To see the other types of publications on this topic, follow the link: Electron beam ion trap.

Journal articles on the topic 'Electron beam ion trap'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Electron beam ion trap.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Becker, Reinard, and Oliver Kester. "Electron beam ion source and electron beam ion trap (invited)." Review of Scientific Instruments 81, no. 2 (February 2010): 02A513. http://dx.doi.org/10.1063/1.3303820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marrs, Roscoe E., Peter Beiersdorfer, and Dieter Schneider. "The Electron‐Beam Ion Trap." Physics Today 47, no. 10 (October 1994): 27–34. http://dx.doi.org/10.1063/1.881419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marrs, R. E., P. Beiersdorfer, S. R. Elliott, D. A. Knapp, and Th Stoehlker. "The super electron beam ion trap." Physica Scripta T59 (January 1, 1995): 183–88. http://dx.doi.org/10.1088/0031-8949/1995/t59/023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Träbert, E. "Precise atomic lifetime measurements with stored ion beams and ion traps." Canadian Journal of Physics 80, no. 12 (December 1, 2002): 1481–501. http://dx.doi.org/10.1139/p02-123.

Full text
Abstract:
For many years, atomic lifetime measurements on multiply-charged ions have been done almost exclusively by beam-foil spectroscopy. For low ion charges, however, spin-changing "intercombination" transitions have a rate that renders them too slow for traditional fast-beam techniques. Here ion traps and fast-ion beams have been combined in the concept of heavy-ion storage rings. These devices have permitted not only an extension of intercombination lifetime measurements down to singly charged ions, but they also facilitated similar measurements on electric-dipole forbidden transitions. The electron-beam ion trap (EBIT) complements the storage-ring work for work on highly charged ions. Achievements, technical issues, and prospects are outlined. PACS Nos.: 32.70Cs, 32.30Jc, 34.50Fa
APA, Harvard, Vancouver, ISO, and other styles
5

Currell, Frederick John, Junji Asada, Koichi Ishii, Arimichi Minoh, Kenji Motohashi, Nobuyuki Nakamura, Kazou Nishizawa, et al. "A New Versatile Electron-Beam Ion Trap." Journal of the Physical Society of Japan 65, no. 10 (October 15, 1996): 3186–92. http://dx.doi.org/10.1143/jpsj.65.3186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ming-hai, Liu, Wang Shan-cai, and Hu Xi-wei. "Ions confinement in electron beam ion trap." Acta Physica Sinica (Overseas Edition) 5, no. 3 (March 1996): 176–84. http://dx.doi.org/10.1088/1004-423x/5/3/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nakajima, Takayuki, Tatsuhiko Kanehara, Yuki Yanaka, Junji Yatsurugi, and Nobuyuki Nakamura. "Ion extraction from a compact electron beam ion trap." Journal of Physics: Conference Series 635, no. 4 (September 7, 2015): 042007. http://dx.doi.org/10.1088/1742-6596/635/4/042007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lapierre, A. "Time-dependent potential functions to stretch the time distributions of ion pulses ejected from EBIST." Canadian Journal of Physics 95, no. 4 (April 2017): 361–69. http://dx.doi.org/10.1139/cjp-2016-0716.

Full text
Abstract:
Electron beam ion sources and traps (EBIST) produce and trap highly charged atomic ions with an electron beam of high current density. The ions are confined in the radial space-charge potential of the electron beam and a long square-shaped axial electrostatic potential well. An important field of application of EBIST is charge breeding of highly charged ions at radioactive ion beam facilities. There, highly charged radioactive isotopes are accelerated by particle accelerators for experiments in nuclear astrophysics and to study the structure of unstable nuclei. The width in time of the ion pulses ejected from EBIST can often contain too many ions for nuclear physics detection systems to efficiently detect all single radioactive isotopes or related events. Neglecting the influence of ion–ion collisions on the extraction rate, this publication derives, for different initial thermal energy distributions of the trapped ions, the time-dependent trap-opening functions to stretch the time distribution of ion pulses ejected from an EBIST trapping potential for the release of ions at a constant rate over an extended extraction period.
APA, Harvard, Vancouver, ISO, and other styles
9

Biela, W., A. Warczak, A. Mucha, and A. Malarz. "Charge State Evolution in Electron Beam Ion Trap." Acta Physica Polonica B Proceedings Supplement 13, no. 4 (2020): 975. http://dx.doi.org/10.5506/aphyspolbsupp.13.975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jonauskas, Valdas, Šarūnas Masys, Aušra Kynienė, and Gediminas Gaigalas. "Cascade emission in electron beam ion trap plasma." Journal of Quantitative Spectroscopy and Radiative Transfer 127 (September 2013): 64–69. http://dx.doi.org/10.1016/j.jqsrt.2013.04.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Heber, O., P. D. Witte, A. Diner, K. G. Bhushan, D. Strasser, Y. Toker, M. L. Rappaport, et al. "Electrostatic ion beam trap for electron collision studies." Review of Scientific Instruments 76, no. 1 (January 2005): 013104. http://dx.doi.org/10.1063/1.1832192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Watanabe, Hirofumi, Junji Asada, Frederick John Currell, Tsunemitsu Fukami, Takato Hirayama, Kenji Motohashi, Nobuyuki Nakamura, et al. "Characteristics of the Tokyo Electron-Beam Ion Trap." Journal of the Physical Society of Japan 66, no. 12 (December 15, 1997): 3795–800. http://dx.doi.org/10.1143/jpsj.66.3795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Trinczek, M., A. Werdich, V. Mironov, P. Guo, A. J. González Martínez, J. Braun, J. R. Crespo López-Urrutia, and J. Ullrich. "A laser ion source for an electron beam ion trap." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 251, no. 1 (September 2006): 289–96. http://dx.doi.org/10.1016/j.nimb.2006.06.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ullmann, Falk, Frank Grossmann, Vladimir P. Ovsyannikov, Jacques Gierak, Eric Bourhis, Jacques Ferré, Jean Pierre Jamet, Alexandra Mougin, and Günter Zschornack. "Production of noble gas ion beams in a focused ion beam machine using an electron beam ion trap." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, no. 6 (2007): 2162. http://dx.doi.org/10.1116/1.2799971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jonauskas, V., T. Pütterich, S. Kučas, Š. Masys, A. Kynienė, G. Gaigalas, R. Kisielius, L. Radžiūtė, P. Rynkun, and G. Merkelis. "Cascade emission in electron beam ion trap plasma of W25+ ion." Journal of Quantitative Spectroscopy and Radiative Transfer 160 (July 2015): 22–28. http://dx.doi.org/10.1016/j.jqsrt.2015.03.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

López-Urrutia, J. R. Crespo, P. Beiersdorfer, K. Widmann, and V. Decaux. "Visible spectrum of highly charged ions: The forbidden optical lines of Kr, Xe, and Ba ions in the Ar I to Kr I isoelectronic sequence." Canadian Journal of Physics 80, no. 12 (December 1, 2002): 1687–700. http://dx.doi.org/10.1139/p02-080.

Full text
Abstract:
We present experimental data on visible transitions in highly charged ions observed in the Lawrence Livermore National Laboratory (LLNL) electron beam ion traps, including results from lines within the ground-state configuration and the first excited configuration. Measurements of lines produced by Kr (q = 11+ to 22+), Xe (q = 18+ to 35+), and Ba (q = 28+ to 36+) ions, corresponding mainly to 3sl 3pm 3dn configurations, were carried out. The ionization stages were determined experimentally by sweeping the electron beam energy over the ionization threshold of each species. We propose possible identifications for the lines with the help of simple atomic structure calculations. However, most observed lines remained unidentified, demonstrating that the understanding of visible spectra from highly charged ions, even if obtained under nearly "ideal" experimental conditions, is still in its infancy. These spectral data may be useful for the diagnostics of magnetically confined plasmas and may set the stage for future measurements of radiative lifetimes. In our experiments, we used the emission from visible lines to image the intersection of the electron beam with a beam of neutral atoms injected into the trap at a right angle as well as the ion cloud in the trap. Under some conditions, the diameter of the ion cloud may be an order of magnitude larger than that of the electron beam. PACS Nos.: 32.30Jc, 39.30+w, 52.59Rz
APA, Harvard, Vancouver, ISO, and other styles
17

Beiersdorfer, P., E. Behar, K. R. Boyce, G. V. Brown, H. Chen, K. C. Gendreau, A. Graf, et al. "Overview of the Livermore electron beam ion trap project." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 205 (May 2003): 173–77. http://dx.doi.org/10.1016/s0168-583x(03)00941-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Schwarz, S., G. Bollen, J. R. Crespo López-Urrutia, J. Dilling, M. Johnson, O. Kester, M. Kostin, F. Marti, C. Wilson, and P. Zavodszky. "An electron beam ion trap for the NSCL reaccelerator." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266, no. 19-20 (October 2008): 4466–70. http://dx.doi.org/10.1016/j.nimb.2008.05.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Motohashi, Kenji, Akihiko Moriya, Hiroyuki Yamada, and Seiji Tsurubuchi. "Compact electron-beam ion trap using NdFeB permanent magnets." Review of Scientific Instruments 71, no. 2 (February 2000): 890–92. http://dx.doi.org/10.1063/1.1150323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Böhm, S., A. Enulescu, T. Fritio, I. Orban, S. Tashenov, and R. Schuch. "First results from the Stockholm Electron Beam Ion Trap." Journal of Physics: Conference Series 58 (March 1, 2007): 303–6. http://dx.doi.org/10.1088/1742-6596/58/1/067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Xikai, Zhu, Jiang Dikui, Guo Panlin, Sheng Shugang, Yan Heping, Gong Peirong, Wang Naxiu, et al. "Shanghai electron beam ion trap: design and current status." Journal of Physics: Conference Series 2 (January 1, 2004): 65–74. http://dx.doi.org/10.1088/1742-6596/2/1/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Schuch, R., S. Tashenov, I. Orban, M. Hobein, S. Mahmood, O. Kamalou, N. Akram, et al. "The new Stockholm Electron Beam Ion Trap (S-EBIT)." Journal of Instrumentation 5, no. 12 (December 9, 2010): C12018. http://dx.doi.org/10.1088/1748-0221/5/12/c12018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Träbert, E. "Atomic lifetime measurements employing an electron beam ion trap." Canadian Journal of Physics 86, no. 1 (January 1, 2008): 73–97. http://dx.doi.org/10.1139/p07-099.

Full text
Abstract:
Transition probabilities relate to atomic structure and dynamics in ways that are different from straightforward spectra. Besides being a tool for fundamental physics studies, the knowledge of transition probabilities is essential for applications in plasma physics and astrophysics. Techniques and procedures used for measuring the lifetimes of levels in highly charged ions by employing an electron beam ion trap are reviewed to illustrate the state of the art. Examples are drawn from experiments that involve observations in the visible, extreme-ultraviolet, and X-ray ranges, and cover atomic lifetimes in the femtosecond to second range.PACS Nos.: 32.70.Cs, 32.30.Jc, 32.30.Rj
APA, Harvard, Vancouver, ISO, and other styles
24

Lu, D., Y. Yang, J. Xiao, Y. Shen, Y. Fu, B. Wei, K. Yao, R. Hutton, and Y. Zou. "Upgrade of the electron beam ion trap in Shanghai." Review of Scientific Instruments 85, no. 9 (September 2014): 093301. http://dx.doi.org/10.1063/1.4894212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

L?pez-Urrutia, J. R. Crespo, A. Dorn, R. Moshammer, and J. Ullrich. "The Freiburg Electron Beam Ion Trap/Source Project FreEBIT." Physica Scripta T80, B (1999): 502. http://dx.doi.org/10.1238/physica.topical.080a00502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Schabinger, B., C. Biedermann, S. Gierke, G. Marx, R. Radtke, and L. Schweikhard. "First experiments with the Greifswald electron-beam ion trap." Physica Scripta T156 (September 1, 2013): 014099. http://dx.doi.org/10.1088/0031-8949/2013/t156/014099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Khodja, H., and J. P. Briand. "A warm electron beam ion trap: the micro-EBIT." Physica Scripta T71 (January 1, 1997): 113–16. http://dx.doi.org/10.1088/0031-8949/1997/t71/020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Nakamura, N., J. Asada, F. J. Currell, T. Fukami, T. Hirayama, K. Motohashi, T. Nagata, et al. "An overview of the Tokyo electron beam ion trap." Physica Scripta T73 (January 1, 1997): 362–64. http://dx.doi.org/10.1088/0031-8949/1997/t73/119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Watanabe, H., J. Asada, F. J. Currell, T. Fukami, T. Hirayama, K. Motohashi, N. Nakamura, et al. "Control system of the Tokyo electron beam ion trap." Physica Scripta T73 (January 1, 1997): 365–67. http://dx.doi.org/10.1088/0031-8949/1997/t73/120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Margolis, H. S., P. D. Groves, J. D. Silver, and M. A. Levine. "Laser spectroscopy using the Oxford electron beam ion trap." Hyperfine Interactions 99, no. 1 (December 1996): 169–74. http://dx.doi.org/10.1007/bf02274920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Utter, S. B., P. Beiersdorfer, and E. Träbert. "Electron-beam ion-trap spectra of tungsten in the EUV." Canadian Journal of Physics 80, no. 12 (December 1, 2002): 1503–15. http://dx.doi.org/10.1139/p02-132.

Full text
Abstract:
At the Livermore electron-beam ion-trap facility, extreme-ultraviolet spectra of tungsten have been recorded in the wavelength range 40–85 Å. The electron-beam energy was varied systematically to identify the individual spectra of Rb-like W37+ to Cu-like W45+. About 60 spectral features have been identified. PACS Nos.: 32.30Rj, 39.30+w, 31.50+w
APA, Harvard, Vancouver, ISO, and other styles
32

Shimizu, Hiroshi, Frederick J. Currell, Shunsuke Ohtani, Emma J. Sokell, Chikashi Yamada, Takato Hirayama, and Makoto Sakurai. "Characteristics of the beam line at the Tokyo electron beam ion trap." Review of Scientific Instruments 71, no. 2 (February 2000): 681–83. http://dx.doi.org/10.1063/1.1150259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lapierre, A. "Electron-beam ion source/trap charge breeders at rare-isotope beam facilities." Review of Scientific Instruments 90, no. 10 (October 1, 2019): 103312. http://dx.doi.org/10.1063/1.5127203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Penetrante, B. M., J. N. Bardsley, D. DeWitt, M. Clark, and D. Schneider. "Evolution of ion-charge-state distributions in an electron-beam ion trap." Physical Review A 43, no. 9 (May 1, 1991): 4861–72. http://dx.doi.org/10.1103/physreva.43.4861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kentsch, U., G. Zschornack, A. Schwan, and F. Ullmann. "Short time ion pulse extraction from the Dresden electron beam ion trap." Review of Scientific Instruments 81, no. 2 (February 2010): 02A507. http://dx.doi.org/10.1063/1.3271255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Penetrante, B. M., D. Schneider, R. E. Marrs, and J. N. Bardsley. "Modeling the ion‐source performance of an electron‐beam ion trap (invited)." Review of Scientific Instruments 63, no. 4 (April 1992): 2806–11. http://dx.doi.org/10.1063/1.1142812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kinugawa, T., F. J. Currell, and S. Ohtani. "Pulsed Evaporative Cooling of Ion Cloud in an Electron Beam Ion Trap." Physica Scripta T92, no. 1 (2001): 102–4. http://dx.doi.org/10.1238/physica.topical.092a00102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ullmann, F., F. Großmann, V. P. Ovsyannikov, J. Gierak, and G. Zschornack. "Production of a helium beam in a focused ion beam machine using an electron beam ion trap." Applied Physics Letters 90, no. 8 (February 19, 2007): 083112. http://dx.doi.org/10.1063/1.2454699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Utter, S. B., P. Beiersdorfer, J. R. Crespo López-Urrutia, and K. Widmann. "Position and size of the electron beam in the high-energy electron beam ion trap." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 428, no. 2-3 (June 1999): 276–83. http://dx.doi.org/10.1016/s0168-9002(99)00139-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Watanabe, Hirofumi, Nobuyuki Nakamura, Daiji Kato, Hiroyuki A. Sakaue, and Shunsuke Ohtani. "Lines from highly charged tungsten ions observed in the visible region between 340 and 400 nm." Canadian Journal of Physics 90, no. 5 (May 2012): 497–501. http://dx.doi.org/10.1139/p2012-045.

Full text
Abstract:
A spectroscopic study of highly charged tungsten ions was performed in the visible region from 340 to 400 nm with an electron beam ion trap (EBIT). The tungsten ions were produced by electron impacts in the EBIT with electrons with energies between 1 and 1.7 keV. Several lines attributed to the tungsten ions W26+ to W33+ were measured.
APA, Harvard, Vancouver, ISO, and other styles
41

Torrisi, L., D. Margarone, S. Gammino, and L. Andò. "Ion energy increase in laser-generated plasma expanding through axial magnetic field trap." Laser and Particle Beams 25, no. 3 (July 26, 2007): 453–64. http://dx.doi.org/10.1017/s0263034607000560.

