Academic literature on the topic 'Electron plasma'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electron plasma.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electron plasma"
BINGHAM, R., L. O. SILVA, J. T. MENDONCA, P. K. SHUKLA, W. B. MORI, and A. SERBETO. "PLASMA WAKES DRIVEN BY NEUTRINOS, PHOTONS AND ELECTRON BEAMS." International Journal of Modern Physics B 21, no. 03n04 (February 10, 2007): 343–50. http://dx.doi.org/10.1142/s0217979207042112.
Full textKunze, H., R. Noll, C. R. Haas, M. Elfers, J. Hertzberg, and G. Herziger. "Pulsed-power-generated plasma of high reproducibility." Laser and Particle Beams 8, no. 4 (December 1990): 595–608. http://dx.doi.org/10.1017/s0263034600009022.
Full textZHOU, C. T., M. Y. YU, and X. T. HE. "Electron acceleration by high current-density relativistic electron bunch in plasmas." Laser and Particle Beams 25, no. 2 (June 2007): 313–19. http://dx.doi.org/10.1017/s0263034607000171.
Full textDanehkar, A. "Electron beam-plasma interaction and electron-acoustic solitary waves in a plasma with suprathermal electrons." Plasma Physics and Controlled Fusion 60, no. 6 (April 26, 2018): 065010. http://dx.doi.org/10.1088/1361-6587/aabc40.
Full textShukla, Padma Kant, and Bengt Eliasson. "Localization of intense electromagnetic waves in plasmas." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1871 (January 24, 2008): 1757–69. http://dx.doi.org/10.1098/rsta.2007.2184.
Full textELIASSON, BENGT, and PADMA KANT SHUKLA. "Dispersion properties of electrostatic oscillations in quantum plasmas." Journal of Plasma Physics 76, no. 1 (October 27, 2009): 7–17. http://dx.doi.org/10.1017/s0022377809990316.
Full textBARRIGA-CARRASCO, M. D., and A. Y. POTEKHIN. "Proton stopping in plasmas considering e−–e− collisions." Laser and Particle Beams 24, no. 4 (October 2006): 553–58. http://dx.doi.org/10.1017/s0263034606060733.
Full textEl-Hanbaly, A. M., E. K. El-Shewy, A. I. Kassem, and H. F. Darweesh. "Nonlinear Electron Acoustic Waves in Dissipative Plasma with Superthermal Electrons." Applied Physics Research 8, no. 1 (January 29, 2016): 64. http://dx.doi.org/10.5539/apr.v8n1p64.
Full textYasuda, Hirotsugu, Loic Ledernez, Fethi Olcaytug, and Gerald Urban. "Electron dynamics of low-pressure deposition plasma." Pure and Applied Chemistry 80, no. 9 (January 1, 2008): 1883–92. http://dx.doi.org/10.1351/pac200880091883.
Full textSaito, S., F. R. E. Forme, S. C. Buchert, S. Nozawa, and R. Fujii. "Effects of a kappa distribution function of electrons on incoherent scatter spectra." Annales Geophysicae 18, no. 9 (September 30, 2000): 1216–23. http://dx.doi.org/10.1007/s00585-000-1216-2.
Full textDissertations / Theses on the topic "Electron plasma"
Lai, Chi-hsuan. "Neutrino electron plasma instability /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textMcGregor, Duncan Ekundayo. "Electron cyclotron heating and current drive using the electron Bernstein modes." Thesis, St Andrews, 2007. http://hdl.handle.net/10023/212.
Full textJacobson, Craig Michael. "Electron transport in plasmas with lithium-coated plasma-facing components." Thesis, Princeton University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3615076.
Full textThe Lithium Tokamak Experiment (LTX) is a spherical tokamak designed to study the lowrecycling regime through the use of lithium-coated shells conformal to the last closed flux surface (LCFS). A lowered recycling rate is expected to flatten core Te profiles, raise edge Te, strongly affect n e profiles, and enhance confinement.
To study these unique plasmas, a Thomson scattering diagnostic uses a ≤ 20 J, 30 ns FWHM pulsed ruby laser to measure Te and ne at 11 radial points on the horizontal midplane, spaced from the magnetic axis to the outer edge at a single temporal point for each discharge. Scattered light is imaged through a spectrometer onto an intensified CCD. The diagnostic is absolutely calibrated using a precision light source and Raman scattering. Measurements of n e are compared with line integrated density measurements from a microwave interferometer. Adequate signal to noise is obtained with ne ≥ 2 ×10 18 m–3.
Thomson profiles of plasmas following evaporation of lithium onto room-temperature plasmafacing components (PFCs) are used in conjunction with magnetic equilibria as input for TRANSP modeling runs. Neoclassical calculations are used to determine Ti profiles, which have levels that agree with passive charge exchange recombination spectroscopy (CHERS) measurements. TRANSP results for confinement times and stored energies agree with diamagnetic loop measurements. Results of χe result in values as low as 7 m2/s near the core, which rise to around 100 m2/s near the edge. These are the first measurements of χe in LTX, or its predecessor, the Current Drive Experiment-Upgrade (CDX-U), with lithium PFCs.
Sandoval, Parra Astor Emar. "Electron heating in a collisionless plasma." Tesis, Universidad de Chile, 2019. http://repositorio.uchile.cl/handle/2250/172658.
Full textLos plasmas son comunes en diferentes sistemas astronómicos. Una parte importante de estos plasmas están en el régimen no colisional, en que el camino libre medio de las partículas que lo componen es más grande que el tamaño del sistema. Un ejemplo de este tipo de objetos es el disco de acreción que se encuentra en las cercanías del agujero negro ubicado en el centro de la Vía Láctea, Sagitario A* (Sgr A*). Por su baja colisionalidad, se espera que el plasma en Sgr A* no siga una distribución de Maxwell-Boltzmann. Además, por la mayor eficiencia radiativa de los electrones, es también esperable que estos tengan menor temperatura que los iones. El grado en que se calientan los electrones en un sistema no colisional, así como su espectro de energía, tienen importantes consecuencias observacionales. Existen diversos mecanismos que pueden transferir energía a los electrones. Entre ellos están: reconexión magnética, interacción onda-partícula, y viscosidad anisotrópica. En esta tesis nos enfocamos en el calentamiento de electrones por medio de la interacción onda partícula y por calentamiento viscoso. Para ello realizamos simulaciones ``particle-in-cell'' (o PIC) de un plasma no colisional, magnetizado y sujeto a un cizalle permanente. Este cizalle produce una amplificación del campo magnético, obteniéndose así una anisotropía de presión en las particulas, debido a la invarianza adiabatica de su momento magnetico. Esta anisotropía produce inestabilidades cinéticas en el plasma, las que propagan ondas en escalas del radio de Larmor de las partículas. Algunos ejemplos relevantes para nuestro estudio son las inestabilidades de whistler e ion-ciclotrón. Estas inestabilidades pueden resonar preferentemente con los electrones e iones, respectivamente, otorgando o quitando energía a las partículas. Realizamos simulaciones con moderadas razones de masa entre iones y electrones, para estudiar a los electrones en el régimen cinético. Consideramos consistentemente el régimen no-lineal y cuasi-estacionario de las inestabilidades. Estudiamos el calentamiento de los electrones, y se encontró que estos se calientan principalmente por viscosidad. Sin embargo, se encontró un calentamiento extra, el que es transferido desde los iones a los electrones debido a la interacción de estos últimos con las ondas ion-ciclotrón (las que a su vez son principalmente producidas por los iones). Este calentamiento extra aumenta con la magnetización y disminuye al aumentar la razón de masa y la temperatura de los iones. Además, la componente no térmica del espectro de energía de los electrones se ve fuertemente modificada cuando el radio de Larmor de estos es similar al de los iones. Esta componente no térmica se asemeja bastante a lo que se infiere de observaciones de sistemas como Sgr A*. Nuestro trabajo nos permitió entonces encontrar condiciones que facilitan el calentamiento y aceleración no térmica de electrones debido a la transferencia de energía entre iones y electrones en plasmas no colisionales.
Bocoum, Maïmouna. "Harmonic and electron generation from laser-driven plasma mirrors." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX023/document.
Full textThe experimental work presented in this manuscript focuses on the non-linear response of plasma mirrors when driven by a sub-relativistic (~10^18 W/cm^2) ultra-short (~30fs) laser pulse. In particular, we studied the generation of attosecond pulses (1as=10^(-18) s) and electron beams from plasma mirror generated in controlled pump-probe experiment. One first important result exposed in this manuscript is the experimental observation of the anticorrelated emission behavior between high-order harmonics and electron beams with respect to plasma scale length. The second important result is the presentation of the « spatial domain interferometry » (SDI) diagnostic, developed during this PhD to measure the plasma expansion in vacuum. Finally, we will discuss the implementation of phase retrieval algorithms for both spatial and temporal phase reconstructions.From a more general point of view, we replace this PhD in its historical context. We hope to convince the reader that through laser-plasma mirror interaction schemes, we could tomorrow conceive cost-efficient X-UV and energetic electron sources with unprecedented temporal resolutions
Langendorf, Samuel J. "Effects of electron emission on plasma sheaths." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54383.
Full textAlinder, Simon. "Electron cooling in a cometary coma." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-324842.
Full textRymdsonden Rosetta från ESA undersökte kometen 67P/Churyumov Gerasimenkounder mer än två år, från augusti 2014 till slutet av september 2016.En Langumirprob användes för att undersökta plasmamiljön runt kometen, tillexempel elektronernas termiska energi. Den observerade termiska energin förelektronerna (eller elektrontemperaturen) var ganska hög, ca 5-10 eV undernästan hela uppdraget, men när kometen var nära perihelium detekterade instrumentenäven kalla elektroner, med en energi under 1 eV, distinkta från devarma. En hypotes är att dessa kalla elektroner bildas nära kärnan av att varmaelektroner genomgår inelastiska kollisioner med den neutrala gasen och tapparsin energi. I detta projekt utvecklar vi en modell för att studera elektronernasbeteende i koman. Modellen tar hänsyn till kollisioner med neutrala vattenmolekylersåväl som påverkan av ett radiellt ambipolärt elektriskt fält.
Löfgren, Torbjörn. "Numerical modeling of electron beam-plasma interactions." Doctoral thesis, KTH, Alfvén Laboratory, 1999. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2878.
Full textMerle, Antoine. "Stability and properties of electron-driven fi shbones in tokamaks." Palaiseau, Ecole polytechnique, 2012. https://pastel.hal.science/docs/00/77/31/03/PDF/Merle_PhD.pdf.
Full textLa stabilité des modes magnéto-hydrodynamiques dans les plasmas de tokamaks est modifiée par la présence de particules rapides. Dans un tokamak tel qu'ITER ces particules rapides peuvent être soit les particules alpha créées par les réactions de fusion, soit les ions et électrons accélérés par les dispositifs de chauffage additionnel et de génération de courant. Les modes appelés fishbones électroniques correspondent à la déstabilisation du mode de kink interne due à la résonance avec le lent mouvement de précession toroidale des électrons rapides. Ces modes sont fréquemment observés dans les plasmas des tokamaks actuels en présence de chauffage par onde cyclotronique électronique (ECRH) ou de génération de courant par onde hybride basse (LHCD). La stabilité de ces modes est particulièrement sensible aux détails de la fonction de distribution électronique et du facteur de sécurité, ce qui fait des fishbones électroniques un excellent candidat pour tester la théorie linéaire des instabilités liées aux particules rapides. Dans le tokamak Tore Supra, des fishbones électroniques sont couramment observés lors de décharges où l'utilisation de l'onde hybride basse crée une importante queue de particules rapides dans la fonction de distribution électronique. Bien que ces modes soit clairement liés à la présence de particules rapides, la fréquence observée de ces modes est plus basse que celle prévue par la théorie. En effet, si on estime l'énergie des électrons résonants en faisant correspondre la fréquence du mode avec la fréquence de précession toroidale des électrons faiblement piégés, on obtient une valeur comparable à celle des électrons thermiques. L'objet principal de cette thèse est l'analyse linéaire de la stabilité des fishbones électroniques. La relation de dispersion de ces modes est dérivée et la forme obtenue prend en compte, dans la condition de résonance, la contribution du mouvement parallèle des particules passantes. Cette relation de dispersion est implémentée dans le code MIKE qui est ensuite testé avec succès en utilisant des fonctions de distributions analytiques. En le couplant au code Fokker-Planck relativiste LUKE et à la plate-forme de simulation intégrée CRONOS, MIKE peut estimer la stabilité des fishbones électroniques en utilisant les données reconstruites de l'expérience. En utilisant des fonctions de distributions et des équilibres analytiques dans le code MIKE nous montrons que les électrons faiblement piégés ou faiblement passants peuvent déstabiliser le mode de kink interne en résonant avec lui. Si l'on s'éloigne de la frontière entre électrons passants et piégés, les effets résonants s'affaiblissent. Cependant les électrons passants conservent une influence déstabilisante alors que les électrons piégées tendent à stabiliser le mode. D'autres simulations avec MIKE, utilisant cette fois des distributions complètes similaires à celles obtenues en présence de chauffage de type ECRH, montrent que l'interaction avec les électrons faiblement passants peut entraîner une déstabilisation du mode à une fréquence relativement basse ce qui pourrait permettre d'expliquer les observations sur le tokamak Tore Supra
Reckenthäler, Peter. "Electron Pulses probing Plasma Dynamics and aligned Molecules." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-107542.
Full textBooks on the topic "Electron plasma"
Christophorou, Loucas G. Fundamental Electron Interactions with Plasma Processing Gases. Boston, MA: Springer US, 2004.
Find full textChristophorou, Loucas G., and James K. Olthoff. Fundamental Electron Interactions with Plasma Processing Gases. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-8971-0.
Full textIsihara, A. Electron Liquids. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.
Find full textK, Tripathi Vijai, ed. Interaction of electromagnetic waves with electron beams and plasmas. Singapore: World Scientific, 1994.
Find full textWilliams, John D. Plasma contactor research, 1989: Annual report. [Cleveland, Ohio]: Lewis Research Center, National Aeronautics and Space Administration, 1990.
Find full textBook chapters on the topic "Electron plasma"
Amemiya, H. "Electron-Free Plasma." In Dusty and Dirty Plasmas, Noise, and Chaos in Space and in the Laboratory, 111–21. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-1829-7_9.
Full textRosmej, Frank B., Valery A. Astapenko, and Valery S. Lisitsa. "Electron–Atom Collisions." In Plasma Atomic Physics, 181–248. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-05968-2_5.
Full textFridman, Alexander, and Lawrence A. Kennedy. "Electron Beam Plasmas." In Plasma Physics and Engineering, 635–63. 3rd ed. Third edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781315120812-14.
Full textKlingshirn, Claus F. "The Electron-Hole Plasma." In Semiconductor Optics, 561–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28362-8_21.
Full textDevia, A., P. J. Arango, and H. Barco. "Electromagnetic Oscillations in Cylindrical Plasmas with Electron Beams Interactions." In Plasma Physics, 321–26. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4758-3_27.
Full textMilewski, John O. "Lasers, Electron Beams, Plasma Arcs." In Additive Manufacturing of Metals, 85–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58205-4_5.
Full textGolant, V. E., and V. I. Fedorov. "Electron Cyclotron Heating." In RF Plasma Heating in Toroidal Fusion Devices, 93–110. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-1671-8_3.
Full textPiliya, A. D., and V. I. Fedorov. "Electron Cyclotron Plasma Heating in Tokamaks." In Reviews of Plasma Physics, 335–88. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1777-7_5.
Full textPiliya, A. D., and V. I. Fedorov. "Electron Cyclotron Plasma Heating in Tokamaks." In Reviews of Plasma Physics, 335–88. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-7778-2_5.
Full textNemzek, Robert J. "Diffusion of Echo 7 Electron Beams During Bounce Motion." In Auroral Plasma Dynamics, 173–81. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm080p0173.
Full textConference papers on the topic "Electron plasma"
Gyergyek, T. "Potential Formation in Front of an Electron Emitting Electrode in a Two-Electron Temperature Plasma." In PLASMA PHYSICS: 11th International Congress on Plasma Physics: ICPP2002. AIP, 2003. http://dx.doi.org/10.1063/1.1593918.
Full textGorgadze, Vladimir. "Injection into Electron Plasma Traps." In NON-NEUTRAL PLASMA PHYSICS V: Workshop on Non-Neutral Plasmas. AIP, 2003. http://dx.doi.org/10.1063/1.1635154.
Full textFill, Ernst E. "Electron Diffraction Experiments using Laser Plasma Electrons." In SUPERSTRONG FIELDS IN PLASMAS: Third International Conference on Superstrong Fields in Plasmas. AIP, 2006. http://dx.doi.org/10.1063/1.2195222.
Full textKabantsev, Andrey A., F. Valentini, and C. Fred Driscoll. "Experimental Investigation of Electron-Acoustic Waves in Electron Plasmas." In NON-NEUTRAL PLASMA PHYSICS VI: Workshop on Non-Neutral Plasmas 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2387902.
Full textDanehkar, A., I. Kourakis, and M. A. Hellberg. "Electron-acoustic solitons in an electron-beam plasma system with kappa-distributed electrons." In 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS). IEEE, 2014. http://dx.doi.org/10.1109/plasma.2014.7012747.
Full textDanehkar, Ashkbiz, Ioannis Kourakis, and Manfred A. Hellberg. "Electron-acoustic solitons in an electron-beam plasma system with kappa-distributed electrons." In 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS). IEEE, 2014. http://dx.doi.org/10.1109/plasma.2014.7012400.
Full textDanehkar, A., N. S. Saini, M. A. Hellberg, I. Kourakis, Vladimir Yu Nosenko, Padma K. Shukla, Markus H. Thoma, and Hubertus M. Thomas. "Electron beam—plasma interaction in a dusty plasma with excess suprathermal electrons." In DUSTY∕COMPLEX PLASMAS: BASIC AND INTERDISCIPLINARY RESEARCH: Sixth International Conference on the Physics of Dusty Plasmas. AIP, 2011. http://dx.doi.org/10.1063/1.3659815.
Full textLi, Benben, Thomas Houlahan, Clark J. Wagner, Paul A. Tchertchian, Dane J. Sievers, and J. Gary Eden. "The Plasma Bipolar Junction phototransistor: coupling electron-hole and electron-ion plasmas." In 2011 IEEE Photonics Conference (IPC). IEEE, 2011. http://dx.doi.org/10.1109/pho.2011.6110402.
Full textManservisi, S., V. G. Molinari, and A. Nespoli. "Electron distribution function in a strong electric field." In International Conference on Plasma Sciences (ICOPS). IEEE, 1993. http://dx.doi.org/10.1109/plasma.1993.593112.
Full textDanielson, J. R., and C. F. Driscoll. "Measurement of plasma mode damping in pure electron plasmas." In Non-neutral plasma physics III. AIP, 1999. http://dx.doi.org/10.1063/1.1302122.
Full textReports on the topic "Electron plasma"
Fiksel, G., A. F. Almagri, and D. Craig. High current plasma electron emitter. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/86867.
Full textGovil, R., S. Wheeler, and W. Leemans. Plasma lenses for focusing relativistic electron beams. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603710.
Full textPogorelsky, I. V., I. Ben-Zvi, and T. Hirose. Laser-electron Compton interaction in plasma channels. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/291126.
Full textPOGORELSKY, I. V. LASER-ELECTRON COMPTON INTERACTION IN PLASMA CHANNELS. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/10392.
Full textHershcovitch, Ady. Vortex stabilized electron beam compressed fusion grade plasma. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1127069.
Full textWilliams, Ronald L. Electron Beam Transport in Advanced Plasma Wave Accelerators. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1061446.
Full textWhittum, David H. Electron-Hose Instability in an Annular Plasma Sheath. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/9904.
Full textLumpkin, A. H., D. W. Rule, LaBerge M. LaBerge M., and M. C. Downer. Observations on Microbunching of Electrons in Laser-Driven Plasma Accelerators and Free-Electron Lasers. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1596020.
Full textWalker, D. N., R. F. Fernsler, D. D. Blackwell, and W. E. Amatucci. Electron Temperature Derived from Measurements of Complex Plasma Impedance. Fort Belvoir, VA: Defense Technical Information Center, October 2008. http://dx.doi.org/10.21236/ada488097.
Full textBerezhiani, V. I., and S. M. Mahajan. A relativistic solitary wave in electron-positron ion plasma. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10140474.
Full text