Journal articles on the topic 'Electron Beam Induced Etching (EBIE)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Electron Beam Induced Etching (EBIE).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lin, Kang-Yi, Christian Preischl, Christian Felix Hermanns, et al. "SiO2 etching and surface evolution using combined exposure to CF4/O2 remote plasma and electron beam." Journal of Vacuum Science & Technology A 40, no. 6 (2022): 063004. http://dx.doi.org/10.1116/6.0002038.
Full textLin, Kang-Yi, Christian Preischl, Christian Felix Hermanns, et al. "Electron beam-induced etching of SiO2, Si3N4, and poly-Si assisted by CF4/O2 remote plasma." Journal of Vacuum Science & Technology A 41, no. 1 (2023): 013004. http://dx.doi.org/10.1116/6.0002234.
Full textHatayama, Tomoaki, S. Takenami, Hiroshi Yano, Yukiharu Uraoka, and Takashi Fuyuki. "Properties of Thermally Etched 4H-SiC by Chlorine-Oxygen System." Materials Science Forum 556-557 (September 2007): 283–86. http://dx.doi.org/10.4028/www.scientific.net/msf.556-557.283.
Full textPreischl, Christian, Linh Hoang Le, Elif Bilgilisoy, Armin Gölzhäuser, and Hubertus Marbach. "Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing." Beilstein Journal of Nanotechnology 12 (April 7, 2021): 319–29. http://dx.doi.org/10.3762/bjnano.12.26.
Full textLu, Jinggang, George A. Rozgonyi, James Rand, and Ralf Jonczyk. "EBIC Study of Electrical Activity of Stacking Faults in Multicrystalline Sheet Silicon." Solid State Phenomena 108-109 (December 2005): 627–30. http://dx.doi.org/10.4028/www.scientific.net/ssp.108-109.627.
Full textYao, Yong Zhao, Yoshihiro Sugawara, Yukari Ishikawa, et al. "Dislocation Analysis in Highly Doped n-Type 4H-SiC by Using Electron Beam Induced Current and KOH+Na2O2 Etching." Materials Science Forum 679-680 (March 2011): 294–97. http://dx.doi.org/10.4028/www.scientific.net/msf.679-680.294.
Full textZhang, Ze Hong, Ying Gao, Arul Arjunan, et al. "CVD Growth and Characterization of 4H-SiC Epitaxial Film on (11-20) As-Cut Substrates." Materials Science Forum 483-485 (May 2005): 113–16. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.113.
Full textMartín, P., J. Jiménez, C. Frigeri, L. F. Sanz, and J. L. Weyher. "A study of the dislocations in Si-doped GaAs comparing diluted Sirtl light etching, electron-beam-induced current, and micro-Raman techniques." Journal of Materials Research 14, no. 5 (1999): 1732–43. http://dx.doi.org/10.1557/jmr.1999.0235.
Full textRykaczewski, Konrad, Owen J. Hildreth, Dhaval Kulkarni, et al. "Maskless and Resist-Free Rapid Prototyping of Three-Dimensional Structures Through Electron Beam Induced Deposition (EBID) of Carbon in Combination with Metal-Assisted Chemical Etching (MaCE) of Silicon." ACS Applied Materials & Interfaces 2, no. 4 (2010): 969–73. http://dx.doi.org/10.1021/am1000773.
Full textBanik, Avishek, and Justin Sambur. "Intra-Particle Materials Heterogeneity and Impact of Surface Structure on Spatial Charge Separation in a Single BiVO4 Particle for Photoelectrochemical Water-Splitting." ECS Meeting Abstracts MA2025-01, no. 39 (2025): 2056. https://doi.org/10.1149/ma2025-01392056mtgabs.
Full textMartin, Aiden A., Geoffrey McCredie, and Milos Toth. "Electron beam induced etching of carbon." Applied Physics Letters 107, no. 4 (2015): 041603. http://dx.doi.org/10.1063/1.4927593.
Full textMartin, Aiden A., and Milos Toth. "Cryogenic Electron Beam Induced Chemical Etching." ACS Applied Materials & Interfaces 6, no. 21 (2014): 18457–60. http://dx.doi.org/10.1021/am506163w.
Full textHari, Sangeetha, Willem F. van Dorp, Johannes J. L. Mulders, Piet H. F. Trompenaars, Pieter Kruit, and Cornelis W. Hagen. "Sidewall angle tuning in focused electron beam-induced processing." Beilstein Journal of Nanotechnology 15 (April 23, 2024): 447–56. http://dx.doi.org/10.3762/bjnano.15.40.
Full textThiele, Cornelius, Alexandre Felten, Tim J. Echtermeyer, et al. "Electron-beam-induced direct etching of graphene." Carbon 64 (November 2013): 84–91. http://dx.doi.org/10.1016/j.carbon.2013.07.038.
Full textRandolph, S. J., J. D. Fowlkes, and P. D. Rack. "Focused electron-beam-induced etching of silicon dioxide." Journal of Applied Physics 98, no. 3 (2005): 034902. http://dx.doi.org/10.1063/1.1991976.
Full textMATSUI, Shinji, Masakazu BABA, Heiji WATANABE, and Jun-ichi FUJITA. "Nanometer Etching Using Electron Beam Induced Surface Reactions." Hyomen Kagaku 16, no. 6 (1995): 353–59. http://dx.doi.org/10.1380/jsssj.16.353.
Full textRandolph, Steven, Milos Toth, Jared Cullen, Clive Chandler, and Charlene Lobo. "Kinetics of gas mediated electron beam induced etching." Applied Physics Letters 99, no. 21 (2011): 213103. http://dx.doi.org/10.1063/1.3662928.
Full textRandolph, S. J., J. D. Fowlkes, and P. D. Rack. "Focused, Nanoscale Electron-Beam-Induced Deposition and Etching." Critical Reviews in Solid State and Materials Sciences 31, no. 3 (2006): 55–89. http://dx.doi.org/10.1080/10408430600930438.
Full textMatsui, Shinji. "Electron beam induced selective etching and deposition technology." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 7, no. 5 (1989): 1182. http://dx.doi.org/10.1116/1.584570.
Full textMatsui, Shinji, Toshinori Ichihashi, Masakazu Baba, and Akinobu Satoh. "Electron beam induced selective etching and deposition technology." Superlattices and Microstructures 7, no. 4 (1990): 295–301. http://dx.doi.org/10.1016/0749-6036(90)90213-q.
Full textVanhove, N., P. Lievens, and W. Vandervorst. "Electron beam induced etching of silicon with SF6." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 28, no. 6 (2010): 1206–9. http://dx.doi.org/10.1116/1.3504594.
Full textElbadawi, Christopher, Mehran Kianinia, Avi Bendavid, and Charlene J. Lobo. "Charged Particle Induced Etching and Functionalization of Two-Dimensional Materials." ECS Journal of Solid State Science and Technology 11, no. 3 (2022): 035011. http://dx.doi.org/10.1149/2162-8777/ac5eb2.
Full textToth, Milos, Charlene Lobo, Vinzenz Friedli, Aleksandra Szkudlarek, and Ivo Utke. "Continuum models of focused electron beam induced processing." Beilstein Journal of Nanotechnology 6 (July 14, 2015): 1518–40. http://dx.doi.org/10.3762/bjnano.6.157.
Full textToth, Milos, Charlene J. Lobo, Gavin Hartigan, and W. Ralph Knowles. "Electron flux controlled switching between electron beam induced etching and deposition." Journal of Applied Physics 101, no. 5 (2007): 054309. http://dx.doi.org/10.1063/1.2437667.
Full textToth, M., R. Knowles, G. Hartigan, and C. Lobo. "Electron Flux Controlled Switching Between Electron Beam Induced Etching and Deposition." Microscopy and Microanalysis 12, S02 (2006): 168–69. http://dx.doi.org/10.1017/s1431927606069753.
Full textWatanabe, Heiji, and Shinji Matsui. "GaAs Dry Etching Using Electron Beam Induced Surface Reaction." Japanese Journal of Applied Physics 30, Part 1, No. 11B (1991): 3190–94. http://dx.doi.org/10.1143/jjap.30.3190.
Full textRoediger, P., G. Hochleitner, E. Bertagnolli, H. D. Wanzenboeck, and W. Buehler. "Focused electron beam induced etching of silicon using chlorine." Nanotechnology 21, no. 28 (2010): 285306. http://dx.doi.org/10.1088/0957-4484/21/28/285306.
Full textSchoenaker, F. J., R. Córdoba, R. Fernández-Pacheco, et al. "Focused electron beam induced etching of titanium with XeF2." Nanotechnology 22, no. 26 (2011): 265304. http://dx.doi.org/10.1088/0957-4484/22/26/265304.
Full textBret, T., B. Afra, R. Becker, et al. "Gas assisted focused electron beam induced etching of alumina." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27, no. 6 (2009): 2727. http://dx.doi.org/10.1116/1.3243208.
Full textAkita, K., Y. Sugimoto, and H. Kawanishi. "Electron-beam-induced maskless HCl pattern etching of GaAs." Semiconductor Science and Technology 6, no. 9 (1991): 934–36. http://dx.doi.org/10.1088/0268-1242/6/9/017.
Full textPerry, John M., Zachary D. Harms, and Stephen C. Jacobson. "3D Nanofluidic Channels Shaped by Electron-Beam-Induced Etching." Small 8, no. 10 (2012): 1521–26. http://dx.doi.org/10.1002/smll.201102240.
Full textWinkler, Dieter, Hans Zimmermann, Margot Mangerich, and Robert Trauner. "E-beam probe station with integrated tool for electron beam induced etching." Microelectronic Engineering 31, no. 1-4 (1996): 141–47. http://dx.doi.org/10.1016/0167-9317(95)00336-3.
Full textKohlmann-von Platen, K. T. "Electron-beam induced etching of resist with water vapor as the etching medium." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, no. 6 (1996): 4262. http://dx.doi.org/10.1116/1.588587.
Full textWang, D. "Lithography using electron beam induced etching of a carbon film." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, no. 5 (1995): 1984. http://dx.doi.org/10.1116/1.588119.
Full textChoi, Young R., Philip D. Rack, Bernhard Frost, and David C. Joy. "Effect of Electron Beam-Induced Deposition and Etching Under Bias." Scanning 29, no. 4 (2007): 171–76. http://dx.doi.org/10.1002/sca.20060.
Full textSidorov, Fedor, and Alexander Rogozhin. "A Model for Dry Electron Beam Etching of Resist." Polymers 16, no. 20 (2024): 2880. http://dx.doi.org/10.3390/polym16202880.
Full textLami, Sarah K., Gabriel Smith, Eric Cao, and J. Todd Hastings. "The radiation chemistry of focused electron-beam induced etching of copper in liquids." Nanoscale 11, no. 24 (2019): 11550–61. http://dx.doi.org/10.1039/c9nr01857c.
Full textLobo, Charlene J., Aiden Martin, Matthew R. Phillips, and Milos Toth. "Electron beam induced chemical dry etching and imaging in gaseous NH3environments." Nanotechnology 23, no. 37 (2012): 375302. http://dx.doi.org/10.1088/0957-4484/23/37/375302.
Full textYemini, M., B. Hadad, Y. Liebes, A. Goldner, and N. Ashkenasy. "The controlled fabrication of nanopores by focused electron-beam-induced etching." Nanotechnology 20, no. 24 (2009): 245302. http://dx.doi.org/10.1088/0957-4484/20/24/245302.
Full textBoehme, Lindsay, Matthew Bresin, Aurélien Botman, James Ranney, and J. Todd Hastings. "Focused electron beam induced etching of copper in sulfuric acid solutions." Nanotechnology 26, no. 49 (2015): 495301. http://dx.doi.org/10.1088/0957-4484/26/49/495301.
Full textFronzi, Marco, James Bishop, Aiden A. Martin, et al. "Role of knock-on in electron beam induced etching of diamond." Carbon 164 (August 2020): 51–58. http://dx.doi.org/10.1016/j.carbon.2020.03.039.
Full textMiyazoe, Hiroyuki, Ivo Utke, Johann Michler, and Kazuo Terashima. "Controlled focused electron beam-induced etching for the fabrication of sub-beam-size nanoholes." Applied Physics Letters 92, no. 4 (2008): 043124. http://dx.doi.org/10.1063/1.2839334.
Full textChu, Hongchen, Qianming An, Xianhui Ye, et al. "In Situ Growth, Etching, and Charging of Nanoscale Water Ice Under Fast Electron Irradiation in Environmental TEM." Nanomaterials 15, no. 10 (2025): 726. https://doi.org/10.3390/nano15100726.
Full textSzkudlarek, Aleksandra, Jan M. Michalik, Inés Serrano-Esparza, et al. "Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates." Beilstein Journal of Nanotechnology 15 (February 7, 2024): 190–98. http://dx.doi.org/10.3762/bjnano.15.18.
Full textGoler, Sarah, Vincenzo Piazza, Stefano Roddaro, Vittorio Pellegrini, Fabio Beltram, and Pasqualantonio Pingue. "Self-assembly and electron-beam-induced direct etching of suspended graphene nanostructures." Journal of Applied Physics 110, no. 6 (2011): 064308. http://dx.doi.org/10.1063/1.3633260.
Full textClausen, E. M. "Electron beam induced modification of GaAs surfaces for maskless thermal Cl2 etching." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 8, no. 6 (1990): 1830. http://dx.doi.org/10.1116/1.585168.
Full textMartin, Aiden A., Alan Bahm, James Bishop, Igor Aharonovich, and Milos Toth. "Formation of Dynamic Topographic Patterns During Electron Beam Induced Etching of Diamond." Microscopy and Microanalysis 23, S1 (2017): 2264–65. http://dx.doi.org/10.1017/s1431927617011989.
Full textFowlkes, J., DA Smith, MG Lassiter, and PD Rack. "Electron Beam Induced Deposition and Etching: Fundamentals, Challenges and Nanotechnology–based Applications." Microscopy and Microanalysis 15, S2 (2009): 318–19. http://dx.doi.org/10.1017/s1431927609099176.
Full textMartin, A. A., I. Aharonovich, and M. Toth. "Gas-Mediated Electron Beam Induced Etching - From Fundamental Physics to Device Fabrication." Microscopy and Microanalysis 20, S3 (2014): 364–65. http://dx.doi.org/10.1017/s1431927614003547.
Full textDergianlis, Vasilis, Martin Geller, Dennis Oing, Nicolas Wöhrl, and Axel Lorke. "Patterning of diamond with 10 nm resolution by electron-beam-induced etching." Nanotechnology 30, no. 36 (2019): 365302. http://dx.doi.org/10.1088/1361-6528/ab25fe.
Full text