data from the POLDER (POLarization and Directionality of the Earth's Reflectances) instrument on board the PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) satellite. Bulk ice scattering properties are obtained by using five different size distributions collected during field campaigns ranging in effective diameter from 10 micrometers to 90 micrometers. Bulk scattering properties for the MODIS Collection 5 ice cloud product are used in this study, along with properties for two mid-latitude ice cloud models, a polar/mid-latitude ice model, and a model built for ice clouds over deep convection. Solid columns and hollow columns are used as well. The polarized radiance simulation results for the moderate surface roughness level best fit the satellite measurements for all ice models, though severely roughened ice crystals do fare well in a few cases. Hollow columns are the best fit to the satellite polarization measurements, but of the ensemble ice models, the polar/mid-latitude model at an effective diameter of 90 micrometers best fits the polarized radiance measurements for the one day of PARASOL data considered. This model should be the best to simulate ice cloud properties on a global scale.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography