Academic literature on the topic 'Electron Cyclotron Resonance Plasmas'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electron Cyclotron Resonance Plasmas.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electron Cyclotron Resonance Plasmas"

1

Girard, A., D. Hitz, G. Melin, and K. Serebrennikov. "Electron cyclotron resonance plasmas and electron cyclotron resonance ion sources: Physics and technology (invited)." Review of Scientific Instruments 75, no. 5 (2004): 1381–88. http://dx.doi.org/10.1063/1.1675926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shufflebotham, P. K., and D. J. Thomson. "Stability and spatial characterization of electron cyclotron resonance processing plasmas." Canadian Journal of Physics 69, no. 3-4 (1991): 195–201. http://dx.doi.org/10.1139/p91-032.

Full text
Abstract:
This paper presents preliminary measurements of the spatial variation of the plasma density, electron temperature, plasma potential, and floating voltage within a divergent magnetic field electron cyclotron resonance (ECR) plasma processing reactor. The measurements are performed using an orbital-motion-limited cylindrical Langmuir probe designed specifically for use in these plasmas. A brief discussion of the stability and uniformity of divergent field plasmas in general, and qualitative techniques for the diagnosis of these properties, is also given. It was found that these plasmas generally
APA, Harvard, Vancouver, ISO, and other styles
3

Girard, A., C. Pernot, G. Melin, and C. Lécot. "Modeling of electron-cyclotron-resonance-heated plasmas." Physical Review E 62, no. 1 (2000): 1182–89. http://dx.doi.org/10.1103/physreve.62.1182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Outten, C. A., J. C. Barbour, and W. R. Wampler. "Characterization of electron cyclotron resonance hydrogen plasmas." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 9, no. 3 (1991): 717–21. http://dx.doi.org/10.1116/1.577350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

San Andrés, E., A. Del Prado, A. J. Blázquez, I. Mártil, and G. González-Díaz. "Procesos de oxidación de Si mediante plasma de resonancia ciclotrónica de electrones." Boletín de la Sociedad Española de Cerámica y Vidrio 43, no. 2 (2004): 379–82. http://dx.doi.org/10.3989/cyv.2004.v43.i2.546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hansen, S. K., S. K. Nielsen, J. Stober, et al. "Parametric Decay Instabilities during Electron Cyclotron Resonance Heating of Fusion Plasmas, Problems and Possibilities." EPJ Web of Conferences 277 (2023): 01002. http://dx.doi.org/10.1051/epjconf/202327701002.

Full text
Abstract:
We review parametric decay instabilities (PDIs) expected in connection with electron cyclotron resonance heating (ECRH) of magnetically confined fusion plasmas, with a specific focus on conditions relevant for the ITER tokamak. PDIs involving upper hybrid (UH) waves are likely to occur in O-mode ECRH scenarios at ITER if electron density profiles allowing trapping of UH waves near the ECRH frequency are present. Such PDIs may occur near the plasma center in ITER full-field scenarios heated by 170 GHz O-mode ECRH and on the high-field side of half-field ITER plasmas heated by 110 GHz or 104 GHz
APA, Harvard, Vancouver, ISO, and other styles
7

Pu, Yi-Kang, Zhi-Gang Guo, Zheng-De Kang, et al. "Comparative characterization of high-density plasma reactors using emission spectroscopy from VUV to NIR." Pure and Applied Chemistry 74, no. 3 (2002): 459–64. http://dx.doi.org/10.1351/pac200274030459.

Full text
Abstract:
Emission spectroscopy is used to investigate the effect of inert gas mixing in nitrogen plasmas generated in inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) plasma sources. Vacuum ultraviolet (VUV) emission of resonance lines is used to determine concentration of atomic nitrogen while electron temperature is obtained from optical emission spectra. It is found that electron temperature can be either raised or reduced effectively by mixing helium or argon in a nitrogen discharge. Electron-electron collisions and superelastic collisions involving metastable species are key
APA, Harvard, Vancouver, ISO, and other styles
8

Castagna, T. J., J. L. Shohet, D. D. Denton, and N. Hershkowitz. "X rays in electron‐cyclotron‐resonance processing plasmas." Applied Physics Letters 60, no. 23 (1992): 2856–58. http://dx.doi.org/10.1063/1.106846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goeckner, M. J., J. A. Meyer, G. ‐H Kim, et al. "Role of contaminants in electron cyclotron resonance plasmas." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11, no. 5 (1993): 2543–52. http://dx.doi.org/10.1116/1.578605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Racz, Richárd, Sándor Biri, and József Palinkas. "Visible Light Emission of Electron Cyclotron Resonance Plasmas." IEEE Transactions on Plasma Science 39, no. 11 (2011): 2462–63. http://dx.doi.org/10.1109/tps.2011.2150244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Electron Cyclotron Resonance Plasmas"

1

Pioch, Romain. "Ion dynamics in the magnetic nozzle of an Electron Cyclotron Resonance Thruster." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX064.

Full text
Abstract:
Au cours des dernières décennies, les moyens de propulsion des satellites ont évolué et la propulsion électrique s’est imposée face à la propulsion chimique classiquement utilisée. Les propulseurs électriques produisent, accélèrent et éjectent un gaz ionisé, appelé plasma, pour générer une force de poussée. Le propulseur ECRA est un concept de propulseur électrique développé à l’ONERA qui bénéficie d’un design simple et innovant. Le plasma est accéléré dans un champ magnétique divergent appelé tuyère magnétique. L’objectif de cette thèse est de comprendre les phénomènes régissant l’accélératio
APA, Harvard, Vancouver, ISO, and other styles
2

Peterschmitt, Simon. "Development of a Stable and Efficient Electron Cyclotron Resonance Thruster with Magnetic Nozzle." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX053.

Full text
Abstract:
Les propulseurs plasmas sont le sujet d’un intérêt grandissant pour équiper de petits satellites. Des miniaturisations de technologies matures ont été proposées ainsi que des concepts innovants, tels le propulseur à résonance cyclotron électronique muni d’une tuyère magnétique (ECRT). Ce propulseur pourrait réaliser une rupture technologique car il est sans grilles, sans neutraliseur et n’a besoin que d’un seul générateur. Le présent travail consiste à développer un ECRT accompagné du dispositif expérimental nécessaire, capable de démontrer avec précision une grande efficacité durant un foncti
APA, Harvard, Vancouver, ISO, and other styles
3

Rashid, Riyaz. "Low temperature electron cyclotron resonance plasma deposition of silicon dioxide." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Majeri, Nassim. "Production de rayons X par plasma ECR." Thesis, Orléans, 2009. http://www.theses.fr/2009ORLE2077/document.

Full text
Abstract:
Durant cette thèse nous avons caractérisé et amélioré une nouvelle source de rayons X avec unplasma ECR (résonance cyclotronique électronique) permettant de générer des électronsénergétiques de 10 à 120 keV, qui vont ensuite produire le rayonnement X par freinage(bremsstrahlung). Les améliorations de l’installation ont permis d’obtenir une source stable, pouvantfonctionner une journée entière de travail (huit heures) sans arrêt. Dans la première partie de l’étudeexpérimentale on a étudié et déterminé les paramètres optimaux de la source : la pression, lapuissance micro-onde et la configuration
APA, Harvard, Vancouver, ISO, and other styles
5

Kroely, Laurent. "Process and material challenges in the high rate deposition of microcrystalline silicon thin films and solar cells by Matrix Distributed Electron Cyclotron Resonance plasma." Phd thesis, Ecole Polytechnique X, 2010. http://pastel.archives-ouvertes.fr/pastel-00550241.

Full text
Abstract:
High deposition rates on large areas are industrial needs for mass production of microcrystalline silicon (μc-Si:H) solar cells. This doctoral work aims at exploring the usefulness of Matrix Distributed Electron Cyclotron Resonance (MDECR) plasmas to process the intrinsic layer of μc-Si:H p-i-n solar cells at high rates. With the high dissociation of silane achieved in MDECR plasmas, deposition rates as high as 6nm/s and 2.8nm/s have been demonstrated in our lab for amorphous and microcrystalline silicon respectively, without hydrogen dilution. This technique is also promising because it can b
APA, Harvard, Vancouver, ISO, and other styles
6

GAUDIN, CHRISTELLE. "Emission de rayons x dans un plasma ecr (electron cyclotron resonance) en vue d'applications medicales." Toulouse 3, 1999. http://www.theses.fr/1999TOU30089.

Full text
Abstract:
Nous avons developpe et etudie une nouvelle source de rayons x (dans la gamme 10-100 kev) en utilisant un plasma a la resonance cyclotronique des electrons. Le dispositif experimental a ete concu et ameliore afin d'obtenir une source a la fois compacte, stable et plus intense. Pour etudier le transfert d'energie de l'onde incidente aux electrons, nous avons d'abord calcule numeriquement la trajectoire des particules dans un champ magnetique homogene et obtenu la dependance de l'energie maximale de l'electron en fonction du champ electrique de l'onde. De plus, nous avons considere un processus
APA, Harvard, Vancouver, ISO, and other styles
7

Sakildien, Muneer. "Plasma characterisation of an electron cyclotron resonance ion source by means of x-ray spectroscopy." Thesis, University of the Western Cape, 2012. http://hdl.handle.net/11394/5212.

Full text
Abstract:
>Magister Scientiae - MSc<br>The ultimate aim of any multiply-charged ion source, like the Electron Cyclotron Resonance Ion Source, ECRIS, is the production of multiply-charged ions, in sufficiently large quantities. These multiplycharged ions, in the case of the ECRIS, are created by a step-by-step ionisation process, whereby neutral atoms are ionised by energetic electrons. The goal of this thesis was to gain an understanding of the relative importance of various ECRIS parameters on the production of these energetic electrons. This was done by measuring the bremsstrahlung continuum emitted b
APA, Harvard, Vancouver, ISO, and other styles
8

Jaju, Vishwas. "Device quality low temperature gate oxide growth using electron cyclotron resonance plasma oxidation of silicon." [Ames, Iowa : Iowa State University], 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zaïm-Bilheux, Hassina. "Design and initial comparative evaluation studies of conventional "surface" and new concept "volume"-type, all permanent magnet electron cyclotron resonance (ECR) ion sources." Versailles-St Quentin en Yvelines, 2003. http://www.theses.fr/2003VERS0008.

Full text
Abstract:
Les sources d'ions à "Résonance cyclotronique d'électrons"(RCE)constituent, à l'heure actuelle, le meilleur choix parmi les sources existantes en ce qui concerne la production des faisceaux continus d'ions positifs hautement chargés. Ces sources produisent des rapports charge-sur-masse très élevés (jusqu'à 0,35 pour l'uranium) et des intensités par charge du [microampère] au mA, ce qui fait leur succès auprès des accélérateurs d'ions lourds à haute énergie. Depuis la naissance du concept dans les années 1970, leurs performances ont régulièrement progressé (amélioration du confinement du plasma
APA, Harvard, Vancouver, ISO, and other styles
10

パスクワ, ロメーロ カミール フェイス, and Camille Faith Pascua Romero. "Development of an electron cyclotron resonance plasma source with an internal antenna for carbon film deposition." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13071665/?lang=0, 2018. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13071665/?lang=0.

Full text
Abstract:
An electron cyclotron resonance (ECR) plasma source which couples microwave to the plasma using an internal antenna was developed. The use of internal antenna provides a "windowless" power coupling method that can eliminate the issues of contamination which require frequent source maintenance. Antenna structure, magnetic configuration and plasma parameters were modified for carbon film deposition by chemical sputtering. The ECR source generated low-plasma-potential (10 V), high-plasma-density (10^16 m^-3) discharges at low gas pressures (10^-1 Pa) and low input power (100 W). The antenna reali
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Electron Cyclotron Resonance Plasmas"

1

Guest, Gareth. Electron cyclotron heating of plasmas. Wiley-VCH, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hansen, Flemming Ramskov. Electron cyclotron resonance heating of a high-density plasma. Riso National Laboratory, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

John, Lohr, and World Scientific (Firm), eds. Proceedings of the Fifteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating: Yosemite National Park, California, USA, 10-13 March 2008. World Scientific, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

John, Lohr, and World Scientific (Firm), eds. Proceedings of the Fifteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating: Yosemite National Park, California, USA, 10-13 March 2008. World Scientific, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wākushoppu Taka Ion Seiseiyō Kōkōritsu Kogata ECR Ion-gen (1999 KEK). Wākushoppu Taka ion seiseiyō kōkōritsu kogata ECR ion-gen: Proceedings of the Workshop on the Compact ECR Ion Source for Highly Charged Ions with High Efficiency, November 29-30, 1999, KEK, Tanashi, Japan. High Energy Accelerator Research Organization (KEK), 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, Danny. Dry passivation studies of GaAs(110) surfaces by gallium oxide thin films deposited by electron cyclotron resonance plasma reactive molecular beam epitaxy for optoelectronic device applications. National Library of Canada, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Girka, Volodymyr, Igor Girka, and Manfred Thumm. Surface Electron Cyclotron Waves in Plasmas. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17115-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hellblom, Goran. Negative Hydrogen Ions From A Mirror Electron Cyclotron Resonance Source. Studsvik Energiteknik AB, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

International, Workshop on E. C. R. Ion Sources (16th 2004 Berkeley California). Electron cyclotron resonance sources: 16th International Workshop on ECR Ion Sources ECRIS'04, Berkeley, California, 26-30 September 2004. American Institute of Physics, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Topical, Conference on Radio Frequency Power in Plasmas (17th 2007 Clearwater Florida). Radio frequency power in plasmas: 17th Topical Conference on Radio Frequency Power in Plasmas : Clearwater, Florida, 7-9 May 2007. American Institute of Physics, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Electron Cyclotron Resonance Plasmas"

1

Joseph, J., Y. Z. Hu, and E. A. Irene. "Kinetics of Oxidation of Silicon by Electron Cyclotron Resonance Plasmas." In The Physics and Chemistry of SiO2 and the Si-SiO2 Interface 2. Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1588-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kaganovich, I., M. Misina, A. Bogaerts, and R. Gijbels. "Investigation of the Electron Distribution Functions in Low Pressure Electron Cyclotron Resonance Discharges." In Advanced Technologies Based on Wave and Beam Generated Plasmas. Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-0633-9_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pankove, J., V. Hornback, S. Sritharan, et al. "Electron-Cyclotron-Resonance Plasma Deposition of Carbon onto Silicon." In Springer Proceedings in Physics. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75048-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Burke, Rudolf R. "Applications of Distributed Electron Cyclotron Resonance (DECR) to Plasma-Surface Interaction." In Microwave Discharges. Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1130-8_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Masumoto, Hiroshi, Takashi Goto, Yoshitomo Honda, Osamu Suzuki, and Keiichi Sasaki. "Preparation of Titania Films on Implant Titanium by Electron Cyclotron Resonance Plasma Oxidation." In Key Engineering Materials. Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Masumoto, Hiroshi, Takashi Goto, Yusuke Orii, Yoshitomo Honda, Osamu Suzuki, and Keiichi Sasaki. "Osteoconductivity of Titania Films Prepared by Electron-Cyclotron-Resonance Plasma Oxidation of Implant Titanium." In Bioceramics 20. Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-457-x.717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Agius, B., M. C. Hugon, N. Jiang, F. Plais, D. Pribat, and T. Carriere. "Comparison of SiO2 Thin Film Properties Deposited by Distributed Electron Cyclotron Resonance Plasma Using Two Different Oxidant Gases: N2O or O2." In The Physics and Chemistry of SiO2 and the Si-SiO2 Interface 2. Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1588-7_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shirkov, Grigori D., and Günter Zschornack. "Electron-Cyclotron Resonance Ion Sources." In Electron Impact Ion Sources for Charged Heavy Ions. Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-09896-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Girka, Volodymyr, Igor Girka, and Manfred Thumm. "Surface Electron Cyclotron TM-Mode Waves." In Surface Electron Cyclotron Waves in Plasmas. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17115-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Girka, Volodymyr, Igor Girka, and Manfred Thumm. "Surface Electron Cyclotron X-Mode Waves." In Surface Electron Cyclotron Waves in Plasmas. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17115-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electron Cyclotron Resonance Plasmas"

1

Niu, X., H. Liu, B. X. Zhang, and D. R. Yu. "The influence of operating parameters on the dynamic characteristics of minimized electron cyclotron resonance ion thruster for space gravitational wave detection." In 2024 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10626950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, L., and X. M. Zhu. "A novel concept, “excited-state-system”: applicable to determining the active-particle number density in nitrogen, oxygen and carbon tetrafluoride electron cyclotron resonance plasma." In 2024 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10627130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chang, Xiangyun, Yong Jiang, Jay L. Hirshfield, Mikhail Fedurin, Mark Palmer, and Warren Stern. "Electron Cyclotron Resonance Accelerator eCRA." In 2022 IEEE Advanced Accelerator Concepts Workshop (AAC). IEEE, 2022. https://doi.org/10.1109/aac55212.2022.10822888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gottscho, Richard A., Toshiki Nakano, Nader Sadeghi, Dennis J. Trevor, and Rod W. Boswell. "Ion velocity distributions in electron cyclotron resonance plasmas." In Process Module Metrology, Control and Clustering, edited by Cecil J. Davis, Irving P. Herman, and Terry R. Turner. SPIE, 1992. http://dx.doi.org/10.1117/12.56650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Michel, G., P. Brand, H. Braune, et al. "Electron Cyclotron Resonance Heating for W7-X." In RADIO FREQUENCY POWER IN PLASMAS: Proceedings of the 18th Topical Conference. AIP, 2009. http://dx.doi.org/10.1063/1.3273813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sathyanarayana, K. "Electron Cyclotron Resonance heating system on Tokamak Aditya." In RADIO FREQUENCY POWER IN PLASMAS:14th Topical Conference. AIP, 2001. http://dx.doi.org/10.1063/1.1424193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jin, Shu, Richard Molnar, Donald Y. Jong, and Theodore D. Moustakas. "Characterization of electron cyclotron resonance plasmas for diamond deposition." In San Diego '92, edited by Albert Feldman and Sandor Holly. SPIE, 1992. http://dx.doi.org/10.1117/12.130760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ram, Abhay K., and Abraham Bers. "Electron Cyclotron Resonance Heating of Plasmas in Spherical Tori." In Proceedings of the 12th Joint Workshop. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705082_0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mascali, D., S. Gammino, L. Celona, G. Ciavola, Cynthia K. Phillips, and James R. Wilson. "RF Heating in Electron Cyclotron Resonance Ion Sources." In RADIO FREQUENCY POWER IN PLASMAS: Proceedings of the 19th Topical Conference. AIP, 2011. http://dx.doi.org/10.1063/1.3665026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jiang, Y., X. Chang, J. L. Hirshfield, M. Fedurin, M. Palmer, and W. Stern. "Compact Electron Cyclotron Resonance Accelerator." In 2023 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2023. http://dx.doi.org/10.1109/icops45740.2023.10480943.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Electron Cyclotron Resonance Plasmas"

1

Tsai, C. C., L. A. Berry, S. M. Gorbatkin, et al. Potential applications of an electron cyclotron resonance multicusp plasma source. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/7097370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vernon, R. J. High-power microwave transmission systems for electron-cyclotron-resonance plasma heating. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/5182806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vernon, R. High-power microwave transmission systems for electron cyclotron resonance plasma heating. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/6647695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Berry, L. A., S. M. Gorbatkin, and R. L. Rhoades. Cu deposition using a permanent magnet electron cyclotron resonance microwave plasma source. Office of Scientific and Technical Information (OSTI), 1994. http://dx.doi.org/10.2172/10178692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hu, Y. Z., J. Joseph, and E. A. Irene. An In-Situ Spectroscopic Ellipsometry Study of the Electron Cyclotron Resonance Plasma Oxidation of Silicon and Interfacial. Defense Technical Information Center, 1991. http://dx.doi.org/10.21236/ada242833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fruchtman, A., K. Riedel, H. Weitzner, and D. B. Batchelor. Strong cyclotron damping of electron cyclotron waves in nearly parallel stratified plasmas. Office of Scientific and Technical Information (OSTI), 1986. http://dx.doi.org/10.2172/7242112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pardo, R., and Physics. Optimization of electron-cyclotron-resonance charge-breeder ions : Final CRADA Report. Office of Scientific and Technical Information (OSTI), 2009. http://dx.doi.org/10.2172/968489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Felch, K., C. Hess, H. Huey, et al. Progress in producing megawatt gyrotrons for ECR (electron cyclotron resonance) heating. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/6570521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Choe, W., M. Ono, and C. S. Chang. Temperature anisotropy in a cyclotron resonance heated tokamak plasma and the generation of poloidal electric field. Office of Scientific and Technical Information (OSTI), 1994. http://dx.doi.org/10.2172/10196164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ren, Chuang. A study of tearing modes via electron cyclotron emission from tokamak plasmas. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/677101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!