Academic literature on the topic 'Electron beam freeform fabrication'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electron beam freeform fabrication.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electron beam freeform fabrication"
Wanjara, Priti, Mathieu Brochu, and Mohammad Jahazi. "Electron Beam Freeform Fabrication on Stainless Steel." Materials Science Forum 539-543 (March 2007): 4938–43. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.4938.
Full textChang, Shuhe, Haoyu Zhang, Haiying Xu, Xinghua Sang, Li Wang, Dong Du, and Baohua Chang. "Closed-Loop Control of Droplet Transfer in Electron-Beam Freeform Fabrication." Sensors 20, no. 3 (February 10, 2020): 923. http://dx.doi.org/10.3390/s20030923.
Full textChang, Shuhe, Haoyu Zhang, Haiying Xu, Xinghua Sang, Li Wang, Dong Du, and Baohua Chang. "Online Measurement of Deposit Surface in Electron Beam Freeform Fabrication." Sensors 19, no. 18 (September 16, 2019): 4001. http://dx.doi.org/10.3390/s19184001.
Full textGurianov, D. A., K. N. Kalashnikov, K. S. Osipovich, and A. V. Chumaevskii. "Obtaining the bimetallic composition by the electron beam freeform fabrication." IOP Conference Series: Materials Science and Engineering 597 (August 23, 2019): 012043. http://dx.doi.org/10.1088/1757-899x/597/1/012043.
Full textTaminger, Karen M., Robert A. Hafley, and Marcia S. Domack. "Evolution and Control of 2219 Aluminium Microstructural Features through Electron Beam Freeform Fabrication." Materials Science Forum 519-521 (July 2006): 1297–302. http://dx.doi.org/10.4028/www.scientific.net/msf.519-521.1297.
Full textKalashnikov, K. N., K. S. Khoroshko, T. A. Kalashnikova, A. V. Chumaevskii, and A. V. Filippov. "Structural evolution of 321 stainless steel in electron beam freeform fabrication." Journal of Physics: Conference Series 1115 (November 2018): 042049. http://dx.doi.org/10.1088/1742-6596/1115/4/042049.
Full textMatz, J. E., and T. W. Eagar. "Carbide formation in alloy 718 during electron-beam solid freeform fabrication." Metallurgical and Materials Transactions A 33, no. 8 (August 2002): 2559–67. http://dx.doi.org/10.1007/s11661-002-0376-y.
Full textNikolov, Daniel K., Aaron Bauer, Fei Cheng, Hitoshi Kato, A. Nick Vamivakas, and Jannick P. Rolland. "Metaform optics: Bridging nanophotonics and freeform optics." Science Advances 7, no. 18 (April 2021): eabe5112. http://dx.doi.org/10.1126/sciadv.abe5112.
Full textYan, Wuzhu, Zhufeng Yue, and Jianwen Feng. "Study on the role of deposition path in electron beam freeform fabrication process." Rapid Prototyping Journal 23, no. 6 (October 17, 2017): 1057–68. http://dx.doi.org/10.1108/rpj-03-2016-0043.
Full textShu, Xi, Guoqing Chen, Junpeng Liu, Binggang Zhang, and Jicai Feng. "Microstructure evolution of copper/steel gradient deposition prepared using electron beam freeform fabrication." Materials Letters 213 (February 2018): 374–77. http://dx.doi.org/10.1016/j.matlet.2017.11.016.
Full textDissertations / Theses on the topic "Electron beam freeform fabrication"
Matz, John E. (John Edward) 1968. "Carbide formation in a nickel-based superalloy during electron beam solid freeform fabrication." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9540.
Full textVita.
Includes bibliographical references (leaves 90-93).
The Electron Beam Solid Freeform Fabrication process involves the use of an electron beam to make near-net-shape metal parts without the need for tooling. Material in wire form is fed into a melt pool maintained on the surface of the part by the electron beam and a positioning system causes the deposition to occur in a line-by-line, layer-by-layer fashion. Solidification occurs at a high rate, forming a fine dendritic microstructure and fine dispersion of primary carbides. This structure is believed to be optimal for the manufacture and safe use of certain nickel-base superalloy parts, notably turbine disks. The growth of carbide particles from the liquid during EBSFF processing of Alloy 718 has been modeled assuming diffusion control and isolated spherical carbides. The driving force for growth is assumed to increase in a linear manner throughout the temperature range of carbide precipitation. The model predicts the maximum carbide size as a function of EBSFF operating parameters and the alloy niobium and carbon levels. For the material and conditions used experimentally in this work, the model predicts a maximum diameter of approximately I .0 [mu]m. The maximum carbide size will become an important determining factor for turbine disk performance when oxide and nitride inclusions have been eliminated through improved melt practices. To illustrate this, the low-cycle fatigue life as a function of carbide size for a standard specimen geometry was calculated. Extraction replica transmission electron microscopy of EBSFF samples identified carbides in the 300-600 nm range, consistent with a population having the predicted maximum size. Another dispersion of carbides larger than 3 [mu]m was also observed in the EBSFF samples. These are believed to be original carbides that survived the EBSFF thermal cycle without completely dissolving. More thorough dissolution can probably be obtained with EBSFF process modifications. Control material from a conventional vacuum arc remelted ingot with similar composition was also examined and plate-like carbides up to 40 [mu]m in length were noted. This is an indication of the enormous potential of the EBSFF process to refine the carbide morphology and size distribution without the need for a reduction in carbon content.
by John Edward Matz.
Sc.D.
Nelson, Erik Walter. "Combined Compression and Shear Structural Evaluation of Stiffened Panels Fabricated Using Electron Beam Freeform Fabrication." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/43583.
Full textMaster of Science
Waters, Brent R. "Mechanical Properties of Inconel 718 Processed Using Electron Beam Free Form Fabrication (EBF3)." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6717.
Full textGaytan, Guillen Sara Marisela. "Additive layer manufacturing of TI-6AL-4V by electron beam melting from powder particles solid, mesh and foam components study /." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textKottman, Michael Andrew. "Additive Manufacturing of Maraging 250 Steels for the Rejuvenation and Repurposing of Die Casting Tooling." Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1416854466.
Full textDavé, Vivek Ramesh. "Electron beam (EB)-assisted materials fabrication." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11505.
Full textVita.
Includes bibliographical references (v. 2, leaves 277-279).
by Vivek Ramesh Davé.
Ph.D.
Onyeako, Isidore. "Resolution-aware Slicing of CAD Data for 3D Printing." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34303.
Full textLeonard, S. "Negative polymeric resists for electron beam lithography." Thesis, University of Liverpool, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234905.
Full textErvin, Jennifer Kelly. "Post Heat Treatment Effects of Ti-6Al-4V Produced via Solid Freeform Electron Beam Melting." NCSU, 2008. http://www.lib.ncsu.edu/theses/available/etd-05012008-105845/.
Full textTaslimi, Shahrzad. "Fabrication of diffractive optical elements by electron beam lithography." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96963.
Full textÉléments d'optiques diffractives (EODs) composent une partie essentielle dans le succès de microsystèmes optiques. Lithographie à faisceau d'électrons est un élément clé pour la fabrication des structures avec des dimensions critiques submicroniques. Cette thèse présente le travail fait sur le développement d'un processus pour la fabrication des optiques diffractives en utilisant cette méthode. Ce projet étudie des divers défis impliqués dans ce processus, traite des problèmes qui pourrait surgir et propose des solutions pour les résoudre. Les sources d'erreur possible dans la création et le transfert des modèles sont identifiées et des méthodes de les éliminer ou les minimiser sont présentées. Certaines des erreurs sont attribuées à l'accumulation d'électrons et aux problèmes d'alignement lors de la lithographie.
Books on the topic "Electron beam freeform fabrication"
Fernandez-Pacheco, Amalio. Studies of Nanoconstrictions, Nanowires and Fe₃O₄ Thin Films: Electrical Conduction and Magnetic Properties. Fabrication by Focused Electron/Ion Beam. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textChoo, Andrew Hua-kuang. Fabrication, characterization and modeling of a superlattice base hot electron transistor. 1992.
Find full textFernandez-Pacheco, Amalio. Studies of Nanoconstrictions, Nanowires and Fe3O4 Thin Films: Electrical Conduction and Magnetic Properties. Fabrication by Focused Electron/Ion Beam. Springer, 2011.
Find full textFernandez-Pacheco, Amalio. Studies of Nanoconstrictions, Nanowires and Fe3O4 Thin Films: Electrical Conduction and Magnetic Properties. Fabrication by Focused Electron/Ion Beam. Springer, 2013.
Find full textGallop, J., and L. Hao. Superconducting Nanodevices. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.17.
Full textBook chapters on the topic "Electron beam freeform fabrication"
Wanjara, Priti, Mathieu Brochu, and Mohammad Jahazi. "Electron Beam Freeform Fabrication on Stainless Steel." In THERMEC 2006, 4938–43. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.4938.
Full textSun, Wenjun, Liming Ke, Shanlin Wang, and Wende Bu. "Microstructure and Mechanical Properties of TC4 Titanium Alloy by Electron Beam Freeform Fabrication." In Transactions on Intelligent Welding Manufacturing, 27–44. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7215-9_2.
Full textMatsui, Shinji, Hiroaki Misawa, and Quan Sun. "3-D Nanostructure Fabrication by Focused-Ion Beam, Electron- and Laser Beam." In Springer Handbook of Nanotechnology, 87–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54357-3_4.
Full textDi Fabrizio, E., L. Grella, M. Baciocchi, and M. Gentili. "Fabrication of Diffractive Optical Elements by Electron Beam Lithography." In Diffractive Optics and Optical Microsystems, 149–60. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1474-3_14.
Full textBögli, V., P. Unger, H. Beneking, B. Greinke, P. Guttmann, B. Niemann, D. Rudolph, and G. Schmahl. "Microzone Plate Fabrication by 100 keV Electron Beam Lithography." In Springer Series in Optical Sciences, 80–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-540-39246-0_15.
Full textShimojo, Masayuki, Masaki Takeguchi, Kazutaka Mitsuishi, M. Tanaka, and Kazuo Furuya. "Fabrication of Iron Oxide Nanostructures by Electron Beam-Induced Deposition." In Materials Science Forum, 1101–4. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-462-6.1101.
Full textBernstein, G., and D. K. Ferry. "Fabrication of Short-Gate GaAs MESFETs by Electron Beam Lithography." In Springer Proceedings in Physics, 462. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71446-7_36.
Full textGonzales, Devon, Stephen Liu, Marcia Domack, and Robert Hafley. "Using Powder Cored Tubular Wire Technology to Enhance Electron Beam Freeform Fabricated Structures." In TMS 2016: 145thAnnual Meeting & Exhibition: Supplemental Proceedings, 183–89. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119274896.ch23.
Full textGonzales, Devon, Stephen Liu, Marcia Domack, and Robert Hafley. "Using Powder Cored Tubular Wire Technology to Enhance Electron Beam Freeform Fabricated Structures." In TMS 2016 145th Annual Meeting & Exhibition, 183–89. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48254-5_23.
Full textHarrysson, Ola L. A., and Denis R. Cormier. "Direct Fabrication of Custom Orthopedic Implants Using Electron Beam Melting Technology." In Advanced Manufacturing Technology for Medical Applications, 191–206. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470033983.ch9.
Full textConference papers on the topic "Electron beam freeform fabrication"
Hafley, Robert, Karen Taminger, and R. Bird. "Electron Beam Freeform Fabrication in the Space Environment." In 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-1154.
Full textTaminger, Karen M., Christopher S. Domack, Joseph N. Zalameda, Brian L. Taminger, Robert A. Hafley, and Eric R. Burke. "In-process thermal imaging of the electron beam freeform fabrication process." In SPIE Commercial + Scientific Sensing and Imaging, edited by Joseph N. Zalameda and Paolo Bison. SPIE, 2016. http://dx.doi.org/10.1117/12.2222439.
Full textMulani, Sameer, Jing Li, Pankaj Joshi, and Rakesh Kapania. "Optimization of Stiffened Electron Beam Freeform Fabrication (EBF3) panels using Response Surface Approaches." In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-1901.
Full textZalameda, Joseph N., Eric R. Burke, Robert A. Hafley, Karen M. Taminger, Christopher S. Domack, Amy Brewer, and Richard E. Martin. "Thermal imaging for assessment of electron-beam freeform fabrication (EBF3) additive manufacturing deposits." In SPIE Defense, Security, and Sensing, edited by Gregory R. Stockton and Fred P. Colbert. SPIE, 2013. http://dx.doi.org/10.1117/12.2018233.
Full textWang, Liang, Sergio D. Felicelli, Jacob Coleman, Rene Johnson, Karen M. B. Taminger, and Ratessiea L. Lett. "Microstructure and Mechanical Properties of Electron Beam Deposits of AISI 316L Stainless Steel." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62445.
Full textXu, Tao, Xiao Xie, and Litao Sun. "Fabrication of nanopores using electron beam." In 2013 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2013. http://dx.doi.org/10.1109/nems.2013.6559810.
Full textFan, Yinxue, Miao Yu, Shuyi Li, Zuobin Wang, and Zhengxun Song. "Fabrication of micropolarizers by electron beam lithography." In 2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE, 2016. http://dx.doi.org/10.1109/3m-nano.2016.7824986.
Full textGao, Fuhua, Yangsu Zeng, Shiwei Xie, Feng Gao, Jun Yao, Yongkang Guo, Jinglei Du, and Zheng Cui. "Fabrication of beam sampling grating with electron-beam direct writing." In Electronic Imaging 2002, edited by Stephen A. Benton, Sylvia H. Stevenson, and T. John Trout. SPIE, 2002. http://dx.doi.org/10.1117/12.469296.
Full textWest, Andrew A., and Robin W. Smith. "Electron beam lithographic fabrication of computer-generated holograms." In ECO4 (The Hague '91), edited by G. Michael Morris. SPIE, 1991. http://dx.doi.org/10.1117/12.47039.
Full textGritz, Michael A., Francisco J. Gonzalez, and Glenn D. Boreman. "Fabrication of infrared antennas using electron-beam lithography." In Micromachining and Microfabrication, edited by Eric G. Johnson. SPIE, 2003. http://dx.doi.org/10.1117/12.477851.
Full text