Full text
Abstract:
Laser-generated plasma is obtained in high vacuum (10−7 mbar) by irradiation of metallic targets (Al, Cu, Ta) with laser beam with intensities of the order of 1010 W/cm2. An Nd:Yag laser operating at 1064 nm wavelength, 9 ns pulse width, and 500 mJ maximum pulse energy is used. Time of flight measurements of ion emission along the direction normal to the target surface were performed with an ion collector. Measurements with and without a 0.1 Tesla magnetic field, directed along the normal to the target surface, have been taken for different target-detector distances and for increasing laser pulse intensity. Results have demonstrated that the magnetic field configuration creates an electron trap in front of the target surface along the axial direction. Electric fields inside the trap induce ion acceleration; the presence of electron bundles not only focuses the ion beam but also increases its energy, mean charge state and current. The explanation of this phenomenon can be found in the electric field modification inside the non-equilibrium plasma because of an electron bunching that increases the number of electron-ion interactions. The magnetic field, in fact, modifies the electric field due to the charge separation between the clouds of fast electrons, many of which remain trapped in the magnetic hole, and slow ions, ejected from the ablated target; moreover it increases the number of electron-ion interactions producing higher charge states.
APA, Harvard, Vancouver, ISO, and other styles
42

NAKAMURA, Nobuyuki. "Plasma-Related Atomic Physics with an Electron Beam Ion Trap." Plasma and Fusion Research 8 (2013): 1101152. http://dx.doi.org/10.1585/pfr.8.1101152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ya-Feng, Liu, Yao Ke, Roger Hutton, and Zou Ya-Ming. "Charge State Evolution of Uranium in Electron Beam Ion Trap." Chinese Physics Letters 22, no. 8 (July 29, 2005): 1891–94. http://dx.doi.org/10.1088/0256-307x/22/8/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Träbert, E. "Spectroscopy of Argon Excited in an Electron Beam Ion Trap." Physica Scripta 72, no. 6 (January 1, 2005): C42—C50. http://dx.doi.org/10.1088/0031-8949/72/6/n05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Träbert, E., P. Beiersdorfer, G. V. Brown, A. J. Smith, S. B. Utter, M. F. Gu, and D. W. Savin. "Improved electron-beam ion-trap lifetime measurement of theNe8+ 1s2s3S1level." Physical Review A 60, no. 3 (September 1, 1999): 2034–38. http://dx.doi.org/10.1103/physreva.60.2034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Savin, D. W., P. Beiersdorfer, S. M. Kahn, B. R. Beck, G. V. Brown, M. F. Gu, D. A. Liedahl, and J. H. Scofield. "Simulating a Maxwellian plasma using an electron beam ion trap." Review of Scientific Instruments 71, no. 9 (September 2000): 3362–72. http://dx.doi.org/10.1063/1.1287045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zschomack, G., R. Heller, M. Kreller, S. Landgraf, F. Grossmann, U. Kentsch, V. P. Ovsyannikov, M. Schmidt, and F. Ullmann. "Dresden electron beam ion trap: Status report and next developments." Review of Scientific Instruments 77, no. 3 (March 2006): 03A904. http://dx.doi.org/10.1063/1.2164968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

L?pez-Urrutia, J. R. Crespo, B. Bapat, I. Draganic, A. Werdich, and J. Ullrich. "First results from the Freiburg Electron Beam Ion Trap FreEBIT." Physica Scripta T92, no. 1 (2001): 110–12. http://dx.doi.org/10.1238/physica.topical.092a00110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kuramoto, Hideharu, Tohru Kinugawa, Hirofumi Watanabe, Chikashi Yamada, Shunsuke Ohtani, Ichihiro Yamada, and Frederick John Currell. "Thomson scattering system at the Tokyo electron beam ion trap." Review of Scientific Instruments 73, no. 1 (January 2002): 42–46. http://dx.doi.org/10.1063/1.1427418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Gillaspy, J. D., Y. Aglitskiy, E. W. Bell, C. M. Brown, C. T. Chantler, R. D. Deslattes, U. Feldman, et al. "Overview of the electron beam ion trap program at NIST." Physica Scripta T59 (January 1, 1995): 392–95. http://dx.doi.org/10.1088/0031-8949/1995/t59/053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography