Academic literature on the topic 'Electron multiplying charge coupled devices'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electron multiplying charge coupled devices.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electron multiplying charge coupled devices"

1

Bush, N., K. Stefanov, D. Hall, D. Jordan, and A. Holland. "Simulations of charge transfer in Electron Multiplying Charge Coupled Devices." Journal of Instrumentation 9, no. 12 (2014): C12042. http://dx.doi.org/10.1088/1748-0221/9/12/c12042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Robbins, M. S., and B. J. Hadwen. "The noise performance of electron multiplying charge-coupled devices." IEEE Transactions on Electron Devices 50, no. 5 (2003): 1227–32. http://dx.doi.org/10.1109/ted.2003.813462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Plakhotnik, T., A. Chennu, and A. V. Zvyagin. "Statistics of single-electron signals in electron-multiplying charge-coupled devices." IEEE Transactions on Electron Devices 53, no. 4 (2006): 618–22. http://dx.doi.org/10.1109/ted.2006.870572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Harpsøe, K. B. W., M. I. Andersen, and P. Kjægaard. "Bayesian photon counting with electron-multiplying charge coupled devices (EMCCDs)." Astronomy & Astrophysics 537 (January 2012): A50. http://dx.doi.org/10.1051/0004-6361/201117089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tutt, James H., Andrew D. Holland, David J. Hall, Richard D. Harriss, and Neil J. Murray. "The Noise Performance of Electron-Multiplying Charge-Coupled Devices at X-ray Energies." IEEE Transactions on Electron Devices 59, no. 1 (2012): 167–75. http://dx.doi.org/10.1109/ted.2011.2172611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kannan, Balakrishnan, Jia Yi Har, Ping Liu, Ichiro Maruyama, Jeak Ling Ding, and Thorsten Wohland. "Electron Multiplying Charge-Coupled Device Camera Based Fluorescence Correlation Spectroscopy." Analytical Chemistry 78, no. 10 (2006): 3444–51. http://dx.doi.org/10.1021/ac0600959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chao, Jerry, E. Sally Ward, and Raimund J. Ober. "Fisher information matrix for branching processes with application to electron-multiplying charge-coupled devices." Multidimensional Systems and Signal Processing 23, no. 3 (2011): 349–79. http://dx.doi.org/10.1007/s11045-011-0150-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hadwen, B. J., M. A. Camas, and M. S. Robbins. "The effects of Co/sup 60/ gamma radiation on electron multiplying charge-coupled devices." IEEE Transactions on Nuclear Science 51, no. 5 (2004): 2747–52. http://dx.doi.org/10.1109/tns.2004.835099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Krog, Jens, Albertas Dvirnas, Oskar E. Ström, et al. "Photophysical image analysis: Unsupervised probabilistic thresholding for images from electron-multiplying charge-coupled devices." PLOS ONE 19, no. 4 (2024): e0300122. http://dx.doi.org/10.1371/journal.pone.0300122.

Full text
Abstract:
We introduce the concept photophysical image analysis (PIA) and an associated pipeline for unsupervised probabilistic image thresholding for images recorded by electron-multiplying charge-coupled device (EMCCD) cameras. We base our approach on a closed-form analytic expression for the characteristic function (Fourier-transform of the probability mass function) for the image counts recorded in an EMCCD camera, which takes into account both stochasticity in the arrival of photons at the imaging camera and subsequent noise induced by the detection system of the camera. The only assumption in our method is that the background photon arrival to the imaging system is described by a stationary Poisson process (we make no assumption about the photon statistics for the signal). We estimate the background photon statistics parameter, λbg, from an image which contains both background and signal pixels by use of a novel truncated fit procedure with an automatically determined image count threshold. Prior to this, the camera noise model parameters are estimated using a calibration step. Utilizing the estimates for the camera parameters and λbg, we then introduce a probabilistic thresholding method, where, for the first time, the fraction of misclassified pixels can be determined a priori for a general image in an unsupervised way. We use synthetic images to validate our a priori estimates and to benchmark against the Otsu method, which is a popular unsupervised non-probabilistic image thresholding method (no a priori estimates for the error rates are provided). For completeness, we lastly present a simple heuristic general-purpose segmentation method based on the thresholding results, which we apply to segmentation of synthetic images and experimental images of fluorescent beads and lung cell nuclei. Our publicly available software opens up for fully automated, unsupervised, probabilistic photophysical image analysis.
APA, Harvard, Vancouver, ISO, and other styles
10

AHLEN, S. P. "TIME-PROJECTION-CHAMBERS WITH OPTICAL READOUT FOR DARK MATTER, DOUBLE BETA DECAY, AND NEUTRON MEASUREMENTS." International Journal of Modern Physics A 25, no. 24 (2010): 4525–75. http://dx.doi.org/10.1142/s0217751x10050081.

Full text
Abstract:
In recent years, there have been impressive advances in the technology of cameras using charged coupled devices (CCD's) and electron multiplying charged coupled devices (EMCCD's) that make possible a number of applications for the detection of ionizing radiation. The new cameras have quantum efficiencies exceeding 90%, effective noise levels less than one electron per pixel, and can be made to detect light ranging from the ultraviolet to the infrared. When combined with photomultiplier tubes (PMT's), and when used with Time-Projection-Chambers (TPC's) that contain narrow gap mesh charge amplification stages and scintillating gas compositions, these cameras can be used to provide three-dimensional images of particle tracks. There are many applications for such devices, including direction sensitive searches for dark matter, measurements of thermal and fast neutrons, and searches for double-beta-decay. I will describe the operation of optical TPC's and their various applications in this review article.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Electron multiplying charge coupled devices"

1

Zarif, Yussefian Nikta. "Mise en oeuvre d'un mode d'imagerie par transillumination et détection multi-vue à ultra-faible bruit dans l'imageur QOS[indice supérieur TM] pour imagerie moléculaire optique sur petit animal." Mémoire, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/5891.

Full text
Abstract:
La tomographie optique diffuse (TOD) est une technique d’imagerie médicale relativement récente qui utilise la lumière dans le proche infrarouge pour acquérir des images in vivo de façon non invasive. Cette technique est en utilisation croissante par de nombreux chercheurs et biologistes et plusieurs équipes dans le monde travaillent sur le développement de scanners par TOD y compris notre groupe de recherche (groupe TomOptUS). Le Centre d’imagerie moléculaire de Sherbrooke dispose d’un appareil pour imagerie optique sur petit animal développé par la compagnie Quidd, soit le QOS (Quidd Optical imaging System). Cet appareil est utilisé par des biologistes et chercheurs pour diverses études précliniques sur modèles animaux (souris) de maladies humaines comme le cancer. Le QOS est entièrement contrôlé par ordinateur à l’aide d’un logiciel sophistiqué (le QOSoft) qui permet d’obtenir des images en fluorescence et en bioluminescence. Il est toutefois limité en ne permettant d’acquérir que des images planaires de la lumière sortant d’un animal ; il ne permet pas la tomographie, à savoir obtenir des images tridimensionnelles (3D) des sources fluorescentes ou bioluminescentes situées en profondeur à l’intérieur de l’animal. Bien que le QOS offre une grande flexibilité en terme d’angle d’acquisition d’images autour de l’animal avec sa caméra montée sur un bras rotatif, il a une sensibilité limitée pour de l’imagerie en profondeur, notamment parce qu’il fonctionne en mode épiillumination (détection de la lumière du même côté que l’injection de la lumière excitatrice dans l’animal) et aussi à cause de la sensibilité limitée de sa caméra. Afin d’augmenter les capacités tomographiques et la sensibilité du QOS, ainsi que le contraste des images qu’il fournit, le présent projet propose des développements logiciels intégrés au QOSoft. Ces ajouts logiciels au niveau du contrôle d’instrumentation et de l’interface graphique permettent d’intégrer une caméra EMCCD à ultra-haute sensibilité et ultra-faible bruit pour remplacer la caméra CCD refroidie existante ainsi qu’un module d’illumination laser rotatif. Ce module d’illumination, développé par le groupe TomOptUS, permet l’imagerie en mode transillumination ainsi que toutes les configurations intermédiaires jusqu’à l’épi-illumination. Ce module permet en outre d’injecter une densité de puissance lumineuse supérieure à celle possible avec la configuration actuelle du QOS. Le QOS et son logiciel mis à jour avec les ajouts faisant l’objet du présent projet sont validés par des expériences de fluorescence et de bioluminescence sur fantômes et animaux vivants.
APA, Harvard, Vancouver, ISO, and other styles
2

Howard, Nathan Eric. "Development of techniques to characterize electron-bombarded charge-coupled devices." Diss., The University of Arizona, 2003. http://hdl.handle.net/10150/280292.

Full text
Abstract:
Electron Bombarded Charge Coupled Devices (EBCCDs) are a new hybrid image intensifier tube device that allows photoelectrons to be directly detected by a CCD placed as the tube anode. These devices have many significant advantages over traditional image intensified systems, due to their lower noise figure, high intra-scene dynamic range, and high signal to noise ratio. EBCCDs are not subject to some of the deleterious effects that plague traditional intensifiers including veiling glare, "chicken wire" patterns, and ion scintillation. Currently, there is not a standardized set of characterization methods used to measure the performance of these hybrid devices. Furthermore, the normal method of measuring device gain as a ratio of output current (measured as current through the anode substrate) to input current (as measured through the photocathode) does not apply to EBCCDs. This dissertation presents several new methods that have been developed to characterize in situ EBCCD tubes. The new characterization methods that have been developed are: (1) How to measure the actual gain of an EBCCD when operated as a CCD (normal operating mode), (2) How to measure the mean and variance of a single electron pulse height distribution when only multiple electron pulse height distribution data is available, (3) How to measure the spatially varying probability of secondary electron capture by the CCD potential wells, (4) How to measure the thickness of an aluminum overcoat using only optical measurements, (5) How to measure the gain variation due to aluminum thickness variations. These methods have been designed to enable characterization of the EBCCD even after it has been mounted in a camera. This will allow both tube and camera manufacturers to measure performance in a production setting. These new methods were employed, along with other standard measurement techniques, to characterize a commercially available EBCCD (Hamamatsu N7220) controlled by a camera designed by the author. Several figures of merit were measured as a function of accelerating potential including the gain, device signal to noise ratio, detective quantum efficiency, and noise figure. The tube MTF, radiometric sensitivity, aluminum thickness, dynamic range, and probability of secondary electron detection were also measured.
APA, Harvard, Vancouver, ISO, and other styles
3

LOBO, RAQUEL de M. "Reconstrucao tridimensional de superficies de fratura de materiais compositos do tipo CFRP." reponame:Repositório Institucional do IPEN, 2009. http://repositorio.ipen.br:8080/xmlui/handle/123456789/9414.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:26:37Z (GMT). No. of bitstreams: 0<br>Made available in DSpace on 2014-10-09T14:06:22Z (GMT). No. of bitstreams: 0<br>Tese (Doutoramento)<br>IPEN/T<br>Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electron multiplying charge coupled devices"

1

Robbins, Mark Stanford. "Electron-Multiplying Charge Coupled Devices – EMCCDs." In Springer Series in Optical Sciences. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18443-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hardy, T. D., M. J. Deen, and R. Murowinski. "Effects of Radiation Damage on Scientific Charge Coupled Devices." In Advances in Imaging and Electron Physics. Elsevier, 1999. http://dx.doi.org/10.1016/s1076-5670(08)70269-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weiss, Dieter G., Willi Maile, Robert A. Wick, and Walter Steffen. "Video microscopy." In Light Microscopy in Biology. Oxford University PressOxford, 1999. http://dx.doi.org/10.1093/oso/9780199636709.003.0003.

Full text
Abstract:
Abstract A new quality of microscopy, called video microscopy, emerges, if one observes the specimen, instead of with the human eye, with a video camera connected to video processing equipment working at real time. Video microscopy is, there fore, much more than just adding a camera and monitor to the microscope to share the images with a larger audience. More recently, electronic devices other than video cameras, such as high sensitivity charge coupled device (CCD) cameras and scanning light detector systems for confocal microscopy have been added to microscopes. The three fields (i) video-enhanced contrast microscopy for highest resolution work, (ii) video-intensified microscopy for low light applications, and (iii) electronic scanning microscopy for confocal microscopy and 3D imaging differ in the type of device generating the electronic image, but all three use basically the same types of analogue and digital image processors. While all these techniques are generally defined as electronic light microscopy, this chapter, video microscopy, deals with the first two techniques that involve CCD and video cameras as imaging devices. Video microscopy has produced a revolution in light microscopy of biological samples equivalent to that of the development of the immunofluorescence technique. It has once more made the traditional light microscope a powerful tool for those working on dynamic aspects of small biological systems, for example biochemists, molecular and cell biologists. It has given further resolving power to the light microscope enabling the observation of particles which bridge the size range between those normally studied by electron microscopy and those which are already well known to light microscopists as a whole, with the added advantage in that specimens can be examined alive. As well as allowing small particles to be resolved, the technique has the capacity to clean up the image, so allowing greater visibility. Also, changes of such parameters as amounts, concentrations, transport, or metabolism of specific molecules in both time and space can be quantitatively determined.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electron multiplying charge coupled devices"

1

Kishore, Rishabh, Swaraj Bandhu Mahato, Subhali Subhechha, et al. "Novel High Density 3D Buffer Memory Enabled by IGZO Channel Charge Coupled Device." In 2024 IEEE International Electron Devices Meeting (IEDM). IEEE, 2024. https://doi.org/10.1109/iedm50854.2024.10873539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chao, Jerry, E. Sally Ward, and Raimund J. Ober. "Localization accuracy in single molecule microscopy using electron-multiplying charge-coupled device cameras." In SPIE BiOS, edited by Jose-Angel Conchello, Carol J. Cogswell, Tony Wilson, and Thomas G. Brown. SPIE, 2012. http://dx.doi.org/10.1117/12.908951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hall, David J., James H. Tutt, Matthew R. Soman, et al. "High-resolution soft x-ray spectrometry using the electron-multiplying charge-coupled device (EM-CCD)." In SPIE Optical Engineering + Applications, edited by Oswald H. Siegmund. SPIE, 2013. http://dx.doi.org/10.1117/12.2024010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chao, Jerry, Sripad Ram, E. Sally Ward, and Raimund J. Ober. "Two approximations for the geometric model of signal amplification in an electron-multiplying charge-coupled device detector." In SPIE BiOS, edited by Carol J. Cogswell, Thomas G. Brown, Jose-Angel Conchello, and Tony Wilson. SPIE, 2013. http://dx.doi.org/10.1117/12.2004621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bysani Krishnakumar, Sumukh, Alexander R. Podgorsak, S. V. Setlur Nagesh, et al. "Investigation of noise and contrast sensitivity of an electron multiplying charge-coupled device (EMCCD) based cone beam micro-CT system." In SPIE Medical Imaging, edited by Despina Kontos, Thomas G. Flohr, and Joseph Y. Lo. SPIE, 2016. http://dx.doi.org/10.1117/12.2216794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Swetadri Vasan, Setlur Nagesh, P. Sharma, V. Singh, et al. "Quantitative analysis of an enlarged area solid state x-ray image intensifier (SSXII) detector based on electron multiplying charge coupled device (EMCCD) technology." In SPIE Medical Imaging, edited by Robert M. Nishikawa and Bruce R. Whiting. SPIE, 2013. http://dx.doi.org/10.1117/12.2006286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Swetadri Vasan, S. N., P. Sharma, Ciprian N. Ionita, et al. "Image acquisition, geometric correction and display of images from a 2x2 x-ray detector array based on electron multiplying charge coupled device (EMCCD) technology." In SPIE Medical Imaging, edited by Robert M. Nishikawa and Bruce R. Whiting. SPIE, 2013. http://dx.doi.org/10.1117/12.2006280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chandler, Charles E., Richard A. Bredthauer, James R. Janesick, and James A. Westphal. "Sub-electron noise charge-coupled devices." In SC - DL tentative, edited by Morley M. Blouke. SPIE, 1990. http://dx.doi.org/10.1117/12.19457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fossum, Eric R., John Song, and David V. Rossi. "Two-dimensional electron gas charge-coupled devices." In Medical Imaging '91, San Jose, CA, edited by Morley M. Blouke. SPIE, 1991. http://dx.doi.org/10.1117/12.45328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chivers, D. H., A. Coffer, B. Plimley, and K. Vetter. "Electron-track Compton imaging using high-resolution charge-coupled devices." In 2010 IEEE Nuclear Science Symposium and Medical Imaging Conference (2010 NSS/MIC). IEEE, 2010. http://dx.doi.org/10.1109/nssmic.2010.5874029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography