Academic literature on the topic 'Electron-poor alkenes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electron-poor alkenes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electron-poor alkenes"

1

Bower, John F., Timothy P. Aldhous, Raymond W. M. Chung, and Andrew G. Dalling. "Enantioselective Intermolecular Murai-Type Alkene Hydroarylation Reactions." Synthesis 53, no. 17 (2021): 2961–75. http://dx.doi.org/10.1055/s-0040-1720406.

Full text
Abstract:
AbstractStrategies that enable the efficient assembly of complex building blocks from feedstock chemicals are of paramount importance to synthetic chemistry. Building upon the pioneering work of Murai and co-workers in 1993, C–H-activation-based enantioselective hydroarylations of alkenes offer a particularly promising framework for the step- and atom-economical installation of benzylic stereocenters. This short review presents recent intermolecular enantioselective Murai-type alkene hydroarylation methodologies and the mechanisms by which they proceed.1 Introduction2 Enantioselective Hydroary
APA, Harvard, Vancouver, ISO, and other styles
2

Hajdók, Imre, Falk Lissner, Martin Nieger, Sabine Strobel, and Dietrich Gudat. "Diphosphination of Electron Poor Alkenes." Organometallics 28, no. 6 (2009): 1644–51. http://dx.doi.org/10.1021/om801179k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Clennan, Edward L., Jakub P. Sram, Andrea Pace, Katie Vincer, and Sophia White. "Intrazeolite Photooxidations of Electron-Poor Alkenes." Journal of Organic Chemistry 67, no. 11 (2002): 3975–78. http://dx.doi.org/10.1021/jo025657c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mieusset, Jean-Luc, Michael Abraham, and Udo H. Brinker. "Carbene−Alkene Complexes between a Nucleophilic Carbene and Electron-Poor Alkenes†." Journal of the American Chemical Society 130, no. 44 (2008): 14634–39. http://dx.doi.org/10.1021/ja8042118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dixon, Craig E., Jeffrey A. Cooke, and Kim M. Baines. "The Reaction of Group 14 Dimetallenes with Alkenes: Electron-Poor Alkenes." Organometallics 16, no. 25 (1997): 5437–40. http://dx.doi.org/10.1021/om970638s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Navarro, Miquel, Alberto Toledo, Sonia Mallet-Ladeira, E. Daiann Sosa Carrizo, Karinne Miqueu та Didier Bourissou. "Versatility and adaptative behaviour of the P^N chelating ligand MeDalphos within gold(i) π complexes". Chemical Science 11, № 10 (2020): 2750–58. http://dx.doi.org/10.1039/c9sc06398f.

Full text
Abstract:
The hemilabile P^N ligand MeDalphos enables access to a wide range of stable gold(i) π-complexes with unbiased alkenes and alkynes, as well as electron-rich alkenes and for the first time electron-poor ones.
APA, Harvard, Vancouver, ISO, and other styles
7

Baird, Mark S., Michele E. Gerrard, and Robert J. G. Searle. "Trapping of the tribromomethylanion by electron poor alkenes." Tetrahedron Letters 26, no. 51 (1985): 6353–56. http://dx.doi.org/10.1016/s0040-4039(01)84597-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bonini, Carlo, Maurizio D'Auria, Rachele Ferri, Rachele Pucciariello, and Anna Rita Sabia. "Graft copolymers of lignin with electron poor alkenes." Journal of Applied Polymer Science 90, no. 4 (2003): 1163–71. http://dx.doi.org/10.1002/app.12801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ballini, R., L. Barboni, G. Bosica, D. Fiorini, and A. Palmieri. "Synthesis of fine chemicals by the conjugate addition of nitroalkanes to electrophilic alkenes." Pure and Applied Chemistry 78, no. 10 (2006): 1857–66. http://dx.doi.org/10.1351/pac200678101857.

Full text
Abstract:
Several aliphatic nitro compounds have been employed as stabilized carbanions in the conjugate addition to a variety of electron-poor alkenes (Michael reaction). Depending on the nature of the alkene, new carbon-carbon single or double bonds can be generated. However, all the Michael adducts can be efficiently utilized as key building blocks for the synthesis of a huge array of fine chemicals, including homo- and heterocyclic structures.
APA, Harvard, Vancouver, ISO, and other styles
10

Inés, Blanca, David Palomas, Sigrid Holle, Sebastian Steinberg, Juan A. Nicasio, and Manuel Alcarazo. "Metal-Free Hydrogenation of Electron-Poor Allenes and Alkenes." Angewandte Chemie International Edition 51, no. 49 (2012): 12367–69. http://dx.doi.org/10.1002/anie.201205348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Electron-poor alkenes"

1

LEE, CHERYLYN. "PHOTO-INDUCED RADICAL COPOLYMERIZATIONS OF ELECTRON-RICH OLEFINS WITH ELECTRON-POOR OLEFINS." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184135.

Full text
Abstract:
This study is a systematic investigation of the parameters and conditions necessary for photo-induced radical copolymerizations of donor olefins with acceptor olefins in the absence of an initiator. Very few cases have been previously reported and no mechanistic details of the initiation have been proposed in the literature. Our results show that the photoinitiation depends on the relative donor and acceptor strengths of the monomers, as well as the solvent. The highest occupied molecular orbital (HOMO) of the donor and the lowest unoccupied molecular orbital (LUMO) of the acceptor must be at
APA, Harvard, Vancouver, ISO, and other styles
2

Pozhydaiev, Valentyn. "New reactions of aminofunctionalization of alkenes." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAF028.

Full text
Abstract:
Les amines aliphatiques sont au cœur de la chimie fine. Elles sont présentes dans plus de 40% des molécules pharmaceutiques mais sont également des précurseurs clés pour la construction de molécules bioactives complexes, de produits naturels et de polymères. Cette thèse décrit le développement d’une méthode générale pour l'accès rapide aux motifs β-aryléthylamines et 1,2-diamines à partir de styrènes, de sels de triflate d’hydroxylammonium et de divers nucléophiles. Contrairement aux approches précédentes, le nouveau protocole en un pot/deux étapes permet une construction modulaire de molécule
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Jen Nan, and 李正南. "Synthesis of alpha-Azido-alpha,beta-Unsturated Ester and its Reaction with the Electron-Poor Alkenes." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/56643069540296867749.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electron-poor alkenes"

1

Lattanzi, Alessandra. "Non-covalent Organocatalytic Approach in the Asymmetric Epoxidation of Electron-Poor Alkenes: Recent Developments." In Green Chemistry and Sustainable Technology. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9751-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shibasaki, M., T. Ohshima, and W. Itano. "Reaction of Electron-Poor Alkenes." In Stereoselective Pericyclic Reactions, Cross Coupling, and C—H and C—X Activation. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-203-00307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schobert, R., and G. J. Gordon. "By Reactions with Electron-Poor Alkenes and Alkynes." In Heteroatom Analogues of Aldehydes and Ketones. Georg Thieme Verlag KG, 2004. http://dx.doi.org/10.1055/sos-sd-027-00867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Olefin and Alkyne Functional Groups." In The Chemical Biology of Carbon. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781839169502-00045.

Full text
Abstract:
The simplest carbon-based functional groups are alkenes (olefins) and the much rarer alkynes, containing only C–H and C–C bonds but no C–O, C–N, or C–S bonds. The biologic routes to both trans- and cis-alkenes are examined. The reactivity of olefins as either electron rich carbon nucleophiles or as electrophilic, electron poor carbon sinks depends on the structural and electronic context of the olefins and their partner reactants. The ability of 2-isopentenyl-PP to act as progenitor to an electrophilic allyl cation and 3-IPP to act as an olefinic nucleophile is the fundamental chemical logic for C–C bond formation in isoprenoid chain extension reactions. Epoxidation of olefins and nucleophilic addition to conjugated olefins reveal nucleophilic vs. electrophilic reactivity, respectively.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electron-poor alkenes"

1

Vieira, Daniel Pais Pires, Leandro Lara de Carvalho, and Vera Lúcia Patrocinio Pereira. "Diastereoselective Multicomponent [4+2]/[3+2] Cycloadditions of gamma-(S)-N,N-dibenzylamine Nitroalkenes Derivatives with Ethyl Vinyl Ether (EVE) and Electron-Poor Alkenes Using Li+- Containing Catalysts." In 14th Brazilian Meeting on Organic Synthesis. Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-14bmos-r0138-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!