Academic literature on the topic 'Electron donor-acceptor complexes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electron donor-acceptor complexes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electron donor-acceptor complexes"

1

Hurst, DT, UB Thakrar, CHJ Wells, and J. Wyer. "An N.M.R. Study of Electron Donor-Electron Acceptor Interaction Between Aromatic Hydrocarbons and Diazines." Australian Journal of Chemistry 42, no. 8 (1989): 1313. http://dx.doi.org/10.1071/ch9891313.

Full text
Abstract:
Equilibrium constants have been measured by n.m.r , spectroscopy for the electron donor- electron acceptor interaction between a number of aromatic hydrocarbons and diazines . The values obtained have shown that the interaction is weak, and that the aromatic hydrocarbon acts as the electron donor and the diazine as the electron acceptor in the systems studied. Chemical-shift data have provided evidence for the relative positioning of the donor and acceptor components within the various complexes. The effect of temperature on the equilibrium constant for complex formation between (1H6)benzene and pyrazine has shown that the enthalpy of formation is close to zero.
APA, Harvard, Vancouver, ISO, and other styles
2

Rubtsov, I. V., and K. Yoshihara. "Vibrational Coherence in Electron Donor−Acceptor Complexes." Journal of Physical Chemistry A 103, no. 49 (December 1999): 10202–12. http://dx.doi.org/10.1021/jp991998r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Postigo, Al. "Electron Donor-Acceptor Complexes in Perfluoroalkylation Reactions." European Journal of Organic Chemistry 2018, no. 46 (September 25, 2018): 6391–404. http://dx.doi.org/10.1002/ejoc.201801079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhong, Cheng, Jinwei Zhou, and Charles L. Braun. "Electron-transfer absorption of sterically bulky donor–acceptor pairs: electron donor–acceptor complexes or random pairs?" Journal of Photochemistry and Photobiology A: Chemistry 161, no. 1 (November 2003): 1–9. http://dx.doi.org/10.1016/s1010-6030(03)00233-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sakuda, Eri. "(Invited) Synthesis and Photophysical Properties of Linear Coordination Type Complexes Having Electron Donor/Acceptor Moieties." ECS Meeting Abstracts MA2024-01, no. 13 (August 9, 2024): 1064. http://dx.doi.org/10.1149/ma2024-01131064mtgabs.

Full text
Abstract:
The energy and electron transfer processes in the organic / inorganic D–A connection system can be freely manipulated by vibronic interaction.Until now, we synthesized the complexes having acceptor moiety was introduced as a substituent to induce electrostatic/coulomb interaction, but from now on, donor and acceptor moieties should be introduced intramolecular or intermolecular in order to induced a donor-acceptor interaction and express dynamic exciton. Then, we synthesized a platinum complex with phenothiazine as a donor and an organoboron compound as an acceptor. Unfortunately, the charge separation state could not be confirmed, but it is thought that it will be possible by changing the central platinum complex site. Therefore, we investigated the synthesis of a linear complex with a new donor-acceptor site. Figure 1
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Zhonglie, Yutong Liu, Kun Cao, Xiaobin Zhang, Hezhong Jiang, and Jiahong Li. "Synthetic reactions driven by electron-donor–acceptor (EDA) complexes." Beilstein Journal of Organic Chemistry 17 (April 6, 2021): 771–99. http://dx.doi.org/10.3762/bjoc.17.67.

Full text
Abstract:
The reversible, weak ground-state aggregate formed by dipole–dipole interactions between an electron donor and an electron acceptor is referred to as an electron-donor–acceptor (EDA) complex. Generally, upon light irradiation, the EDA complex turns into the excited state, causing an electron transfer to give radicals and to initiate subsequent reactions. Besides light as an external energy source, reactions involving the participation of EDA complexes are mild, obviating transition metal catalysts or photosensitizers in the majority of cases and are in line with the theme of green chemistry. This review discusses the synthetic reactions concerned with EDA complexes as well as the mechanisms that have been shown over the past five years.
APA, Harvard, Vancouver, ISO, and other styles
7

Dobrowolski, Jan Cz, and Michał H. Jamróz. "Infrared evidence for CO2 electron donor—acceptor complexes." Journal of Molecular Structure 275 (December 1992): 211–19. http://dx.doi.org/10.1016/0022-2860(92)80196-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schreiber, Michael, Barbara Kirchner, and Christofer Fuchs. "Dynamics of electron transfer in donor-acceptor complexes." Journal of Luminescence 66-67 (December 1995): 506–10. http://dx.doi.org/10.1016/0022-2313(95)00199-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Singh, Joaquín O., Jorge D. Anunziata та Juana J. Silber. "n–π Electron donor–acceptor complexes. II. Aliphatic amines with dinitrobenzenes". Canadian Journal of Chemistry 63, № 4 (1 квітня 1985): 903–7. http://dx.doi.org/10.1139/v85-150.

Full text
Abstract:
The interaction of several aliphatic amines as n-donors and dinitrobenzenes (DNB) as π-acceptors has been studied in n-hexane. The formation of electron donor – acceptor (EDA) complexes is proposed to explain the spectroscopic behaviour of the mixtures. The stability constants (Ks) for these complexes have been calculated by an iterative procedure. For a given acceptor, the donor strength of RNH2 > R2NH > R3N was found. This order is explained by considering the role that steric effect may play in the EDA complex formation. On the other hand, the fact that for a given donor Ks follows the order 1,2-DNB > 1,3-DNB > 1,4-DNB, and that 1,2-DNB reacts with primary amines, led to the proposal of orientational complexes. These EDA complexes may be considered intermediates in aromatic nucleophilic substitution reactions.
APA, Harvard, Vancouver, ISO, and other styles
10

Opitz, Andreas, Giuliano Duva, Marius Gebhardt, Hongwon Kim, Eduard Meister, Tino Meisel, Paul Beyer, et al. "Thin films of electron donor–acceptor complexes: characterisation of mixed-crystalline phases and implications for electrical doping." Materials Advances 3, no. 2 (2022): 1017–34. http://dx.doi.org/10.1039/d1ma00578b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Electron donor-acceptor complexes"

1

Cubberley, Mark Stull. "Investigation of solvent effects in aromatic electron donor-acceptor interactions /." Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

LEE, CHERYLYN. "PHOTO-INDUCED RADICAL COPOLYMERIZATIONS OF ELECTRON-RICH OLEFINS WITH ELECTRON-POOR OLEFINS." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184135.

Full text
Abstract:
This study is a systematic investigation of the parameters and conditions necessary for photo-induced radical copolymerizations of donor olefins with acceptor olefins in the absence of an initiator. Very few cases have been previously reported and no mechanistic details of the initiation have been proposed in the literature. Our results show that the photoinitiation depends on the relative donor and acceptor strengths of the monomers, as well as the solvent. The highest occupied molecular orbital (HOMO) of the donor and the lowest unoccupied molecular orbital (LUMO) of the acceptor must be at the appropriate energy levels in order to produce a radical initiating species upon photoexcitation of the electron donor-acceptor (EDA) complex. If the donor-acceptor interaction is too weak, no copolymerization occurs. The excited complex (contact ion pair) presumably decays back to the ground state faster than producing an initiating species. If the donor-acceptor interaction is too strong, the excited complex dissociates to the free ions which could initiate ionic homopolymerization rather than radical copolymerization. The solvent may also determine the course of the reaction. In two cases, copolymerizations, which could be photo-induced in 1,2-dichloroethane, could not be photo-induced in acetonitrile. Dissociation of the excited complex (contact ion pair) is favored in polar solvents, such as acetonitrile, which are able to stabilize the ion radicals. This initiation method produces high molecular weight copolymers that may be cast into transparent films.
APA, Harvard, Vancouver, ISO, and other styles
3

Caulfield, Jason M. "Magnetic quantum oscillations in organic metals based on the molecule bis(ethylenedithio)tetrathiafulvalene." Thesis, University of Oxford, 1994. http://ora.ox.ac.uk/objects/uuid:5fbf2599-96d8-4eac-b882-ac74213ac3a5.

Full text
Abstract:
ET charge transfer salts (where ET is <en>bis(ethylenedithio)- tetrathiafulvalene) have relatively simple quasi two-dimensional Fermi surface topologies, making them ideal for the study of the relationship between bandstructure and properties such as superconductivity. Experimental studies of the Fermi surface areas and associated effective masses have been carried out using the Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) effects. By comparing the experimental results to theoretical bandstructure calculations the strength of many body interactions has been estimated. High pressure magnetotransport experiments have been carried out on the superconductor κ-ET<sub>2</sub>Cu(NCS)<sub>2</sub>. The observation of SdH and magnetic breakdown oscillations has allowed the pressure dependences of the Fermi surface topology and effective masses to be deduced and compared with simultaneous measurements of the superconducting critical temperature. The data strongly suggest that the enhancement of the effective mass and the superconducting behaviour are directly connected. The results are compared with several current theories of superconductivity. The dHvA effect has been used to probe the superconducting mixed state of κ-ET<sub>2</sub>Cu(NCS)<sub>2</sub>. A recent model of the superconducting mixed state is applied to the experimental data in an attempt to determine the value and symmetry of the superconducting energy gap. SdH measurements up to 30 T have been used to study spin densitywave formation in α-ET<sub>2</sub>KHg(SCN)<sub>4</sub>, and the reasons why a very slight increase of the unit cell volume (i.e. replacing the K in α-ET<sub>2</sub>KHg(SCN)<sub>4</sub> by NH<sub>4</sub>) stabilises a superconducting state. Galvanomagnetic techniques have been used to measure the quasi onedimensional Fermi surface orientation below the spin-density-wave transition, and to accurately determine the shape of the quasi twodimensional Fermi surface above it. The application of pressure has been used to gradually reduce the onset temperature of a metal-insulator transition and to eventually stabilise a superconducting state in ET<sub>3</sub>Cl<sub>2</sub>2H<sub>2</sub>O. The bandstructure of ET<sub>3</sub>C1<sub>2</sub>2H<sub>2</sub>O has been investigated using the SdH effect whilst hydrostatic pressure has been used to pass through the superconducting part of the phase diagram.
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Yunhua. "Synthesis and Photoinduced Electron Transfer of Donor-Sensitizer-Acceptor Systems." Doctoral thesis, Stockholm : Department of Organic Chemistry, Stockholm University, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Holman, K. Travis. "The host-guest chemistry of new members in the cyclotriveratrylene family of cavitands /." free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9924887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Svarovsky, Serge A. "Structure, stability and reactivity of small organic sulfinic and sulfonic acids toxicological implications ; Role of charge transfer complexes in oxidation cleavage of benzpinacols by iron (III) trispenanthroline /." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pui, Yung-lin. "Syntheses, luminescence studies and host-guest chemistry of d10 and d6 metal complexes containing diimine and/or chalcogenolate ligand." Click to view the E-thesis via HKUTO, 2000. http://sunzi.lib.hku.hk/hkuto/record/B43894367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

裴雍蓮 and Yung-lin Pui. "Syntheses, luminescence studies and host-guest chemistry of d10 and d6metal complexes containing diimine and/or chalcogenolate ligand." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B43894367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Furman, Gary S. "The contribution of charge-transfer complexes to the color of kraft lignin." Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/5644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dornan, Thomas Joseph. "Calcium Transport Inhibition, Stimulation, and Light Dependent Modulation of the Skeletal Calcium Release Channel (RyR1) by the Prototropic Forms of Pelargonidin." PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1931.

Full text
Abstract:
The principle calcium regulator in the muscle cell is the calcium ion release channel (RyR). Improper calcium homeostasis in the muscle cell is the foundation of many pathological states and has been targeted as a contributing factor to ventricular tachycardia, which is known to precede sudden cardiac arrest. Numerous endogenous and exogenous compounds can affect the way RyR regulates calcium. In this study the anthocyanidin Pelargonidin (Pg), an important natural colorant and dietary antioxidant, is evaluated for its effect on regulating the transport of calcium through the RyR1 of skeletal muscle sarcoplasmic reticulum. Pelargonidin undergoes time dependent structural changes in aqueous solutions at physiological pH and a mixture of up to seven forms of Pelargonidin are present in solution simultaneously. Pelargonidin is a unique RyR1 modulator. It can both stimulate and inhibit the RyR1 depending on the experimental conditions. In addition, when Pelargonidin is irradiated with white light, its inhibition properties on the RyR1 are essentially nullified. Proposed mechanisms include excited state charge shift within RyR1-Pg complexes.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Electron donor-acceptor complexes"

1

E, Meador Willard, Chang C. Ken, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Initiation precursors and initiators in laser-induced copolymerization of styrene and maleic anhydride in acetone. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jaworska-Augustyniak, Anna. Fotochemiczne własności elektrono-donorowo-akceptorowych kompleksów ferrocenu, kobaltocenu i niklocenu. Poznań: Wydawn. Nauk. Uniwersytetu im. Adama Mickiewicza w Poznaniu, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Drago, Russell S. Applications of electrostatic-covalent models in chemistry. Gainesville, FL (P.O. Box 13413, Gainesville 32604): Surfside Scientific Publishers, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kapinus, E. I. Fotonika molekuli͡a︡rnykh kompleksov. Kiev: Nauk. dumka, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pawlukojć, Andrzej. Badania widm oscylacyjnych, w obszarze niskich częstości, wybranych kompleksów molekularnych z przeniesieniem ładunku oraz ich składników metodą nieelastycznego rozpraszania neutronów termicznych. Warszawa: Instytut Chemii i Techniki Jądrowej, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gutmann, Viktor. The Donor-Acceptor Approach to Molecular Interactions. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Paulson, Basil Pavlatos. A study of electronic interactions in intramolecular charge transfer. 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pantelides, Sokrates T. Deep Centers in Semiconductors: A State-of-the-Art Approach. 2nd ed. CRC, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

(Editor), Joshua Jortner, and M. Bixon (Editor), eds. Advances in Chemical Physics, Electron TransferFrom Isolated Molecules to Biomolecules (Advances in Chemical Physics). Wiley-Interscience, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

(Editor), Joshua Jortner, and M. Bixon (Editor), eds. Advances in Chemical Physics, Electron TransferFrom Isolated Molecules to Biomolecules (Advances in Chemical Physics). Wiley-Interscience, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electron donor-acceptor complexes"

1

Bockman, T. M., and J. K. Kochi. "Electron Donor-Acceptor Interactions and Photo-Induced Electron Transfer of Organometallic Compounds." In Catalysis by Metal Complexes, 407–48. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2626-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fukuzumi, Shunichi. "Photoinduced Electron-Transfer Functions of π-Electron Donor–Acceptor Supramolecular Complexes". У Chemical Science of π-Electron Systems, 529–43. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55357-1_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Verhoeven, J. W., M. N. Paddon-Row, and J. M. Warman. "Rigid Alkane-Bridged Donor-Acceptor Systems as Tools for the Investigation of Solvent-, Distance-, and Conformation-Effects in Electron Transfer Processes." In Photoprocesses in Transition Metal Complexes, Biosystems and Other Molecules. Experiment and Theory, 271–98. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2698-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nxumalo, Lawrence M., and Thomas A. Ford. "The Fourier-transform Infrared Spectra of the 1:1 Electron Donor-acceptor Complexes of Boron Trifluoride with Dimethyl Ether and Dimethyl Sulphide in Cryogenic Matrices." In Progress in Fourier Transform Spectroscopy, 383–85. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-6840-0_89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Haaland, Arne. "Electron donor–acceptor complexes." In Molecules and Models, 241–56. Oxford University Press, 2008. http://dx.doi.org/10.1093/acprof:oso/9780199235353.003.0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Enoki, Toshiaki, Morinobu Endo, and Masatsugu Suzuki. "Introduction." In Graphite Intercalation Compounds and Applications. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195128277.003.0003.

Full text
Abstract:
There are two important features in the structure and electronic properties of graphite: a two-dimensional (2D) layered structure and an amphoteric feature (Kelly, 1981). The basic unit of graphite, called graphene is an extreme state of condensed aromatic hydrocarbons with an infinite in-plane dimension, in which an infinite number of benzene hexagon rings are condensed to form a rigid planar sheet, as shown in Figure 1.1. In a graphene sheet, π-electrons form a 2D extended electronic structure. The top of the HOMO (highest occupied molecular orbital) level featured by the bonding π-band touches the bottom of the LUMO (lowest unoccupied molecular orbital) level featured by the π*-antibonding band at the Fermi energy EF, the zero-gap semiconductor state being stabilized as shown in Figure 1.2a. The AB stacking of graphene sheets gives graphite, as shown in Figure 1.3, in which the weak inter-sheet interaction modifies the electronic structure into a semimetallic one having a quasi-2D nature, as shown in Figure 1.2b. Graphite thus features a 2D system from both structural and electronic aspects. The amphoteric feature is characterized by the fact that graphite works not only as an oxidizer but also as a reducer in chemical reactions. This characteristic stems from the zero-gap-semiconductor-type or semimetallic electronic structure, in which the ionization potential and the electron affinity have the same value of 4.6 eV (Kelly, 1981). Here, the ionization potential is defined as the energy required when we take one electron from the top of the bonding π-band to the vacuum level, while the electron affinity is defined as the energy produced by taking an electron from the vacuum level to the bottom of the anti-bonding π*-band. The amphoteric character gives graphite (or graphene) a unique property in the charge transfer reaction with a variety of materials: namely, not only an electron donor but also an electron acceptor gives charge transfer complexes with graphite, as shown in the following reactions: . . .xC + D → D+ C+x. . . . . .(1.1). . . . . .xC + A → C+x A−. . . . . .(1.2). . . where C, D, and A are graphite, donor, and acceptor, respectively.
APA, Harvard, Vancouver, ISO, and other styles
7

Granados, A., and G. A. Molander. "2.6 On-DNA Photoredox-Catalyzed Reactions." In DNA-Encoded Libraries. Stuttgart: Georg Thieme Verlag KG, 2024. http://dx.doi.org/10.1055/sos-sd-241-00097.

Full text
Abstract:
AbstractThe use of visible light as the driving force to trigger chemical transformations represents an attractive tool for organic synthesis, and it has been demonstrated to be an important and well-established strategy for accessing novel bond connections in a unique way via radical intermediates. This powerful synthetic tool is under continuous development and is finding ever-increasing applications in DNA-encoded library (DEL) synthesis. Since 2018, DEL chemists have new chemical space available thanks to the implementation of visible-light-mediated methods. This chapter details the state-of-the-art of on-DNA photoredox-catalyzed transformations Specifically, this review covers simple photoredox reactions, dual-catalytic metallaphotoredox reactions, and photoredox reactions initiated by electron donor/electron-acceptor (EDA) complexes.
APA, Harvard, Vancouver, ISO, and other styles
8

Gkizis, Petros L., and Christoforos G. Kokotos. "Recent advances in photoorganocatalysis (2019–2023)." In Photochemistry, 199–236. Royal Society of Chemistry, 2024. https://doi.org/10.1039/9781837676552-00199.

Full text
Abstract:
From 2008 until now, the advent of photochemistry has offered a plethora of synthetic opportunities to chemists worldwide. The ability of light to generate reactive species under mild reaction conditions provided access to unexplored reaction pathways. Lately, the development of photochemical reactions employing small organic molecules as catalysts has increased. Serving the basic principles of Green Chemistry, small organic molecules have proven to be an excellent alternative to the use of metal-based complexes, performing elegant organic transformations. Their use is based on their ability to mediate photochemical events, such as Single Electron Transfer (SET), Energy Transfer (EnT) and Hydrogen Atom Transfer (HAT). Furthermore, there have been reports on the capability to form Electron Donor–Acceptor (EDA) complexes facilitating challenging organic transformations. Herein, we will focus on the photochemical reactions promoted by small organic molecules during the last 5 years (2019–2023).
APA, Harvard, Vancouver, ISO, and other styles
9

Kochi, Jay K. "Electron Transfer in the Thermal and Photochemical Activation of Electron Donor-Acceptor Complexes in Organic and Organometallic Reactions." In Advances in Physical Organic Chemistry Volume 29, 185–272. Elsevier, 1994. http://dx.doi.org/10.1016/s0065-3160(08)60077-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mathews, F. Scott. "Electron transporters." In Molecular Structures in Biology, 192–221. Oxford University PressOxford, 1993. http://dx.doi.org/10.1093/oso/9780198547716.003.0007.

Full text
Abstract:
Abstract 7.1 Introduction Electron transporters can be defined for our present purposes as low molecular weight (8–15 kDa) protein molecules that contain a redox active cofactor and have no catalytic function other than as an electron sink. There are four types of cofactors utilized by this protein class: haem, iron-sulphur centres, flavin mononucleotide (FMN), and copper. The cofactor, when bound to the protein, can normally exist in only two stable oxidation states. The protein environment can mediate the midpoint oxidation/reduction (redox) potential and establish the equilibrium level of the two states. In some cases (e.g. FMN or [4Fe-4S]) the cofactor is capable of existing in more than two redox states and the protein surroundings will regulate which pair of redox potentials are available under physiological conditions for the electron transfer process. The primary function of the electron transporters is to transfer a single electron from one protein or protein complex to another. The electron donor protein is often a soluble protein while the acceptor is usually membrane bound. The acceptor or donor is also usually an enzyme catalysing an oxidation or reduction reaction, but another electron transporter can often serve as acceptor or donor.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electron donor-acceptor complexes"

1

Kononov, D. E., and S. V. Feskov. "Brownian simulation algorithm for the coherent optical excitation of electron-donor-acceptor complexes." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2019 (ICCMSE-2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5137918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sarkas, Harry W., and Zakya H. Kafafi. "C60:Electron Donor Nanocomposites and Multilayer Structures for Nonlinear Optics." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.wb.7.

Full text
Abstract:
Since the development of preparative scale syntheses of the fullerenes,1 we have examined the nonlinear optical (NLO) properties of C60 in the solid state.2-4 Following the characterization of solid films of pure C60, we have explored means of altering the optical and NLO properties of this molecule via chemical modification including photopolymerization, oxygen doping, and the creation of charge transfer (CT) complexes in both the ground and excited states.5-7 Studies on solutions of C60 with the electron donor, N,N,N′,N′-tetramethyl-1,4-phenylene-diamine (TMPD) revealed the formation of a 1:1 CT complex where C60 acted as the acceptor. NLO studies conducted on solutions of C60/TMPD at 675 nm (near the λmax of the CT absorption) showed a great enhancement in the third-order optical susceptibility, χ x x x x (3), of the complex relative to C60 Direct optical excitation in the CT band accessed higher-lying excited states with larger absorption cross-sections than the ground state, which contributed to the enhanced NLO response observed for the TMPD:C60 complex.5
APA, Harvard, Vancouver, ISO, and other styles
3

Adhikarya, Keshab Kumar, and Philippe M. Heynderickxa. "Structure and Properties of Stacking-type Complexes of Triazin at Graphene Surface: A Theoretical Assessment." In 5th World Conference on Chemistry and Chemical Engineering and 5th World Conference on Advanced Materials, Nanoscience and Nanotechnology, 42. Eurasia Conferences, 2024. https://doi.org/10.62422/978-81-970328-7-5-024.

Full text
Abstract:
In recent decades graphene immersed into the technology and industry with its various derivatives including with its immense functionality by making a complex, combination with other organic molecules, atoms and the combination of the both. Noncovalent functionalization creates a wide range of applications for these graphene complexes. Our intention was to characterize the stacking-like two-layered graphene nanoparticles. We selected triazin and its substituted derivatives ((1) 2,4,6-tris(dimethylamine)-1,3,5-triazine (TDA); (2) 2,4,6-triamino-1,3,5-triazine (TAM); (3) 2,4,6-trihydroxy-1,3,5-triazine (THO); (4) 1,3,5-triazine (TZN); (5) 2,4,6-trithiol-1,3,5-triazine (TTH); (6) 2,4,6-trichloro- 1,3,5-triazine (TCL); and (7) 2,4,6-trifluoromethyl-1,3,5-triazine (TFM).) having donor-acceptor properties of the stacked layer on the graphene surface. We conducted cluster and crystal model calculations for the graphene surface to sketch the electronic and structural properties. We verified the stability of the formed complexes using Density Functional Theory (DFT) by quantification of the interaction energy and charge transfer. Keywords: Cluster and Crystal model, Electron acceptors and Electron donors, Electrostatic potentials, Partial electron density, Band-gap, Electron holes.
APA, Harvard, Vancouver, ISO, and other styles
4

Schuster, P. R., C. A. Viands, and R. S. Potember. "Nonlinear-optical response in suspensions of organic and inorganic colloidal systems." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.thy21.

Full text
Abstract:
The third-order nonlinear optical response of various colloidal suspensions has been investigated. The transmissive properties of these systems are of particular interest in terms of the speed of the switching response, the switching threshold, the recovery time, and the dynamic range over which optical density is generated. We have seen resonant and non-resonant behavior in the nonlinear response of these materials. These suspensions are composed of both inorganic and organic materials homogeneously distributed within a dielectric matrix. In certain studies, these materials have been synthesized as charge-transfer complexes by using an inorganic electron donor combined with an organic electron acceptor. Our results concerning the third-order nonlinear optical properties of these materials; our development of methods for the enhancement of their nonlinear optical response will also be reported.
APA, Harvard, Vancouver, ISO, and other styles
5

Bruni, Paolo, Elisabetta Giorgini, Giorgio Tosi, and Angela Zampini. "Electron-Donor-Acceptor (EDA) Complexes Of Aromatic Hydrocarbons With Organic Acceptors In Solution And In The Solid State. A Quantitative FT-IR Investigation." In Intl Conf on Fourier and Computerized Infrared Spectroscopy, edited by David G. Cameron. SPIE, 1989. http://dx.doi.org/10.1117/12.969494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hormann, A., E. J. C. Olson, P. F. Barbara, M. R. Arkin, E. D. A. Stemp, R. E. Holmlin, and J. K. Barton. "Time Resolved Electron Transfer Studies Between Metallointercalators in DNA." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.sab.6.

Full text
Abstract:
This paper reports the first ultrafast studies on the rates of DNA-mediated forward and reverse electron transfer between photoexcited [M(phen)2dppz]2+ (M=Ru or Os, phen =1,10-phenanthroline, dppz = dipyrido[3,2:a-2′,3′:c]-phenazine) and various electron acceptors in order to ultimately determine the distance dependence of electron transfer kinetics with DNA as an environment.1,2 Previously Barton, Turro, and coworkers have presented evidence that electron transfer in DNA can occur rapidly over an extraordinarily large distance3 with a more shallow distance dependence than that for other media, such as liquids and proteins.4,5 Some theoretical work supports the shallow distance dependence which is attributed to a long range, thermally activated coherent mechanism involving virtual excitation of the DNA "bridge".6 Utilizing time-correlated single photon counting (TCSPC), we observe a substantial fraction of photoexcited [M(phen)2dppz]2+ (M=Ru, Os) exhibits fast oxidative quenching (kq &gt; 3 x 1010 s−1) in the presence of intercalating Rh(III) acceptors while the remaining excited-state species exhibit a range of quenching constants less than 108 s_1. Transient-absorption experiments on the picosecond timescale indicate that, for a series of donors bound to mixed sequence DNA, the majority of back electron transfer is also very fast (ca. 1010 s−1). Importantly, the rate constant for the fast ground-state recovery is independent of loading of Rh(III) intercalators on DNA. As shown in Figure 1, regardless of whether the average loading of metal complexes is 1 in 33 basepairs or 1 in 10 basepairs, the fast bleach recovery exhibited by [Ru(phen)2dppz]2+ is well fit under all conditions by an exponential decay of 9 x 109s−1. Separate ultrafast data suggests that, like the recombination reaction, the fast quenching *M2+ is simple first-order at early time. If the early time electron transfer kinetics were not simple first order, and the electron transfer rate decayed with an exponential distance dependence (i.e. ≅ a factor of 30 per base step [3.4 Å]), our TCSPC apparatus should be able to observe some evidence of the slower components with rate constants in the range of 1010 - 108 s−1. The absence of rates in this range is evidence that the electron transfer is simple first order at time &lt; 10 ns. This result has implications with regards to the donor-acceptor separations on DNA. Throughout most of the titration, intercalators are dilute on the double helix and statistics show that the amount of fast quenching and ground-state recovery observed is too great to be accounted for by random loading of nearest-neighbor pairs. Thus, either the electron transfer reaction must involve clustering of the donor and acceptor on the helix or the DNA-mediated interaction must occur over long distance.
APA, Harvard, Vancouver, ISO, and other styles
7

Tykwinski, Rik R., Martin Schreiber, Rolf Spreiter, Christian Bosshard, Corinne Boudon, Jean-Paul Gisselbrecht, François Diederich, Peter Günter, and Maurice Gross. "Donor-Acceptor Systems Derived from Tetraethynylethene." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.md.3.

Full text
Abstract:
An increasing number of conjugated, organic molecules and polymers are finding application as materials for electronics and photonics due to their inherent synthetic flexibility, potential ease of processing and the possibility of tailoring material characteristics to suit a desired property.1 To more efficiently design organic materials to specific tasks, it is necessary to understand how and to what degree alteration of molecular electronic structure affects materials properties. Investigation of a comprehensive series of synthetically related molecules and the relationship between their electronic and physical properties is perhaps the best approach to the rational design of useful organic materials. Hence, we have synthesized a complete series of conjugated, electronically varied molecules based on a tetraethynylethene (TEE, 1) framework. Study of the optical and electrical properties of these electronically diverse building blocks will aid in tuning specific properties for the ultimate formation of functionalized polytriacetylenes (PTAs, 2).
APA, Harvard, Vancouver, ISO, and other styles
8

McGuire, Brett, Michael McCarthy, and Marie-Aline Martin-Drumel. "THE ETHANOL-CO2 DIMER IS AN ELECTRON DONOR-ACCEPTOR COMPLEX." In 72nd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2017. http://dx.doi.org/10.15278/isms.2017.rh06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cha, Myoungsik, Akira Otomo, William E. Torruellas, George I. Stegeman, David Beljonne, Jean Luc Brédas, Winfried H. G. Horsthuis, and Guus R. Möhlmann. "Nonlinear Spectroscopy of DANS Side Chain Polymers." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.ma.5.

Full text
Abstract:
Molecular systems, in particular polymers, with π-electron donor-acceptor groups are becoming potential candidates in applications where large bandwidth and low costs are desired for electro-optical modulation of optical information. Di-Phenyl molecules including Disperse-Red-1 and Di-Amino-Nitro-Stilbene (DANS) embody most of the requirements in stability, high loading, processability and very large electro-optical figures of merit1. However little is known about their electronic structure represented by their excited state spectrum and responsible for their nonlinear optical response, for both second and third order. We present a complete spectroscopic study of the DANS molecular system and compare our theoretical predictions to the second order nonlinear spectrum and four third order nonlinear optical spectra of amorphous DANS side-chain polymers. In particular we can successfully explain shifts of the nonlinear spectrum compared to the linear absorption one by properly accounting for Frank-Condon type displacements2.
APA, Harvard, Vancouver, ISO, and other styles
10

Jovanović Stević, Snežana, Snežana Radisavljević, Aleksandar Mijatović, Biljana Petrović, and Ana Kesić. "The influence of structural modification of Pd(II) pincer-type complexes on the kinetics of substitution reactions." In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.411js.

Full text
Abstract:
This mini-review summarizes the kinetic data obtained for the substitution reactions of some palladium(II) complexes containing bis-pyrazolylpyridine derivatives as pincer-type ligands with biologically significant nitrogen- and sulfur-donor biomolecules as nucleophiles. Three structurally different palladium(II) complexes were selected: [Pd(L1)Cl]+(Pd1), [Pd(L2)Cl]+(Pd2) and [Pd(L3)Cl]+(Pd3) (where L1 = bis(2-(1H-pyrazol-1-yl)ethyl)amine, L2 = 2,6-bis(5-(tert-butyl)-1H-pyrazol-3-yl)pyridine, and L3 = 2,6-bis(5-(tert-butyl)-1-methyl-1H-pyrazol-3-yl)pyridine, while for the entering nucleophiles thiourea (Tu), L-methionine (L-met), and guanosine-5’-monophosphate (5’-GMP) were used. Kinetic measurements were carried out for all systems as pseudo-first order reactions (at least 10 times the ligand in excess relative to the complex) under physiological conditions using a stopped-flow UV-Vis spectrophotometer. By comparing the published results for the second-order rate constant, the relationship between the structural properties of the complexes and their reactivity towards selected nucleophiles was established. This overview shows that by tuning the lability of the inert ligands through steric and electronic (σ-donor and π-acceptor) effects, the biological behavior of the complexes can be significantly changed.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Electron donor-acceptor complexes"

1

Isied, Stephan S. Transition Metal Donor-Peptide-Acceptor Complexes: From Intramolecular Electron Transfer Reactions to the Study of Reactive Intermediates. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/899301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography