Journal articles on the topic 'Electrophysiology - Mathematical models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Electrophysiology - Mathematical models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Amuzescu, Bogdan, Razvan Airini, Florin Bogdan Epureanu, Stefan A. Mann, Thomas Knott, and Beatrice Mihaela Radu. "Evolution of mathematical models of cardiomyocyte electrophysiology." Mathematical Biosciences 334 (April 2021): 108567. http://dx.doi.org/10.1016/j.mbs.2021.108567.
Full textJohnstone, Ross, Rémi Bardenet, Teun de Boer, et al. "Cell-specific mathematical models of cardiac electrophysiology." Journal of Pharmacological and Toxicological Methods 81 (September 2016): 343. http://dx.doi.org/10.1016/j.vascn.2016.02.029.
Full textLinge, S., J. Sundnes, M. Hanslien, G. T. Lines, and A. Tveito. "Numerical solution of the bidomain equations." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1895 (2009): 1931–50. http://dx.doi.org/10.1098/rsta.2008.0306.
Full textLines, G. T., M. L. Buist, P. Grottum, A. J. Pullan, J. Sundnes, and A. Tveito. "Mathematical models and numerical methods for the forward problem in cardiac electrophysiology." Computing and Visualization in Science 5, no. 4 (2002): 215–39. http://dx.doi.org/10.1007/s00791-003-0101-4.
Full textCherry, Elizabeth M., and Flavio H. Fenton. "A tale of two dogs: analyzing two models of canine ventricular electrophysiology." American Journal of Physiology-Heart and Circulatory Physiology 292, no. 1 (2007): H43—H55. http://dx.doi.org/10.1152/ajpheart.00955.2006.
Full textJacquemet, Vincent. "Steady-state solutions in mathematical models of atrial cell electrophysiology and their stability." