Academic literature on the topic 'Electrope'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrope.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electrope"

1

Bond, Daniel R., and Derek R. Lovley. "Electricity Production by Geobacter sulfurreducens Attached to Electrodes." Applied and Environmental Microbiology 69, no. 3 (March 2003): 1548–55. http://dx.doi.org/10.1128/aem.69.3.1548-1555.2003.

Full text
Abstract:
ABSTRACT Previous studies have suggested that members of the Geobacteraceae can use electrodes as electron acceptors for anaerobic respiration. In order to better understand this electron transfer process for energy production, Geobacter sulfurreducens was inoculated into chambers in which a graphite electrode served as the sole electron acceptor and acetate or hydrogen was the electron donor. The electron-accepting electrodes were maintained at oxidizing potentials by connecting them to similar electrodes in oxygenated medium (fuel cells) or to potentiostats that poised electrodes at +0.2 V versus an Ag/AgCl reference electrode (poised potential). When a small inoculum of G. sulfurreducens was introduced into electrode-containing chambers, electrical current production was dependent upon oxidation of acetate to carbon dioxide and increased exponentially, indicating for the first time that electrode reduction supported the growth of this organism. When the medium was replaced with an anaerobic buffer lacking nutrients required for growth, acetate-dependent electrical current production was unaffected and cells attached to these electrodes continued to generate electrical current for weeks. This represents the first report of microbial electricity production solely by cells attached to an electrode. Electrode-attached cells completely oxidized acetate to levels below detection (<10 μM), and hydrogen was metabolized to a threshold of 3 Pa. The rates of electron transfer to electrodes (0.21 to 1.2 μmol of electrons/mg of protein/min) were similar to those observed for respiration with Fe(III) citrate as the electron acceptor (Eo′ =+0.37 V). The production of current in microbial fuel cell (65 mA/m2 of electrode surface) or poised-potential (163 to 1,143 mA/m2) mode was greater than what has been reported for other microbial systems, even those that employed higher cell densities and electron-shuttling compounds. Since acetate was completely oxidized, the efficiency of conversion of organic electron donor to electricity was significantly higher than in previously described microbial fuel cells. These results suggest that the effectiveness of microbial fuel cells can be increased with organisms such as G. sulfurreducens that can attach to electrodes and remain viable for long periods of time while completely oxidizing organic substrates with quantitative transfer of electrons to an electrode.
APA, Harvard, Vancouver, ISO, and other styles
2

Fang, Xin, Shafeer Kalathil, Giorgio Divitini, Qian Wang, and Erwin Reisner. "A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis." Proceedings of the National Academy of Sciences 117, no. 9 (February 12, 2020): 5074–80. http://dx.doi.org/10.1073/pnas.1913463117.

Full text
Abstract:
Integration of electroactive bacteria into electrodes combines strengths of intracellular biochemistry with electrochemistry for energy conversion and chemical synthesis. However, such biohybrid systems are often plagued with suboptimal electrodes, which limits the incorporation and productivity of the bacterial colony. Here, we show that an inverse opal-indium tin oxide electrode hosts a large population of current-producingGeobacterand attains a current density of 3 mA cm−2stemming from bacterial respiration. Differential gene expression analysis revealedGeobacter’s transcriptional regulations to express more electron-relaying proteins when interfaced with electrodes. The electrode also allows coculturing withShewanellafor syntrophic electrogenesis, which grants the system additional flexibility in converting electron donors. The biohybrid electrode containingGeobactercan also catalyze the reduction of soluble fumarate and heterogenous graphene oxide, with electrons from an external power source or an irradiated photoanode. This biohybrid electrode represents a platform to employ live cells for sustainable power generation and biosynthesis.
APA, Harvard, Vancouver, ISO, and other styles
3

Hasan, Kamrul, Sunil A. Patil, Dónal Leech, Cecilia Hägerhäll, and Lo Gorton. "Electrochemical communication between microbial cells and electrodes via osmium redox systems." Biochemical Society Transactions 40, no. 6 (November 21, 2012): 1330–35. http://dx.doi.org/10.1042/bst20120120.

Full text
Abstract:
Electrochemical communication between micro-organisms and electrodes is the integral and fundamental part of BESs (bioelectrochemical systems). The immobilization of bacterial cells on the electrode and ensuring efficient electron transfer to the electrode via a mediator are decisive features of mediated electrochemical biosensors. Notably, mediator-based systems are essential to extract electrons from the non-exoelectrogens, a major group of microbes in Nature. The advantage of using polymeric mediators over diffusible mediators led to the design of osmium redox polymers. Their successful use in enzyme-based biosensors and BFCs (biofuel cells) paved the way for exploring their use in microbial BESs. The present mini-review focuses on osmium-bound redox systems used to date in microbial BESs and their role in shuttling electrons from viable microbial cells to electrodes.
APA, Harvard, Vancouver, ISO, and other styles
4

Buzzetti, Paulo Henrique M., Pierre-Yves Blanchard, Emerson Marcelo Girotto, Yuta Nishina, Serge Cosnier, Alan Le Goff, and Michael Holzinger. "Insights into carbon nanotube-assisted electro-oxidation of polycyclic aromatic hydrocarbons for mediated bioelectrocatalysis." Chemical Communications 57, no. 71 (2021): 8957–60. http://dx.doi.org/10.1039/d1cc02958d.

Full text
Abstract:
Polyaromatic hydrocarbons were electro-oxidized on CNT electrodes and studied towards their capacity to transfer electrons from the enzyme FAD-GDH to the electrode. A mixture of electro-oxidized pyrene and pyrene NHS gave high performing biocathodes.
APA, Harvard, Vancouver, ISO, and other styles
5

Kuang, Peijing, Yubo Cui, Chuanping Feng, and Yasuaki Einaga. "Study of nitrate contaminants removal from groundwater on copper modified BDD electrode." E3S Web of Conferences 194 (2020): 04024. http://dx.doi.org/10.1051/e3sconf/202019404024.

Full text
Abstract:
The electrochemical nitrate reduction by using boron-doped diamond (BDD) and copper modified boron-doped diamond (Cu-BDD) electrodes was investigated at various potentials. Nitrate reduction efficiency and the products distribution was strongly dependent on the applied potential for both electrodes. The highest nitrate reduction efficiency of 77% was obtained at −2.0 V (vs. Ag/AgCl) by using Cu-BDD. Compared with BDD electrode, nitrate reduction on Cu-BDD electrode occurred at more positive potential. Copper oxides formed on BDD surface efficiently promoted enhanced conductivity of electrode to promote electrons transfer during nitrate reduction process. Meanwhile, the catalytic ability of copper was also conductive to the nitrate transformation. Therefore, the developed Cu-BDD would be a promising approach for efficient nitrate removal from groundwater.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Guan-Yu, Wei-Feng Sun, and Qing-Quan Lei. "Charge Injection and Dielectric Characteristics of Polyethylene Terephthalate Based on Semiconductor Electrodes." Materials 14, no. 6 (March 10, 2021): 1344. http://dx.doi.org/10.3390/ma14061344.

Full text
Abstract:
Employing a novel semiconductor electrode in comparison with the traditional semiconductor electrode made of polyethylene/ethylene-vinyl-acetate copolymer/carbon-black (PE/EVA/CB) composite, characteristic charge carriers are injected into polyethylene terephthalate (PET) as a polymer dielectric paradigm, which will be captured by specific deep traps of electrons and holes. Combined with thermal stimulation current (TSC) experiments and first-principles electronic-state calculations, the injected charges from the novel electrode are characterized, and the corresponding dielectric behavior is elucidated through DC conductance, electrical breakdown and dielectric spectrum tests. TSC experiments with novel and traditional semiconductor electrodes can distinguish the trapping characteristics between hole and electron traps in polymer dielectrics. The observable discrepancy in space charge-limited conductance and the stable dielectric breakdown strength demonstrate that the electron injection into PET film specimen is restricted by using the novel semiconductor electrode. Attributed to the favorable suppression on the inevitable electron injections from metal electrodes, adopting novel i-electrode can avoid the evident abatement of dipole orientation polarization caused by space charge clamp, but will engender the accessional high-frequency dielectric loss from dielectric relaxations of interface charges at i-electrodes.
APA, Harvard, Vancouver, ISO, and other styles
7

Medhisuwakul, M., Thiraphat Vilaithong, and Jürgen Engemann. "A New Design and Computer Simulation of a 5-Electrode Ion Extraction/Focusing System." Solid State Phenomena 107 (October 2005): 21–24. http://dx.doi.org/10.4028/www.scientific.net/ssp.107.21.

Full text
Abstract:
A 13.56 MHz radio-frequency (rf) driven multicusp ion source has been constructed [1] to produce a high argon ion current density. Milliampere-range argon ion current can be extracted from the source. An in-waveguide microwave plasma source has been utilized as the ion beam neutralizer [2]. The neutralization source was placed 20 cm downstream from the extraction system. With the former extraction system, comprised of extraction electrodes and an Einzel lens, the electrons from the neutralizer were attracted to the high positive potential of the lens. Consequently, the potential of the lens drops and the beam is diverged. To suppress electrons from being accelerated to the Einzel lens a negatively biased electrode was placed before the last electrode, which is grounded, to produce a retarding electric field for electrons. The hole of the electrode was made small to make sure that the potential at the center is negative enough to suppress electrons. All simulations have been performed with the KOBRA3-INP simulation software. The results of the beam shape from the simulation will be presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Strycharz, Sarah M., Trevor L. Woodard, Jessica P. Johnson, Kelly P. Nevin, Robert A. Sanford, Frank E. L�ffler, and Derek R. Lovley. "Graphite Electrode as a Sole Electron Donor for Reductive Dechlorination of Tetrachlorethene by Geobacter lovleyi." Applied and Environmental Microbiology 74, no. 19 (July 25, 2008): 5943–47. http://dx.doi.org/10.1128/aem.00961-08.

Full text
Abstract:
ABSTRACT The possibility that graphite electrodes can serve as the direct electron donor for microbially catalyzed reductive dechlorination was investigated with Geobacter lovleyi. In an initial evaluation of whether G. lovleyi could interact electronically with graphite electrodes, cells were provided with acetate as the electron donor and an electrode as the sole electron acceptor. Current was produced at levels that were ca. 10-fold lower than those previously reported for Geobacter sulfurreducens under similar conditions, and G. lovleyi anode biofilms were correspondingly thinner. When an electrode poised at −300 mV (versus a standard hydrogen electrode) was provided as the electron donor, G. lovleyi effectively reduced fumarate to succinate. The stoichiometry of electrons consumed to succinate produced was 2:1, the ratio expected if the electrode served as the sole electron donor for fumarate reduction. G. lovleyi effectively reduced tetrachloroethene (PCE) to cis-dichloroethene with a poised electrode as the sole electron donor at rates comparable to those obtained when acetate serves as the electron donor. Cells were less abundant on the electrodes when the electrodes served as an electron donor than when they served as an electron acceptor. PCE was not reduced in controls without cells or when the current supply to cells was interrupted. These results demonstrate that G. lovleyi can use a poised electrode as a direct electron donor for reductive dechlorination of PCE. The ability to colocalize dechlorinating microorganisms with electrodes has several potential advantages for bioremediation of subsurface chlorinated contaminants, especially in source zones where electron donor delivery is challenging and often limits dechlorination.
APA, Harvard, Vancouver, ISO, and other styles
9

Suciyati, Sri Wahyu, Gurum Ahmad Pauzi, Junaidi Junaidi, and L. Kamalia. "Proteksi Katodik pada Elektrode Zn Metode Sacrificial Anode untuk Peningkatan Kinerja Sistem Akumulator Air Laut." Jurnal Teori dan Aplikasi Fisika 8, no. 2 (July 31, 2020): 127–34. http://dx.doi.org/10.23960/jtaf.v8i2.2557.

Full text
Abstract:
Corrosion to the Zn electrode in the seawater accumulator system can be controlled by the cathodic protection of the sacrificial anode system. The mechanism is via anode sacrifice such as Al which has a negative potential connected to the Zn structure to provide extra electrons. The Zn electrode design is protected by an Al offering anode to form Cu-ZnAl electrode pairs arranged in series to form a seawater accumulator. Testing of electrodes with sacrificial anode system cathodic protection (Cu-ZnAl) compared to unprotected electrodes (Cu-Zn) for 48 hours showed no-load voltages of 10.19 V (Cu-Zn) and 12.89 V while the power generated was 48.36 mW and 49.37 mW. The average power after 3 watt LED loading was obtained 12.03 mW (day 1) and 12.56 mW (day 2) for the Cu-ZnAl electrode, while the Cu-Zn electrode obtained an average power of 6, 68 mW (day 1) and 10.09 mW (day 2). The corrosion rates after two days of using the Cu-Zn and Cu-ZnAl electrode pairs were obtained 0.008136 mm/year (Zn) and 0.0749626 mm/year (ZnAl).
APA, Harvard, Vancouver, ISO, and other styles
10

Gnapowski, Sebastian, Elżbieta Kalinowska-Ozgowicz, Mariusz Śniadkowski, and Aleksandra Pietraszek. "Investigation of the Condition of the Gold Electrodes Surface in a Plasma Reactor." Materials 12, no. 13 (July 3, 2019): 2137. http://dx.doi.org/10.3390/ma12132137.

Full text
Abstract:
During the long-term operation of a plasma reactor, decreases in plasma concentration were noticed despite the constant maintenance of all parameters. One of the factors was the decrease in the nitrogen content on the electrode surface; in order to eliminate it, the supply voltage was increased up to 11 kV. Another decisive factor in the plasma concentration decrease was the oxidation of the electrode surface. These effects were studied using two electrodes: a gold one and a copper one coated with a 10 μm thick layer of galvanized gold. In the experiment with the gold coated electrode, a large decrease in plasma concentration was observed. High-energy electrons knocked out the gold atoms from the electrode; as a result, the gold atoms evaporated and the raids layers formed. After the electrodes had been in operation for a month, metallographic analyzes were carried out, the results of which are described in this paper.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Electrope"

1

Tavener, P. "Electron spectroscopy of electrode materials." Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hoffrogge, Johannes Philipp. "A surface-electrode quadrupole guide for electrons." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-155503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ceres, Donato Marino Lewis Nathan Saul Barton Jacqueline K. "Electron transfer at DNA-modified electrodes /." Diss., Pasadena, Calif. : Caltech, 2006. http://resolver.caltech.edu/CaltechETD:etd-06202006-113417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Koep, Erik Kenneth. "A Quantitative Determination of Electrode Kinetics using Micropatterned Electrodes." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10524.

Full text
Abstract:
Interfacial polarization resistances limit the performance of many thin film solid-state devices, especially at low temperatures. To improve performance, a fundamental understanding of the electrode kinetics that govern interfacial reaction rates must be developed. The goal of this work is to determine site-specific reaction mechanisms and the relative significance of various reactions in order to quantify optimum structural parameters within the cathode microstructure. Key parameters include the length of triple phase boundary (TPB), the quantity of exposed electrolyte/electrode surface, and the ratio of electrolyte to electrode material. These parameters, when studied in a specific system, can be incorporated into broader models, which will encompass the specific conductivity of each component to develop an optimized three-dimensional network. The emphasis of this work is the systematic control and manipulation of potential cathodic reaction sites in order to develop an understanding of the relative importance of specific reaction sites. Since the physical dimensions of reaction sites are relatively small, an approach has been developed that utilizes micro-fabrication (similar to that used in integrated-circuit fabrication) to produce small and highly controlled microstructures. Investigations were made into the nature and reactivity of Triple Phase Boundaries (hereafter TPB) through the use of patterned platinum electrodes since only the TPBs are active in these electrodes. After the processing details of micro-fabrication were established for the platinum electrodes, patterned Mixed-Ionic/Electronic Conducting (MIEC) electrodes were fabricated and studied using impedance spectroscopy to determine the contributions from the MIEC surface versus the TPB. Systematically changing the geometry of the MIEC electrodes (thickness and line width) allowed for the determination of the effect of ambipolar transport within the MIEC on the activity of MIEC surfaces versus the TPB. This information is critical to rational design of functionally graded electrodes (with optimal particle size, shape, porosity and conductivity). In addition to experimental studies, representative patterned electrode samples were made available for collaborative studies with surface scientists at other institutions to provide additional techniques (such as Raman Spectroscopy) on the carefully designed and controlled cathode surfaces.
APA, Harvard, Vancouver, ISO, and other styles
5

Kilburger, Sébastien. "Réalisation et caractérisations d'hétérostructures à base de couches minces de LiNbO3 pour des applications en optique intégrée." Limoges, 2008. https://aurore.unilim.fr/theses/nxfile/default/f9760bed-4f20-4c57-8bed-a82d7d55e49f/blobholder:0/2008LIMO4061.pdf.

Full text
Abstract:
Le niobate de lithium (LiNbO3 : LN) est un matériau largement utilisé en optique de par ses propriétés électrooptiques et non linéaires très intéressantes. Il est utilisé en particulier sous forme massive dans les dispositifs actifs tels que les modulateurs électrooptiques. Son utilisation sous forme de couches minces offrirait l’avantage de diminuer fortement la distance inter-électrodes et d’améliorer le facteur de recouvrement entre les champs optique et appliqué tout en facilitant l’intégration et la miniaturisation des dispositifs. Notre travail a consisté, dans un premier temps, à optimiser, à partir des méthodes utilisant les plans d’expériences, les conditions de dépôt par ablation laser de couches minces de LN épitaxiées sur des substrats en saphir. Les caractérisations structurales et microstructurales ont mis en exergue la très bonne qualité cristalline des films réalisés. Ces films d’épaisseur moyenne 150 nm permettent une propagation à faibles pertes (≤1 dB/cm) compatible avec une utilisation en tant que guides d’ondes. Dans un second temps, nous nous sommes intéressés au choix du type d’électrode nécessaire à la conception d’un modulateur électrooptique. Notre choix s’est porté sur le matériau ZnO. Nous avons démontré que les couches de LN étaient épitaxiées sur ZnO lui-même épitaxié sur saphir. Aucun guidage n’a pu être mis en évidence dans l’hétérostructure LN/ZnO/saphir car elle présente des pertes optiques importantes en raison de la valeur trop élevée de la conductivité des films de ZnO (σ ≥ 500 S. M-1). Pour remédier à ce problème, des simulations numériques ont montré que l’utilisation d’une couche de ZnO moins conductrice permettait de diminuer les pertes, une étude de LN/ZnO peu conducteur/saphir (σ < 50 S. M-1) a d’ailleurs mis en évidence une propagation optique. Ainsi, une hétérostructure LN/ZnO peu conducteur/ZnO conducteur/saphir serait une bonne solution pour envisager une modulation électrooptique d’un faisceau lumineux
Lithium niobate (LiNbO3: LN) is a widely used optical material due to its interesting electrooptical and non linear properties. LN is particularly used as bulk technology in active devices such as electrooptical modulators. Thin films offer the advantage of strongly decreasing the distance between electrodes and improving the recovering factor of optical and applied fields and allow integration and devices size reduction. Firstly, our work has consisted in optimizing from experimental designs the deposition parameters leading to the elaboration by laser ablation of epitaxially grown lithium niobate films onto sapphire substrate. Structural and microstructural characterizations underline the very high quality of as-grown layers. These ones, exhibiting an average thickness of 150 nm, allow light propagation with low losses (≤1 dB/cm) compatible with the aim of wave guide’s use. Secondly, we focused on the electrode’s choice necessary for the electrooptical modulator conception. ZnO material was chosen. We have demonstrated an epitaxial growth of lithium niobate onto ZnO film itself epitaxially grown onto sapphire. Nevertheless, no guiding mode has been highlighted in LN/ZnO/sapphire heterostructure because of important optical losses attributed to high conductive values (σ ≥ 500 S. M-1) of the ZnO thin layers. To solve this problem, numerical simulations helped us to put forward the necessity of introducing a ZnO low conductive values buffer layer in order to decrease the optical losses. The study of such a structure allowed us to highlight an optical propagation. So, a LN/low conducting ZnO/highly conducting ZnO/sapphire heterostructure would certainly be a suitable solution to envisage the electrooptical modulation of a light beam
APA, Harvard, Vancouver, ISO, and other styles
6

Hamann, Thomas William Lewis Nathan Saul Lewis Nathan Saul. "Interfacial electron-transfer reactions at semiconductor electrodes /." Diss., Pasadena, Calif. : California Institute of Technology, 2007. http://resolver.caltech.edu/CaltechETD:etd-12272004-162841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Taylor, M. E. "Substrate and electrode effects in inelastic electron tunnelling spectroscopy." Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235265.

Full text
Abstract:
Inelastic Electron Tunnelling Spectroscopy is a powerful and versatile technique for obtaining vibrational densities of states of amorphous materials and adsorbed molecules. The experimental device, or tunnel junction, consists of two metal electrodes separated by a thin (2nm) layer of the material under study. This thesis looks at features in the tunnelling spectrum due to electrode phonons, and also at the effects of substrate roughness on the spectrum. Two coupled linear chains are used to model the vibrational behaviour of joined lattices in order to consider the penetration of phonons of one material into the other; penetration does not occur unless the two chains have very similar properties. Work with Al-I-Al-Pb tunnel junctions confirms the model results, as no sign is seen of lead phonon peaks in the tunnelling spectrum. However, other workers have seen lead peaks in Al-I-Ag-Pb junctions, and invoked phonon penetration in explanation. Microscopic examination of similarly prepared silver films reveals that they are pinholed; and this, it is argued, gives rise to the lead peaks. Results are presented on the magnitudes of electrode phonon structure in tunnelling spectra, and models for the occurrence of these features are reviewed. It is argued, from comparison of the experimental data with bulk self energies from superconducting tunnelling, that the electron-phonon coupling responsible is characteristic of the bulk metal; interaction does not take place in the barrier. This is consistent with the linear chain model. The effects of roughening tunnel junctions with calcium fluoride substrates are studied. Little change is noted with undoped junctions, but investigation of formate-doped junctions confirms the loss in dopant peak intensity seen by other workers and some variation is noticed in the rate of loss of intensity between C-H and CO2 modes. The mechanism which best explains these observations is that roughening encourages penetration of the organic layer by atoms of the top electrode metal.
APA, Harvard, Vancouver, ISO, and other styles
8

Ren, Yan-Ru. "Orbital spin-splitting factors for conduction electrons in lead." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25961.

Full text
Abstract:
A detailed experimental study has been made of the spin-splitting factors ℊc for magnetic Landau levels associated with conduction electrons in extremal orbits on the Fermi surface of lead. This information has been derived from the waveform of the de Haas-van Alphen (dHvA) quantum oscillations in the magnetization of single-crystal lead spheres at temperatures of about 1.2 K and with applied magnetic fields in the range 50-75 kG. A commercial spectrum analyzer has been used to provide on-line values of the harmonic amplitudes in the dHvA waveform, and the values of ℊc have been extracted from the relative strengths of the harmonics. Serious systematic errors in ℊc can arise on account of waveform distortions caused by the small and subtle difference between the externally applied field H and the magnetizing field B acting on the conduction electrons. In 1981 Gold and Van Schyndel demonstrated that these 'magnetic-interaction' distortions could be suppressed to a large extent by using negative magnetic feedback to make the induction B within the sample be the same as H (or very nearly so). This thesis describes the first in-depth application of the magnetic-feedback technique to the systematic study of any metal. Particular attention has been paid to the effect of sample inhomogeneity, and Shoenberg's treatment of the magnetic interaction in a non-uniform sample has been generalized to include magnetic feedback. This theory accounts well for many features in the experimental data, especially those which remained a puzzle in the earlier work of Gold and Van Schyndel. Experimental ℊc values are given for the first time for most of the extremal orbits on the lead Fermi surface and for high-symmetry directions of the magnetic field. Indeed these are the most detailed data reported for any polyvalent metal. The ℊc factors for the different orbits and field directions are found to span the range from 0.56 to 1.147. These large net deviations from the free-electron value ℊ₀ = 2.0023 are consequences of the strong spin-orbit and electron-phonon interactions, and an attempt has been made to separate these two contributions to the ℊ-shifts.
Science, Faculty of
Physics and Astronomy, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
9

Gardel, Emily Jeanette. "Microbe-electrode interactions: The chemico-physical environment and electron transfer." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11185.

Full text
Abstract:
This thesis presents studies that examine microbial extracellular electron transfer that an emphasis characterizing how environmental conditions influence electron flux between microbes and a solid-phase electron donor or acceptor. I used bioelectrochemical systems (BESs), fluorescence and electron microscopy, chemical measurements, 16S rRNA analysis, and qRT-PCR to study these relationships among chemical, physical and biological parameters and processes.
Engineering and Applied Sciences
APA, Harvard, Vancouver, ISO, and other styles
10

Seon, Hongsun 1965. "Electrode erosion and arc stability in transferred arcs with graphite electrodes." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=108637.

Full text
Abstract:
Arc stability and erosion behavior were studied on a hollow graphite DC cathode in an argon atmosphere at atmospheric pressure. It was found that the arc stability is associated with the electron emission mode transition of the cathode operation. Estimation of current densities, SEM pictures, Fast Fourier Transform (FFT) of total voltage, and measurement of cathode surface temperature supported this. Stable arcs are in the thermionic emission regime while unstable arcs in the thermofield emission regime. Higher argon gas flow rate is believed to cause the shift of the mode from the thermofield emission to the thermionic emission by increasing the arc root temperature through steepening the thermal gradient at the arc root and increasing ionization phenomena inside the arc. Sharp cathode tip geometry usually leads to the thermionic emission while a rounded tip geometry encourages the thermofield emission. For the unstable arcs, the high voltage fluctuation resulted from the jumping of the arc root between different cathode spots and changes in the arc length. In the stable arcs, however, the voltage was almost constant because of the absence of arc jumping. The standard deviation of the voltage was used as the arc stability indicator and was less than 3 V for the stable arc in this transferred arc system.
The erosion rate of the cathode in this work ranged from 0.41 to 2.61 mug/C. At 150 A runs the arc stability strongly influenced the erosion rate; as the arc stability increased, the erosion rate decreased. Higher currents runs (300 and 400 A), however, showed the opposite trend because of the carbon vapor redeposition. The total erosion rates of 150 A runs were separated into the stable (Es) and the unstable (Eu) erosion rate. The Eu was more than 3 times higher in this work. It is believed that the thermofield emission of the unstable arcs produced more erosion because of the higher local heat flux to the cathode spots.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Electrope"

1

Seo, Masahiro. Electro-Chemo-Mechanical Properties of Solid Electrode Surfaces. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7277-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ryall, Christopher John. Rapid prototyping of electro discharge machining (EDM) electrodes. [s.l.]: typescript, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hejna, Jan. Detektory elektronów w elektronowych mikroskopach skaningowych wysokopróżniowych. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Misell, D. L. Electron diffraction: An introduction for biologists. Amsterdam: Elsevier, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zou, Xiaodong. Electron crystallography: Electron microscopy and electron diffraction. Oxford: Oxford University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Roy, Markham, and Horne Robert W, eds. Electron diffraction and optical diffraction techniques. Amsterdam: North-Holland Pub. Co., 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hiroshima Workshop on Transport and Thermal Properties of Advanced Materials (2nd 2002 Hiroshima University). Proceedings of the Second Hiroshima Workshop on Transport and Thermal Properties of Advanced Materials: T2PAM, held in Higashi-Hiroshima, Japan, 16-19 August 2002. Edited by Oguchi T, Sera M, and Takabatake T. Amsterdam: North-Holland, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fujita, T., G. Oomi, and H. Fujii. Transport and thermal properties of f-electron systems. New York: Springer Science, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Beeston, B. E. P. Electron diffraction and optical diffraction techniques. Amsterdam: North-Holland, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

L, Dudarev S., and Whelan M. J, eds. High-energy electron diffraction and microscopy. Oxford: Oxford University Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Electrope"

1

Keighley, H. J. P., F. R. McKim, A. Clark, and M. J. Harrison. "Electrons and Electron Beams." In Mastering Physics, 189–97. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-08849-2_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Keighley, H. J. P., F. R. McKim, A. Clark, and M. J. Harrison. "Electrons and Electron Beams." In Mastering Physics, 189–97. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-86062-3_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Joshi, C., A. Caldwell, P. Muggli, S. D. Holmes, and V. D. Shiltsev. "Outlook for the Future." In Particle Physics Reference Library, 797–825. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34245-6_12.

Full text
Abstract:
AbstractThe charge separation between electrons and ions that exists within an electron plasma density wave can create large electric fields. In 1979 Tajima and Dawson first recognized that the longitudinal component of the field of a so-called “relativistic” wave (one propagating with a phase velocity close to c), could be used to accelerate charged particles to high energies in a short distance [1]. The accelerating gradient of such a plasma wave, Eo, can be approximated—assuming a total separation of electrons and ions in such a wave with wavelength λp = 2πc/ωp—as
APA, Harvard, Vancouver, ISO, and other styles
4

Lenarz, T., R. D. Battmer, J. E. Goldring, J. Neuburger, J. Kuzma, and G. Reuter. "New Electrode Concepts (Modiolus-Hugging Electrodes)." In Advances in Oto-Rhino-Laryngology, 347–53. Basel: KARGER, 2000. http://dx.doi.org/10.1159/000059209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tiwari, Udit, and Sahab Dass. "Moisture Stable Soot Coated Methylammonium Lead Iodide Perovskite Photoelectrodes for Hydrogen Production in Water." In Springer Proceedings in Energy, 141–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_18.

Full text
Abstract:
AbstractMetal halide perovskites have triggered a quantum leap in the photovoltaic technology marked by a humongous improvement in the device performance in a matter of just a few years. Despite their promising optoelectronic properties, their use in the photovoltaic sector remains restricted due to their inherent instability towards moisture. Here, we report a simple, cost-effective and highly efficient protection strategy that enables their use as photoelectrodes for photoelectrochemical hydrogen production while being immersed in water. A uniform coating of candle soot and silica is developed as an efficient hydrophobic coating that protects the perovskite from water while allowing the photogenerated electrons to reach the counter electrode. We achieve remarkable stability with photocurrent density above 1.5 mA cm−2 at 1 V versus saturated calomel electrode (SCE) for ~1 h under constant illumination. These results indicate an efficient route for the development of stable perovskite photoelectrodes for solar water splitting.
APA, Harvard, Vancouver, ISO, and other styles
6

Williamson, S., and G. A. Mourou. "Picosecond Electro-Electron Optic Oscilloscope." In Picosecond Electronics and Optoelectronics, 58–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70780-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vidakovic-Koch, Tanja. "Electron Transfer Between Enzymes and Electrodes." In Bioelectrosynthesis, 39–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/10_2017_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kumar, Sunil, and Abhay Nanda Srivastva. "Application of Carbon Nanomaterials Decorated Electrochemical Sensor for Analysis of Environmental Pollutants." In Analytical Chemistry - Advancement, Perspectives and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96538.

Full text
Abstract:
Carbon nanomaterials (CNMs), especially carbon nanotubes and graphene, have been attracting tremendous attention in environmental analysis for rapid and cost effective detection of various analytes by electrochemical sensing. CNMs can increase the electrode effective area, enhance the electron transfer rate between the electrode and analytes, and/or act as catalysts to increase the efficiency of electrochemical reaction, detection, adsorption and removal are of great significance. Various carbon nanomaterials including carbon nanotubes, graphene, mesoporous carbon, carbon dots exhibited high adsorption and detection capacity. Carbon and its derivatives possess excellent electro catalytic properties for the modified sensors, electrochemical methods usually based on anodic stripping voltammetry at some modified carbon electrodes. Metal electrode detection sensitivity is enhanced through surface modification of working electrode (GCE). Heavy metals have the defined redox potential. A remarkable deal of efficiency with the electrochemical sensors can be succeeded by layering the surface of the working electrode with film of active electro-catalytic species. Usually, electro catalysts used for fabrication of sensors are surfactants, nano-materials, polymers, carbon-based materials, organic ligands and biomaterials.
APA, Harvard, Vancouver, ISO, and other styles
9

Atkins, Peter. "Electric Occurrence: Electrolysis." In Reactions. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199695126.003.0010.

Full text
Abstract:
Electrolysis makes use of electric currents, a stream of electrons, to bring about chemical change. It puts electricity to work by using it to break or form bonds by forcing electrons on to molecules or sucking electrons out of them. Electrolysis is an application of the redox processes I described in Reaction 5, where I showed that reduction is the gain of electrons and that oxidation is their loss. All that happens in electrolysis is the use of an external supply of electrons from a battery or other direct-current (DC) source to push them on to a species and so bring about its reduction, or the use of the electron-sucking power of a battery to remove them from a species to bring about its oxidation. Electrolysis, in other words, is electrically driven reduction and oxidation. In fact, the process is rather broader than just forcing species to accept or give up electrons because, as I have hinted, molecules might respond to the change in their number of electrons by discarding or rearranging atoms. For instance, when water is electrolysed, the H–O bonds of the H2O molecules are broken and hydrogen and oxygen gases are formed. When an electric current is passed through molten common salt (sodium chloride, NaCl), metallic sodium and gaseous chlorine, Cl2, are formed. Electrolysis is a major technology in the chemical industry, for among other applications it is used to make chlorine, to purify copper, and to extract aluminium. To bring about electrolysis, two metal or graphite rods, the ‘electrodes’, are inserted into the molten substance or solution and connected to a DC electrical supply. The electrons that form the electric current enter the substance through one electrode (the ‘cathode’) and leave it through the other electrode (the ‘anode’). A molecule or ion close to the cathode is forced to collect one or more electrons from that electrode and be reduced. A molecule or ion close to the anode is forced to release them to that electrode and thereby become oxidized. A reasonably simple first example is the purification of copper.
APA, Harvard, Vancouver, ISO, and other styles
10

Misra, Rohit, and Neti Nageswara Rao. "Electrochemical Technologies for Industrial Effluent Treatment." In Civil and Environmental Engineering, 683–711. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9619-8.ch029.

Full text
Abstract:
Electrochemical processes are the most adequate tools in the aqueous effluent treatment. The process will not require chemical addition and indeed electrons are the only reactants added to the process to stimulate the reaction. Anodic oxidation of recalcitrant wastewater in a typical electrochemical set-up is particularly interesting because of its ease of operation and scope for scale-up. Nevertheless, electro oxidation in the three-dimensional carbon bed electrodes is a promising process for electrooxidation of effluents containing non-biodegradable organic compounds. The application of three-dimensional carbon bed electrochemical reactor for the degradation of organic pollutant is demonstrated in this chapter. The role of carbon particles in the three-dimensional electrodes reactor is described in this chapter. It has at least two important functions: 1) adsorption of organic compounds from effluents and 2) act as particle electrode. Various operation and design considerations leading to better understanding of carbon bed electrochemical reactors are discussed.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electrope"

1

Gao, Feng, Jianmin Qu, and Matthew Yao. "Conducting Properties of a Contact Between Open-End Carbon Nanotube and Various Electrodes." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11117.

Full text
Abstract:
The carbon nanotube (CNT) is becoming a promising candidate as electrical interconnects in nanoscale electronics. This paper reports the electronic structure and the electrical conducting properties at the interface between an open-end single wall CNT (SWCNT) and various metal electrodes, such as Al, Au, Cu, and Pd. A simulation cell consisting of an SWCNT with each end connected to the metal electrode was constructed. A voltage bias is prescribed between the left- and right-electrodes to compute the electronic conductance. Due to the electronic structure, the electron density and local density of states (LDOS) are calculated to reveal the interaction behavior at the interfaces. The first-principle quantum mechanical density functional and non-equilibrium Green’s function (NEGF) approaches are adopted to compute the transport coefficient. After that, the voltage-current relation is calculated using the Landauer-Buttiker formalism. The results show that electrons are conducted through the electrode/CNT/electrode two-probe system. The contact electronic resistance is calculated by averaging the values in the low voltage bias regime (0.0–0.1 V), in which the voltage–current relationship is found to be linear. And the electrical contact conductance of electrode/CNT/electrode system show the electrode-type dependent, however, the amplitude for different electrodes is of the same order.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Hai-bo, Joon-wan Kim, Shinichi Yokota, and Kazuya Edamura. "Performance Evaluation of a Triangular-Prism-Slit Electrode Pair as an Electro-Conjugate Fluid Jet Generator." In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-6077.

Full text
Abstract:
Electro-conjugate fluid (ECF) is a dielectric and functional fluid, which generates a powerful jet when electrodes inserted into it are subjected to a constant voltage of less than one thousand volts. As one essential research field on ECF, researchers have been conducting the study on electrodes. Several structures, e.g. planar parallel rod-like electrode array, ring-needle electrode pair and triangular-prism-slit (TPS) electrode pair, were proposed. Among them, the TPS electrode structure is often thought as the most promising candidate for future ECF applications thanks to its great merits of combining easy fabrication and relatively high performance. In this paper, in order to evaluate performance of the TPS electrode pair, a novel modular ECF-jet generator capable of independently adjusting alignment and gap of each electrode is designed. By utilizing it, the relationship between output pressure and parameters of the TPS electrode pair, including thickness, slit width, tip angle, electrode gap and alignment, are obtained.
APA, Harvard, Vancouver, ISO, and other styles
3

Cha, Youngsu, Matteo Aureli, and Maurizio Porfiri. "On a Physics-Based Model of the Electrical Impedance of Ionic Polymer Metal Composites." In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-7982.

Full text
Abstract:
In this paper, we analyze the chemoelectrical behavior of ionic polymer metal composites (IPMCs) in the small voltage range with a novel hypothesis on the charge dynamics in proximity of the electrodes. Specifically, this paper introduces a so-called composite layer which extends between the polymer membrane and the metal electrode. This homogeneous layer describes the charge distribution at the electrode via two species of charge carriers, that is, electrons and mobile counterions. Charge dynamics is described by adapting the multi-physics formulation based on the Poisson-Nernst-Planck (PNP) equations through the incorporation of the electron transport in the composite layer. Under the hypothesis of small voltage input, we use the linearized PNP model to derive an equivalent IPMC impedance model with lumped elements. The equivalent model is represented as a resistor connected in series with the parallel of a capacitor and a Warburg impedance element. These elements idealize the phenomena of charge build up in the double layer region and the faradaic impedance related to mass transfer, respectively. We validate the equivalent model through measurements on in-house fabricated samples addressing both IPMC step response and impedance.
APA, Harvard, Vancouver, ISO, and other styles
4

Qian, Nan, Guanghua Wang, Huang Yu, Youshi Zeng, Guangliang Bao, Shengwei Wu, and Wei Liu. "Electric Field Simulation of Ionization Chamber Used in Tritium Measurement in Tail Gas of Molten Salt Reactor." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-82026.

Full text
Abstract:
There is a large amount of tritium in tail gas emitting from the molten salt reactor. The content of tritium content in tail gas must be measured and controlled according to the national standard. Nowadays, the ionization chamber and the liquid scintillation counter are mainly used for tritium monitoring. The proportional counter required pure sampling gas, and the liquid scintillation cannot measure the radioactivity online. Only the ionization chamber could measure the activities of off-gas from molten salt reactor. In order to reduce tritium contamination in the ionization chamber, a wire type high pressure ionization chamber was used in measuring tail gas from molten salt reactor. In order to improve the ion collection efficiency of the wire type electrode ionization chamber, it is necessary to optimize the number of the electrodes. In this study, the electric field of ionization chamber with different numbers of electrodes, such as 3, 6, 12, 18, 24, 30, 36, 42, 48, were simulated by COMSOL software. The equipotential line of electric field near the collector is round. The equipotential line of electric field near the high voltage wires present as undulate. From the results, the optimum number of wires was 36. The difference of electric field between two types chambers were less than 5%. After that, collection efficiency was simulated as well. Increasing the number of the high voltage electrode at top and bottom of effective area could not improve the electron collection efficiency. Making the ionization chamber shell as an insulator can effectively improve the electrons collection efficiency.
APA, Harvard, Vancouver, ISO, and other styles
5

Enikov, Eniko T., Carlos Gamez, Shezaan Kanjiyani, Mahdi Ganji, and Joshua Gill. "Flexible Electrode Structures for Thermo-Tunneling Applications." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62903.

Full text
Abstract:
Combined thermionic emission and tunneling of hot electrons (thermo-tunneling) has emerged as a potential new solid-state cooling technology. Practical implementation of thermo-tunneling, however, requires the formation of a nanometer-sized gap spanning macroscopically significant surfaces. Thermo-tunneling of hot electrons across a few-nanometer gap has application to vacuum electronics, flat panel displays, and holds great potential in thermo-electric cooling and energy generation. Development of new thermo-tunneling applications requires creation of a stable nanometer gap between two surfaces. This presentation is focused on our effort to investigate the feasibility of creating such gaps using distributed electro-magnetic forces arising in thin-film flexible structures. Early efforts based on rigid electrodes showed that the effective tunneling approaches 400 square-micrometers, which albeit small, could lead to useful practical systems. In this presentation, we report a theoretical and experimental investigation of a thin-electrode system which could lead to further increase on the effective tunneling area. The device under study consists of a thin membrane collector electrode (anode) suspended over the emitting electrode (cathode). The structure is placed in a vacuum enclosure with an externally generated magnetic field perpendicular to the current flow in the membrane. The resulting Lorentz force is then directed upwards, separating the two surfaces. A mathematical model of the steady-state operation of the device is presented along with predictions of the contact area and tunneling current. Essential output parameters of the model include a central contact area measured by its length (delta) and the thermo-tunneling current. Both parameters are determined as a function of the externally applied external potential and magnetic field. Numerical solutions of the model show two possible operating modes: (1) symmetric deformation with negligibly small current; and (2) asymmetric mode where the B-field controls the current and contact area.
APA, Harvard, Vancouver, ISO, and other styles
6

Asmatulu, R., S. Kim, F. Papadimitrakopoulos, and H. Marcus. "Dielectrophoretic Force-Induced Assembly Technique for the Fabrication of 2D Colloidal Photonic Crystals." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-69094.

Full text
Abstract:
Dielectrophoretic force-induced assembly technique was used to achieve close-packed 2D colloidal photonic crystals on parallel plate gold electrodes. These gold electrodes were patterned using conventional UV photolithography technique. The width and length of the parallel plates were 280 μm and 3 mm, respectively. The experimental tests conducted with 5.3 μm carboxyl functionalized polystyrene (PS) particles at various AC voltages, frequencies and particle concentrations showed that colloidal photonic crystals were fabricated on the ground electrode, instead of the working electrode, which may be attributed to the electro-osmotic flow and dipole-dipole attractions between the colloidal particles. It is concluded that this study provides promising results for the 2D colloidal photonic fabrication for the photonic industry.
APA, Harvard, Vancouver, ISO, and other styles
7

Jibhakate, Piyush D., and George J. Nelson. "Fabrication and Characterization of Nanostructured Cathodes for Li-Ion Batteries." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67873.

Full text
Abstract:
Li-ion batteries have emerged as a leading energy storage technology for several applications including portable electronics devices and electric vehicles. Rigorous efforts are made to develop these batteries with higher energy density, higher power density, and better cycling stability while reducing cost and environmental impact. To better understand how electrode microstructure contributes to the electrode performance, the spinel LiMn2O4 (LMO) cathode material was prepared using a template-assisted sol-gel synthesis method. This method involves soaking of polycarbonate template membranes in the precursor solution followed by drying, to remove the solvent. The dried templates containing precursor materials were etched in an oxygen plasma to remove the template, and the nanostructured electrode formed was then calcined to convert these nanostructures to spinel LiMn2O4. Simultaneously, powdered LMO was prepared using the same synthesis procedure, but without the aid of a template to control electrode morphology. A series of tests were performed to study the effect of processing conditions on the structure and morphology of the nanostructured electrodes. The resulting electrodes were characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM) in support of efforts to understand the effects of process parameters on the electrochemical performance of the electrode. The template assisted synthesis approach yielded an electrode of well-defined nanotubules. Extending the template soaking time was found to provide better definition of individual tubule structures. Increasing calcination temperature was found to create a better defined spinel structure for the LMO. These observations provide insight into process parameters relevant to electrode preparation and substrate selection when producing nanostructured electrodes using template-assisted methods.
APA, Harvard, Vancouver, ISO, and other styles
8

Shirguppikar, Shailesh, and Maharudra Patil. "Performance Analysis of Multi Wall Carbon Nanotubes (MWCNT) Coated Tool Electrode During Machining of Titanium Alloy (Ti6Al4V)." In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8224.

Full text
Abstract:
Abstract Electric Discharge Machining (EDM) is one of the leading non-conventional machining processes used to machine hard-to-cut materials in wide range of industrial, biomedical, automotive, defense and aerospace applications. EDM is a controlled spark generation process, which is usually used for machining of difficult to cut materials. In this study, experiments were performed on Titanium Alloy (Ti6Al4V) using thin-film multi-wall Carbon Nanotubes (MWCNT) coated electrode and uncoated aluminum electrodes. Morphological and structural investigations of MWCNT coating were performed using Scanning transmission electron microscope (TEM) and Raman spectroscopy. All experiments were designed with Taguchi’s L16 orthogonal array. Each experiment performed under different condition of current, gap voltage and pulse on time. MRR, TWR, SR and OC are studied for each experiment. It was observed that MWCNT coated electrode gives better surface roughness, higher material removal rate, and lower tool wear rate. The experimental result showed that MRR increased by 14.15%, tool wear rate decreased by 23.40%, surface roughness reduced by 22.14 % and overcut reduced by 23.43 % respectively as compared to uncoated aluminum electrodes. All performance responses improved with thin-film MWCNT coated electrode due to magnificent electrical conductivity and chemical stability of CNT. Analysis of Variance (ANOVA) carried out to understand significant process parameters and its contribution in mentioned response variables. Multi-Wall CNT shows better results at high temperature and prevents the tool wear rate. The surface roughness of Ti6Al4V improved with MWCNT coated electrode and it was evident with scanning electron microscope (SEM) images of workpiece. Comparative study of coated and non-coated gives new development of novel electrode tool for electric discharge machining processes.
APA, Harvard, Vancouver, ISO, and other styles
9

Aeshala, L. M., S. U. Rahman, and A. Verma. "Development of a Reactor for Continuous Electrochemical Reduction of CO2 Using Solid Electrolyte." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54755.

Full text
Abstract:
This paper reports the development of an electrochemical reactor for electrochemical reduction of carbon dioxide using anionic and cationic solid electrolyte. Cast nafion membrane was used as cation exchange membrane and alkali doped polyvinyl alcohol cross-linked with glutaraldehyde was used as anion exchange membrane. The anion exchange membranes (solid electrolytes) were characterized using TGA, XRD, FTIR, anionic conductivity, and mechanical strength. The anode electrode was prepared using Pt/C spraying over porous carbon paper. The cathode electrode was prepared using copper electroplating technique over porous carbon paper. The prepared electrodes were characterized using scanning electron microscope. The reactor was assembled with the electrolyte, electrodes, machined graphite plates, and end plates with the required accessories. The preliminary study of the reactor was evaluated for carbon dioxide electrochemical reduction under anionic and cationic electrolytes. The products of the electrochemical reduction of CO2 were analyzed using GC and HPLC.
APA, Harvard, Vancouver, ISO, and other styles
10

Wahab, M. A., Jiandong Liang, and Shengmin Guo. "Effect of Conductivity and Environmental Pressure on Electro-Plasma Process (EPP)." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12863.

Full text
Abstract:
Electrolytic plasma process is an efficient surface modification method for metallic materials. With proper control of the process parameters Electro-Plasma Process (EPP) could generate unique surface morphology, which is suitable for effective cleaning of the metallic surfaces and inherently, good adhesion strength can be achieved for eventual coating the surfaces. Increasing input voltage beyond the conventional Faraday region of electrolysis, luminous discharge is observed on the surface of one of the electrodes. The electrode surface must be covered by layers of bubbles before the discharge could be set in. The discharge of energy is then taken place in an explosive way with localized high temperature. The combination of heat and kinetic impact could effectively remove the surface contaminants and could produce a unique surface morphology. In this paper, the conditions of process control parameters and the resultant surface conditions that could be achieved are studied. It has been found that elevated temperature is beneficial towards the plasma formation on electrodes; and the increase of temperature essentially increases the kinetic energy of electrons in the electrolytic solution and a high electrolyte temperature assists the boiling process and the chemical reactions that generate bubbles. The conductivity of the electrolytic solution could also affect the threshold voltage and the current density, but the total power input does not vary significantly with conductivity. Environmental pressure has been proved to be the single most critical important factor for Electro Plasma Process; and by increasing the pressure level the total breakdown energy tends to increase and more importantly, the resultant surfaces manifest that the energy consumed for surface modification increases with pressure.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Electrope"

1

Schutt, Timothy C., and Manoj K. Shukla. Computational Investigation on Interactions Between Some Munitions Compounds and Humic Substances. Engineer Research and Development Center (U.S.), February 2021. http://dx.doi.org/10.21079/11681/39703.

Full text
Abstract:
Humic acid substances (HAs) in natural soil and sediment environments effect the retention and degradation of insensitive munitions compounds and legacy high explosives (MCs): DNAN, DNi- NH4+, nMNA, NQ, NTO (neutral and anionic forms), TNT, and RDX.A humic acid model compound has been considered using molecular dynamics, thermodynamic integration, and density functional theory to characterize the munition binding ability, ionization potential, and electron affinity compared to that in the water solution. Humic acids bind most compounds and act as both a sink and source for electrons. Ionization potentials suggest HAs are more susceptible to oxidation than the MCs studied. The electron affinity of HAs are very conformation-dependent and spans the same range as the munition compounds. When HAs and MCs are complexed the HAs tend to radicalize first thus buffering MCs against reductive as well as oxidative attacks.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang L. F., D. Raparia, and J. Wei. Mechanism of Electron Cloud Clearing with Electrodes. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/1157306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leonhardt, Darrin, Scott Walton, Richard Fernsler, Robert A. Meger, and Chris Muratore. Ion and Electron Currents to Electrodes in Pulsed Electron Beam-Produced Plasmas. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada418436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Chunsheng, and Yujie Zhu. Novel Electro-Analytical Tools for Phase-Transformation Electrode Materials. Fort Belvoir, VA: Defense Technical Information Center, August 2009. http://dx.doi.org/10.21236/ada517245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Shuguang. Electron Transfer of Redox Enzymes to Inorganic Electrodes. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada419613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tobin J. Marks, R.P.H. Chang, Tom Mason, Ken Poeppelmeier, and Arthur J. Freeman. ENGINEERED ELECTRODES AND ELECTRODE-ORGANIC INTERFACES FOR HIGH-EFFICIENCY ORGANIC PHOTOVOLTAICS. Office of Scientific and Technical Information (OSTI), November 2008. http://dx.doi.org/10.2172/940916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nishikawa, Masaru, R. A. Holroyd, and Kengo Itoh. Behavior of excess electrons in supercritical fluids -- Electron attachment. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/354895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bond, Daniel R. Molecular Basis for Electron Flow Within Metal-and Electrode-Reducing Biofilms. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1332121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kestner, N. Theoretical studies of electrons and electron transfer processes in fluids. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/7252887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

DeCastro, Emory S., Yu-Min Tsou, and Zhenyu Liu. High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1093566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography