Academic literature on the topic 'Electron plasma'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electron plasma.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electron plasma"

1

BINGHAM, R., L. O. SILVA, J. T. MENDONCA, P. K. SHUKLA, W. B. MORI, and A. SERBETO. "PLASMA WAKES DRIVEN BY NEUTRINOS, PHOTONS AND ELECTRON BEAMS." International Journal of Modern Physics B 21, no. 03n04 (February 10, 2007): 343–50. http://dx.doi.org/10.1142/s0217979207042112.

Full text
Abstract:
There is considerable interest in the propagation dynamics of intense electron and photon neutrino beams in a background dispersive medium such as dense plasmas, particularly in the search for a mechanism to explain the dynamics of type II supernovae. Neutrino interactions with matter are usually considered as single particle interactions. All the single particle mechanisms describing the dynamical properties of neutrino's in matter are analogous with the processes involving single electron interactions with a medium such as Compton scattering, and Cerenkov radiation etc. However, it is well known that beams of electrons moving through a plasma give rise to a new class of processes known as collective interactions such as two stream instabilities which result in either the absorption or generation of plasma waves. Intense photon beams also drive collective interactions such as modulational type instabilities. In both cases relativistic electron beams of electrons and photon beams can drive plasma wakefields in plasmas. Employing the relativistic kinetic equations for neutrinos interacting with dense plasmas via the weak force we explore collective plasma streaming instabilities driven by Neutrino electron and photon beams and demonstrate that all three types of particles can drive wakefields.
APA, Harvard, Vancouver, ISO, and other styles
2

Kunze, H., R. Noll, C. R. Haas, M. Elfers, J. Hertzberg, and G. Herziger. "Pulsed-power-generated plasma of high reproducibility." Laser and Particle Beams 8, no. 4 (December 1990): 595–608. http://dx.doi.org/10.1017/s0263034600009022.

Full text
Abstract:
Plasmas of high reproducibility that are suitable for beam-plasma experiments are generated by a pulsed-power z-pinch discharge. The z-pinch device is designed as a plasma target for the investigation of ion beam-plasma interactions. The dynamic plasma state is characterized by the electron density, the electron temperature, and the magnetic field distribution, which are observed using time-resolved diagnostics. For z-pinch discharges in hydrogen, average electron densities of up to (2.6 ± 0.1) × 1018 electrons/cm3 were measured interferometrically. Electron temperatures in the range 2–7 eV are determined by time-resolved spectroscopy. The reproducibility of the electron density of the z-pinch discharge in terms of shot-to-shot fluctuations is estimated to be better than 3%. This is a favorable condition for performing beam-plasma experiments.
APA, Harvard, Vancouver, ISO, and other styles
3

ZHOU, C. T., M. Y. YU, and X. T. HE. "Electron acceleration by high current-density relativistic electron bunch in plasmas." Laser and Particle Beams 25, no. 2 (June 2007): 313–19. http://dx.doi.org/10.1017/s0263034607000171.

Full text
Abstract:
Electron acceleration by a short high-current relativistic electron bunch (EB) in plasmas at three characteristic densities is studied by particle-in-cell simulation. It is found that if the EB is appropriately matched to the background plasma, the blowout space-charge field of the EB can accelerate the trailing bunch electrons at very high energy gain rate. This high energy gain, as well as the large-amplitude wakefield, the turbulent small-scale electron plasma waves, and the formation of large current peaks, are studied. The evolution of the EB, its blowout field, and other related parameters are shown to be self-similar.
APA, Harvard, Vancouver, ISO, and other styles
4

Danehkar, A. "Electron beam-plasma interaction and electron-acoustic solitary waves in a plasma with suprathermal electrons." Plasma Physics and Controlled Fusion 60, no. 6 (April 26, 2018): 065010. http://dx.doi.org/10.1088/1361-6587/aabc40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shukla, Padma Kant, and Bengt Eliasson. "Localization of intense electromagnetic waves in plasmas." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1871 (January 24, 2008): 1757–69. http://dx.doi.org/10.1098/rsta.2007.2184.

Full text
Abstract:
We present theoretical and numerical studies of the interaction between relativistically intense laser light and a two-temperature plasma consisting of one relativistically hot and one cold component of electrons. Such plasmas are frequently encountered in intense laser–plasma experiments where collisionless heating via Raman instabilities leads to a high-energetic tail in the electron distribution function. The electromagnetic waves (EMWs) are governed by the Maxwell equations, and the plasma is governed by the relativistic Vlasov and hydrodynamic equations. Owing to the interaction between the laser light and the plasma, we can have trapping of electrons in the intense wakefield of the laser pulse and the formation of relativistic electron holes (REHs) in which laser light is trapped. Such electron holes are characterized by a non-Maxwellian distribution of electrons where we have trapped and free electron populations. We present a model for the interaction between laser light and REHs, and computer simulations that show the stability and dynamics of the coupled electron hole and EMW envelopes.
APA, Harvard, Vancouver, ISO, and other styles
6

ELIASSON, BENGT, and PADMA KANT SHUKLA. "Dispersion properties of electrostatic oscillations in quantum plasmas." Journal of Plasma Physics 76, no. 1 (October 27, 2009): 7–17. http://dx.doi.org/10.1017/s0022377809990316.

Full text
Abstract:
AbstractWe present a derivation of the dispersion relation for electrostatic oscillations in a zero-temperature quantum plasma, in which degenerate electrons are governed by the Wigner equation, while non-degenerate ions follow the classical fluid equations. The Poisson equation determines the electrostatic wave potential. We consider parameters ranging from semiconductor plasmas to metallic plasmas and electron densities of compressed matter such as in laser compression schemes and dense astrophysical objects. Owing to the wave diffraction caused by overlapping electron wave function because of the Heisenberg uncertainty principle in dense plasmas, we have the possibility of Landau damping of the high-frequency electron plasma oscillations at large enough wavenumbers. The exact dispersion relations for the electron plasma oscillations are solved numerically and compared with the ones obtained by using approximate formulas for the electron susceptibility in the high- and low-frequency cases.
APA, Harvard, Vancouver, ISO, and other styles
7

BARRIGA-CARRASCO, M. D., and A. Y. POTEKHIN. "Proton stopping in plasmas considering e−–e− collisions." Laser and Particle Beams 24, no. 4 (October 2006): 553–58. http://dx.doi.org/10.1017/s0263034606060733.

Full text
Abstract:
The purpose of the present paper is to describe the effects of electron-electron collisions on proton electronic stopping in plasmas of any degeneracy. Plasma targets are considered fully ionized so electronic stopping is only due to the free electrons. The stopping due to free electrons is obtained from an exact quantum mechanical evaluation in the random phase approximation, which takes into account the degeneracy of the target plasma. The result is compared with common classical and degenerate approximations. Differences are around 30% in some cases which can produce bigger mistakes in further energy deposition and projectile range studies. We focus our analysis on plasmas in the limit of weakly coupled plasmas then electron-electron collisions have to be considered. Differences with the same results without taking into account collisions are more than 50%.
APA, Harvard, Vancouver, ISO, and other styles
8

El-Hanbaly, A. M., E. K. El-Shewy, A. I. Kassem, and H. F. Darweesh. "Nonlinear Electron Acoustic Waves in Dissipative Plasma with Superthermal Electrons." Applied Physics Research 8, no. 1 (January 29, 2016): 64. http://dx.doi.org/10.5539/apr.v8n1p64.

Full text
Abstract:
The nonlinear properties of small amplitude electron-acoustic ( EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma consisted of a cold electron fluid and superthermal hot electrons obeying superthermal distribution, and stationary ions have been investigated. A reductive perturbation method was employed to obtain the Kadomstev-Petviashvili-Burgers (KP-Brugers) equation. Some solutions of physical interest are obtained. These solutions are related to soliton, monotonic and oscillatory shock waves and their behaviour are shown graphically. The formation of these solutions depends crucially on the value of the Burgers term and the plasma parameters as well. By using the tangent hyperbolic (tanh) method, another interesting type of solution which is a combination between shock and soliton waves is obtained . The topology of phase portrait and potential diagram of the KP-Brugers equation is investigated.The advantage of using this method is that one can predict different classes of the travelling wave solutions according to different phase orbits. The obtained results may be helpful in better understanding of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.
APA, Harvard, Vancouver, ISO, and other styles
9

Yasuda, Hirotsugu, Loic Ledernez, Fethi Olcaytug, and Gerald Urban. "Electron dynamics of low-pressure deposition plasma." Pure and Applied Chemistry 80, no. 9 (January 1, 2008): 1883–92. http://dx.doi.org/10.1351/pac200880091883.

Full text
Abstract:
When the electric field in the dark gas phase reaches the threshold value, an electron avalanche (breakdown) occurs, which causes dissociation of organic molecules, excitation of chemically reactive molecular gas, and/or ionization of atomic gas, depending on the type of gas involved. The principles that govern these electron-impact reactions are collectively described by the term "electron dynamics". The electron-impact dissociation of organic molecules is the key factor for the deposition plasma. The implications of the interfacial avalanche of the primary electrons on the deposition plasma and also other plasma processes are discussed. The system dependency of low-pressure plasma deposition processes is an extremely important factor that should be reckoned, because the electron dynamic reactions are highly dependent on every aspect of the reaction system. The secondary electron emission from the cathode is a misinterpretation of the interfacial electron avalanche of the primary electrons described in this paper.
APA, Harvard, Vancouver, ISO, and other styles
10

Saito, S., F. R. E. Forme, S. C. Buchert, S. Nozawa, and R. Fujii. "Effects of a kappa distribution function of electrons on incoherent scatter spectra." Annales Geophysicae 18, no. 9 (September 30, 2000): 1216–23. http://dx.doi.org/10.1007/s00585-000-1216-2.

Full text
Abstract:
Abstract. In usual incoherent scatter data analysis, the plasma distribution function is assumed to be Maxwellian. In space plasmas, however, distribution functions with a high energy tail which can be well modeled by a generalized Lorentzian distribution function with spectral index kappa (kappa distribution) have been observed. We have theoretically calculated incoherent scatter spectra for a plasma that consists of electrons with kappa distribution function and ions with Maxwellian neglecting the effects of the magnetic field and collisions. The ion line spectra have a double-humped shape similar to those from a Maxwellian plasma. The electron temperatures are underestimated, however, by up to 40% when interpreted assuming Maxwellian distribution. Ion temperatures and electron densities are affected little. Accordingly, actual electron temperatures might be underestimated when an energy input maintaining a high energy tail exists. We have also calculated plasma lines with the kappa distribution function. They are enhanced in total strength, and the peak frequencies appear to be slightly shifted to the transmitter frequency compared to the peak frequencies for a Maxwellian distribution. The damping rate depends on the electron temperature. For lower electron temperatures, plasma lines for electrons with a κ distribution function are more strongly damped than for a Maxwellian distribution. For higher electron temperatures, however, they have a relatively sharp peak.Key words: Ionosphere (auroral ionosphere; plasma waves and instabilities) – Space plasma physics (kinetic and MHD theory)
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Electron plasma"

1

Lai, Chi-hsuan. "Neutrino electron plasma instability /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McGregor, Duncan Ekundayo. "Electron cyclotron heating and current drive using the electron Bernstein modes." Thesis, St Andrews, 2007. http://hdl.handle.net/10023/212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jacobson, Craig Michael. "Electron transport in plasmas with lithium-coated plasma-facing components." Thesis, Princeton University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3615076.

Full text
Abstract:

The Lithium Tokamak Experiment (LTX) is a spherical tokamak designed to study the lowrecycling regime through the use of lithium-coated shells conformal to the last closed flux surface (LCFS). A lowered recycling rate is expected to flatten core Te profiles, raise edge Te, strongly affect n e profiles, and enhance confinement.

To study these unique plasmas, a Thomson scattering diagnostic uses a ≤ 20 J, 30 ns FWHM pulsed ruby laser to measure Te and ne at 11 radial points on the horizontal midplane, spaced from the magnetic axis to the outer edge at a single temporal point for each discharge. Scattered light is imaged through a spectrometer onto an intensified CCD. The diagnostic is absolutely calibrated using a precision light source and Raman scattering. Measurements of n e are compared with line integrated density measurements from a microwave interferometer. Adequate signal to noise is obtained with ne ≥ 2 ×10 18 m–3.

Thomson profiles of plasmas following evaporation of lithium onto room-temperature plasmafacing components (PFCs) are used in conjunction with magnetic equilibria as input for TRANSP modeling runs. Neoclassical calculations are used to determine Ti profiles, which have levels that agree with passive charge exchange recombination spectroscopy (CHERS) measurements. TRANSP results for confinement times and stored energies agree with diamagnetic loop measurements. Results of χe result in values as low as 7 m2/s near the core, which rise to around 100 m2/s near the edge. These are the first measurements of χe in LTX, or its predecessor, the Current Drive Experiment-Upgrade (CDX-U), with lithium PFCs.

APA, Harvard, Vancouver, ISO, and other styles
4

Sandoval, Parra Astor Emar. "Electron heating in a collisionless plasma." Tesis, Universidad de Chile, 2019. http://repositorio.uchile.cl/handle/2250/172658.

Full text
Abstract:
Tesis para optar al grado de Magíster en Ciencias, Mención Física
Los plasmas son comunes en diferentes sistemas astronómicos. Una parte importante de estos plasmas están en el régimen no colisional, en que el camino libre medio de las partículas que lo componen es más grande que el tamaño del sistema. Un ejemplo de este tipo de objetos es el disco de acreción que se encuentra en las cercanías del agujero negro ubicado en el centro de la Vía Láctea, Sagitario A* (Sgr A*). Por su baja colisionalidad, se espera que el plasma en Sgr A* no siga una distribución de Maxwell-Boltzmann. Además, por la mayor eficiencia radiativa de los electrones, es también esperable que estos tengan menor temperatura que los iones. El grado en que se calientan los electrones en un sistema no colisional, así como su espectro de energía, tienen importantes consecuencias observacionales. Existen diversos mecanismos que pueden transferir energía a los electrones. Entre ellos están: reconexión magnética, interacción onda-partícula, y viscosidad anisotrópica. En esta tesis nos enfocamos en el calentamiento de electrones por medio de la interacción onda partícula y por calentamiento viscoso. Para ello realizamos simulaciones ``particle-in-cell'' (o PIC) de un plasma no colisional, magnetizado y sujeto a un cizalle permanente. Este cizalle produce una amplificación del campo magnético, obteniéndose así una anisotropía de presión en las particulas, debido a la invarianza adiabatica de su momento magnetico. Esta anisotropía produce inestabilidades cinéticas en el plasma, las que propagan ondas en escalas del radio de Larmor de las partículas. Algunos ejemplos relevantes para nuestro estudio son las inestabilidades de whistler e ion-ciclotrón. Estas inestabilidades pueden resonar preferentemente con los electrones e iones, respectivamente, otorgando o quitando energía a las partículas. Realizamos simulaciones con moderadas razones de masa entre iones y electrones, para estudiar a los electrones en el régimen cinético. Consideramos consistentemente el régimen no-lineal y cuasi-estacionario de las inestabilidades. Estudiamos el calentamiento de los electrones, y se encontró que estos se calientan principalmente por viscosidad. Sin embargo, se encontró un calentamiento extra, el que es transferido desde los iones a los electrones debido a la interacción de estos últimos con las ondas ion-ciclotrón (las que a su vez son principalmente producidas por los iones). Este calentamiento extra aumenta con la magnetización y disminuye al aumentar la razón de masa y la temperatura de los iones. Además, la componente no térmica del espectro de energía de los electrones se ve fuertemente modificada cuando el radio de Larmor de estos es similar al de los iones. Esta componente no térmica se asemeja bastante a lo que se infiere de observaciones de sistemas como Sgr A*. Nuestro trabajo nos permitió entonces encontrar condiciones que facilitan el calentamiento y aceleración no térmica de electrones debido a la transferencia de energía entre iones y electrones en plasmas no colisionales.
APA, Harvard, Vancouver, ISO, and other styles
5

Bocoum, Maïmouna. "Harmonic and electron generation from laser-driven plasma mirrors." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX023/document.

Full text
Abstract:
Dans cette thèse expérimentale, nous nous intéressons à la réponse non-linéaire d’un miroir plasma sous l’influence d’un laser d’intensité sous-relativiste (~10^18 W/cm^2), et de très courte durée (~30fs). Nous avons en particulier étudié la génération d’impulsions attosecondes (1as=10^(-18) s) et de faisceaux d’électrons en effectuant des expériences dites de « pompe-sonde » contrôlées. Un premier résultat important est l’observation d’une anti-corrélation entre l’émission X-UV attoseconde et l’accélération d’électron lorsque l’on change la longueur caractéristique du plasma, résultats confirmés par des simulations numériques. Un second résultat important concerne le diagnostique de l’expansion du plasma sous vide par « interférométrie en domaine spatial » (SDI), technique élaborée dans le cadre de cette thèse. Enfin nous discutons à deux reprises l’utilisation d’algorithmes de reconstruction de phase dans le domaine spatiale ou temporel.De manière plus générale, nous avons cherché à replacer ce travail de thèse dans un contexte scientifique plus général. En particulier, nous tentons de convaincre le lecteur qu’à travers l’intéraction laser-miroir plasma, il devient concevable de fournir un jour aux utilisateurs des sources peu onéreuses d’impulsions X-UV et de faisceaux d’électrons de résolutions temporelles inégalées
The experimental work presented in this manuscript focuses on the non-linear response of plasma mirrors when driven by a sub-relativistic (~10^18 W/cm^2) ultra-short (~30fs) laser pulse. In particular, we studied the generation of attosecond pulses (1as=10^(-18) s) and electron beams from plasma mirror generated in controlled pump-probe experiment. One first important result exposed in this manuscript is the experimental observation of the anticorrelated emission behavior between high-order harmonics and electron beams with respect to plasma scale length. The second important result is the presentation of the « spatial domain interferometry » (SDI) diagnostic, developed during this PhD to measure the plasma expansion in vacuum. Finally, we will discuss the implementation of phase retrieval algorithms for both spatial and temporal phase reconstructions.From a more general point of view, we replace this PhD in its historical context. We hope to convince the reader that through laser-plasma mirror interaction schemes, we could tomorrow conceive cost-efficient X-UV and energetic electron sources with unprecedented temporal resolutions
APA, Harvard, Vancouver, ISO, and other styles
6

Langendorf, Samuel J. "Effects of electron emission on plasma sheaths." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54383.

Full text
Abstract:
Current state-of-the-art plasma thrusters are limited in power density and thrust density by power losses to plasma-facing walls and electrodes. In the case of Hall effect thrusters, power deposition to the discharge channel walls and anode negatively impact the efficiency of the thruster and limit the attainable power density and thrust density. The current work aims to recreate thruster-relevant wall-interaction physics in a quiescent plasma and investigate them using electrostatic probes, in order to inform the development of the next generation of high-power-density / high-thrust-density propulsion devices. Thruster plasma-wall interactions are complicated by the occurrence of the plasma sheath, a thin boundary layer that forms between a plasma and its bounding wall where electrostatic forces dominate. Sheaths have been recognized since the seminal work of Langmuir in the early 1900’s, and the theory of sheaths has been greatly developed to the present day. The theories are scalable across a wide range of plasma parameters, but due to the difficulty of obtaining experimental measurements of plasma properties in the sheath region, there is little experimental data available to directly support the theoretical development. Sheaths are difficult to measure in situ in thrusters due to the small physical length scale of the sheath (order of micrometers in thruster plasmas) and the harsh plasma environment of the thruster. Any sufficiently small probe will melt, and available optical plasma diagnostics do not have the sensitivity and/or spatial resolution to resolve the sheath region. The goal of the current work is to experimentally characterize plasma sheaths xxvi in a low-density plasma that yields centimeter-thick sheath layers. By generating thick sheaths, spatially-resolved data can obtained using electrostatic probes. The investigation focuses on the effects of electron emission from the wall and several factors that influence it, including wall material, wall temperature, wall surface roughness and topology, as well as the scaling of sheaths from the low-density plasma environment towards thruster conditions. The effects of electron emission and wall material are found to agree with classical fluid and kinetic theory extended from literature. In conditions of very strong emission from the wall, evidence is found for a full transition in sheath polarities rather than a non-monotonic structure. Wall temperature is observed to have no effect on the sheath over boron nitride walls independent of outgassing on initial heat-up, for sub-thermionic temperatures. Wall roughness is observed to postpone the effects of electron emission to higher plasma temperatures, indicating that the rough wall impairs the wall’s overall capacity to emit electrons. Reductions in electron yield are not inconsistent with a diffuse-emission geometric trapping model. Collectively, the experimental data provide an improved grounding for thruster modeling and design.Current state-of-the-art plasma thrusters are limited in power density and thrust density by power losses to plasma-facing walls and electrodes. In the case of Hall effect thrusters, power deposition to the discharge channel walls and anode negatively impact the efficiency of the thruster and limit the attainable power density and thrust density. The current work aims to recreate thruster-relevant wall-interaction physics in a quiescent plasma and investigate them using electrostatic probes, in order to inform the development of the next generation of high-power-density / high-thrust-density propulsion devices. Thruster plasma-wall interactions are complicated by the occurrence of the plasma sheath, a thin boundary layer that forms between a plasma and its bounding wall where electrostatic forces dominate. Sheaths have been recognized since the seminal work of Langmuir in the early 1900’s, and the theory of sheaths has been greatly developed to the present day. The theories are scalable across a wide range of plasma parameters, but due to the difficulty of obtaining experimental measurements of plasma properties in the sheath region, there is little experimental data available to directly support the theoretical development. Sheaths are difficult to measure in situ in thrusters due to the small physical length scale of the sheath (order of micrometers in thruster plasmas) and the harsh plasma environment of the thruster. Any sufficiently small probe will melt, and available optical plasma diagnostics do not have the sensitivity and/or spatial resolution to resolve the sheath region. The goal of the current work is to experimentally characterize plasma sheaths xxvi in a low-density plasma that yields centimeter-thick sheath layers. By generating thick sheaths, spatially-resolved data can obtained using electrostatic probes. The investigation focuses on the effects of electron emission from the wall and several factors that influence it, including wall material, wall temperature, wall surface roughness and topology, as well as the scaling of sheaths from the low-density plasma environment towards thruster conditions. The effects of electron emission and wall material are found to agree with classical fluid and kinetic theory extended from literature. In conditions of very strong emission from the wall, evidence is found for a full transition in sheath polarities rather than a non-monotonic structure. Wall temperature is observed to have no effect on the sheath over boron nitride walls independent of outgassing on initial heat-up, for sub-thermionic temperatures. Wall roughness is observed to postpone the effects of electron emission to higher plasma temperatures, indicating that the rough wall impairs the wall’s overall capacity to emit electrons. Reductions in electron yield are not inconsistent with a diffuse-emission geometric trapping model. Collectively, the experimental data provide an improved grounding for thruster modeling and design.
APA, Harvard, Vancouver, ISO, and other styles
7

Alinder, Simon. "Electron cooling in a cometary coma." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-324842.

Full text
Abstract:
The ESA Rosetta spacecraft investigated comet 67P/Churyumov-Gerasimenko duringtwo years from August 2014 to the end of September 2016. The dual Langmuir probewas used to measure plasma parameters including the thermal energy of theelectrons. The observed thermal energy (or temperature) of the electrons was ratherhigh, in the range 5-10 eV almost throughout the mission. However, near perihelionthe Langmuir probe measurements indicated the prevalence of two electronpopulations with distinct temperatures, one hot (5-10 eV) and one cold (less than 1eV). It has been hypothesized that the electrons of the colder population wereformed relatively close to the nucleus and that they subsequently cooled by inelasticcollisions with the neutral gas. In this project work we develop a model for studyingelectron cooling in a cometary coma. The model takes into account collisions withwater molecules as well as the influence of a radial ambipolar electric field.
Rymdsonden Rosetta från ESA undersökte kometen 67P/Churyumov Gerasimenkounder mer än två år, från augusti 2014 till slutet av september 2016.En Langumirprob användes för att undersökta plasmamiljön runt kometen, tillexempel elektronernas termiska energi. Den observerade termiska energin förelektronerna (eller elektrontemperaturen) var ganska hög, ca 5-10 eV undernästan hela uppdraget, men när kometen var nära perihelium detekterade instrumentenäven kalla elektroner, med en energi under 1 eV, distinkta från devarma. En hypotes är att dessa kalla elektroner bildas nära kärnan av att varmaelektroner genomgår inelastiska kollisioner med den neutrala gasen och tapparsin energi. I detta projekt utvecklar vi en modell för att studera elektronernasbeteende i koman. Modellen tar hänsyn till kollisioner med neutrala vattenmolekylersåväl som påverkan av ett radiellt ambipolärt elektriskt fält.
APA, Harvard, Vancouver, ISO, and other styles
8

Löfgren, Torbjörn. "Numerical modeling of electron beam-plasma interactions." Doctoral thesis, KTH, Alfvén Laboratory, 1999. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Merle, Antoine. "Stability and properties of electron-driven fi shbones in tokamaks." Palaiseau, Ecole polytechnique, 2012. https://pastel.hal.science/docs/00/77/31/03/PDF/Merle_PhD.pdf.

Full text
Abstract:
In tokamaks, the stability of magneto-hydrodynamic modes can be modified by populations of energetic particles. In ITER-type fusion reactors, such populations can be generated by fusion reactions or auxiliary heating. The electron-driven fishbone mode belongs to this category of instabilities. It results from the resonant interaction of the internal kink mode with the slow toroidal precessional motion of energetic electrons and is frequently observed in present-day tokamaks with Electron Cyclotron Resonance Heating or Lower Hybrid Current Drive. These modes provide a good test bed for the linear theory of fast-particle driven instabilities as they exhibit a very high sensitivity to the details of both the equilibrium and the electronic distribution function. In Tore Supra, electron-driven fishbones are observed during LHCD-powered discharges in which a high-energy tail of the electronic distribution function is created. Although the destabilization of those modes is related to the existence of a fast particle population, the modes are observed at a frequency that is lower than expected. Indeed, the corresponding energy assuming resonance with the toroidal precession frequency of barely trapped electrons falls in the thermal range. The linear stability analysis of electron-driven fishbone modes is the main focus of this thesis. The fishbone dispersion relation is derived in a form that accounts for the contribution of the parallel motion of passing particles to the resonance condition. The MIKE code is developed to compute and solve the dispersion relation of electron-driven fishbones. The code is successfully benchmarked against theory using simple analytical distributions. When coupled to the relativistic Fokker-Planck code LUKE and to the integrated modeling platform CRONOS, it is used to compute the stability of electron-driven fishbones using reconstructed data from tokamak experiments. Using the code MIKE with parametric distributions and equilibria, we show that both barely trapped and barely passing electrons resonate with the mode and can drive it unstable. More deeply trapped and passing electrons have a non-resonant effect on the mode that is, respectively, stabilizing and destabilizing. MIKE simulations using complete ECRH-like distribution functions show that energetic barely passing electrons can contribute to drive a mode unstable at a relatively low frequency. This observation could provide some insight to the understanding of Tore Supra experiments
La stabilité des modes magnéto-hydrodynamiques dans les plasmas de tokamaks est modifiée par la présence de particules rapides. Dans un tokamak tel qu'ITER ces particules rapides peuvent être soit les particules alpha créées par les réactions de fusion, soit les ions et électrons accélérés par les dispositifs de chauffage additionnel et de génération de courant. Les modes appelés fishbones électroniques correspondent à la déstabilisation du mode de kink interne due à la résonance avec le lent mouvement de précession toroidale des électrons rapides. Ces modes sont fréquemment observés dans les plasmas des tokamaks actuels en présence de chauffage par onde cyclotronique électronique (ECRH) ou de génération de courant par onde hybride basse (LHCD). La stabilité de ces modes est particulièrement sensible aux détails de la fonction de distribution électronique et du facteur de sécurité, ce qui fait des fishbones électroniques un excellent candidat pour tester la théorie linéaire des instabilités liées aux particules rapides. Dans le tokamak Tore Supra, des fishbones électroniques sont couramment observés lors de décharges où l'utilisation de l'onde hybride basse crée une importante queue de particules rapides dans la fonction de distribution électronique. Bien que ces modes soit clairement liés à la présence de particules rapides, la fréquence observée de ces modes est plus basse que celle prévue par la théorie. En effet, si on estime l'énergie des électrons résonants en faisant correspondre la fréquence du mode avec la fréquence de précession toroidale des électrons faiblement piégés, on obtient une valeur comparable à celle des électrons thermiques. L'objet principal de cette thèse est l'analyse linéaire de la stabilité des fishbones électroniques. La relation de dispersion de ces modes est dérivée et la forme obtenue prend en compte, dans la condition de résonance, la contribution du mouvement parallèle des particules passantes. Cette relation de dispersion est implémentée dans le code MIKE qui est ensuite testé avec succès en utilisant des fonctions de distributions analytiques. En le couplant au code Fokker-Planck relativiste LUKE et à la plate-forme de simulation intégrée CRONOS, MIKE peut estimer la stabilité des fishbones électroniques en utilisant les données reconstruites de l'expérience. En utilisant des fonctions de distributions et des équilibres analytiques dans le code MIKE nous montrons que les électrons faiblement piégés ou faiblement passants peuvent déstabiliser le mode de kink interne en résonant avec lui. Si l'on s'éloigne de la frontière entre électrons passants et piégés, les effets résonants s'affaiblissent. Cependant les électrons passants conservent une influence déstabilisante alors que les électrons piégées tendent à stabiliser le mode. D'autres simulations avec MIKE, utilisant cette fois des distributions complètes similaires à celles obtenues en présence de chauffage de type ECRH, montrent que l'interaction avec les électrons faiblement passants peut entraîner une déstabilisation du mode à une fréquence relativement basse ce qui pourrait permettre d'expliquer les observations sur le tokamak Tore Supra
APA, Harvard, Vancouver, ISO, and other styles
10

Reckenthäler, Peter. "Electron Pulses probing Plasma Dynamics and aligned Molecules." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-107542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Electron plasma"

1

Christophorou, Loucas G. Fundamental Electron Interactions with Plasma Processing Gases. Boston, MA: Springer US, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Christophorou, Loucas G., and James K. Olthoff. Fundamental Electron Interactions with Plasma Processing Gases. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-8971-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Isihara, A. Electron Liquids. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

K, Tripathi Vijai, ed. Interaction of electromagnetic waves with electron beams and plasmas. Singapore: World Scientific, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Williams, John D. Plasma contactor research, 1989: Annual report. [Cleveland, Ohio]: Lewis Research Center, National Aeronautics and Space Administration, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Isihara, Akira. Electron liquids. New York: Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Isihara, Akira. Electron liquids. 2nd ed. Berlin: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Isihara, A. Electron liquids. London: Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Isihara, A. Electron liquids. 2nd ed. New York: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Guest, Gareth. Electron cyclotron heating of plasmas. Weinheim: Wiley-VCH, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Electron plasma"

1

Amemiya, H. "Electron-Free Plasma." In Dusty and Dirty Plasmas, Noise, and Chaos in Space and in the Laboratory, 111–21. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-1829-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rosmej, Frank B., Valery A. Astapenko, and Valery S. Lisitsa. "Electron–Atom Collisions." In Plasma Atomic Physics, 181–248. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-05968-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fridman, Alexander, and Lawrence A. Kennedy. "Electron Beam Plasmas." In Plasma Physics and Engineering, 635–63. 3rd ed. Third edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781315120812-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Klingshirn, Claus F. "The Electron-Hole Plasma." In Semiconductor Optics, 561–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28362-8_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Devia, A., P. J. Arango, and H. Barco. "Electromagnetic Oscillations in Cylindrical Plasmas with Electron Beams Interactions." In Plasma Physics, 321–26. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4758-3_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Milewski, John O. "Lasers, Electron Beams, Plasma Arcs." In Additive Manufacturing of Metals, 85–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58205-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Golant, V. E., and V. I. Fedorov. "Electron Cyclotron Heating." In RF Plasma Heating in Toroidal Fusion Devices, 93–110. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-1671-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Piliya, A. D., and V. I. Fedorov. "Electron Cyclotron Plasma Heating in Tokamaks." In Reviews of Plasma Physics, 335–88. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1777-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Piliya, A. D., and V. I. Fedorov. "Electron Cyclotron Plasma Heating in Tokamaks." In Reviews of Plasma Physics, 335–88. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-7778-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nemzek, Robert J. "Diffusion of Echo 7 Electron Beams During Bounce Motion." In Auroral Plasma Dynamics, 173–81. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm080p0173.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electron plasma"

1

Gyergyek, T. "Potential Formation in Front of an Electron Emitting Electrode in a Two-Electron Temperature Plasma." In PLASMA PHYSICS: 11th International Congress on Plasma Physics: ICPP2002. AIP, 2003. http://dx.doi.org/10.1063/1.1593918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gorgadze, Vladimir. "Injection into Electron Plasma Traps." In NON-NEUTRAL PLASMA PHYSICS V: Workshop on Non-Neutral Plasmas. AIP, 2003. http://dx.doi.org/10.1063/1.1635154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fill, Ernst E. "Electron Diffraction Experiments using Laser Plasma Electrons." In SUPERSTRONG FIELDS IN PLASMAS: Third International Conference on Superstrong Fields in Plasmas. AIP, 2006. http://dx.doi.org/10.1063/1.2195222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kabantsev, Andrey A., F. Valentini, and C. Fred Driscoll. "Experimental Investigation of Electron-Acoustic Waves in Electron Plasmas." In NON-NEUTRAL PLASMA PHYSICS VI: Workshop on Non-Neutral Plasmas 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2387902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Danehkar, A., I. Kourakis, and M. A. Hellberg. "Electron-acoustic solitons in an electron-beam plasma system with kappa-distributed electrons." In 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS). IEEE, 2014. http://dx.doi.org/10.1109/plasma.2014.7012747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Danehkar, Ashkbiz, Ioannis Kourakis, and Manfred A. Hellberg. "Electron-acoustic solitons in an electron-beam plasma system with kappa-distributed electrons." In 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS). IEEE, 2014. http://dx.doi.org/10.1109/plasma.2014.7012400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Danehkar, A., N. S. Saini, M. A. Hellberg, I. Kourakis, Vladimir Yu Nosenko, Padma K. Shukla, Markus H. Thoma, and Hubertus M. Thomas. "Electron beam—plasma interaction in a dusty plasma with excess suprathermal electrons." In DUSTY∕COMPLEX PLASMAS: BASIC AND INTERDISCIPLINARY RESEARCH: Sixth International Conference on the Physics of Dusty Plasmas. AIP, 2011. http://dx.doi.org/10.1063/1.3659815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Benben, Thomas Houlahan, Clark J. Wagner, Paul A. Tchertchian, Dane J. Sievers, and J. Gary Eden. "The Plasma Bipolar Junction phototransistor: coupling electron-hole and electron-ion plasmas." In 2011 IEEE Photonics Conference (IPC). IEEE, 2011. http://dx.doi.org/10.1109/pho.2011.6110402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Manservisi, S., V. G. Molinari, and A. Nespoli. "Electron distribution function in a strong electric field." In International Conference on Plasma Sciences (ICOPS). IEEE, 1993. http://dx.doi.org/10.1109/plasma.1993.593112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Danielson, J. R., and C. F. Driscoll. "Measurement of plasma mode damping in pure electron plasmas." In Non-neutral plasma physics III. AIP, 1999. http://dx.doi.org/10.1063/1.1302122.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Electron plasma"

1

Fiksel, G., A. F. Almagri, and D. Craig. High current plasma electron emitter. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/86867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Govil, R., S. Wheeler, and W. Leemans. Plasma lenses for focusing relativistic electron beams. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pogorelsky, I. V., I. Ben-Zvi, and T. Hirose. Laser-electron Compton interaction in plasma channels. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/291126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

POGORELSKY, I. V. LASER-ELECTRON COMPTON INTERACTION IN PLASMA CHANNELS. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/10392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hershcovitch, Ady. Vortex stabilized electron beam compressed fusion grade plasma. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1127069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Williams, Ronald L. Electron Beam Transport in Advanced Plasma Wave Accelerators. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1061446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Whittum, David H. Electron-Hose Instability in an Annular Plasma Sheath. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/9904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lumpkin, A. H., D. W. Rule, LaBerge M. LaBerge M., and M. C. Downer. Observations on Microbunching of Electrons in Laser-Driven Plasma Accelerators and Free-Electron Lasers. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1596020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Walker, D. N., R. F. Fernsler, D. D. Blackwell, and W. E. Amatucci. Electron Temperature Derived from Measurements of Complex Plasma Impedance. Fort Belvoir, VA: Defense Technical Information Center, October 2008. http://dx.doi.org/10.21236/ada488097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Berezhiani, V. I., and S. M. Mahajan. A relativistic solitary wave in electron-positron ion plasma. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10140474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography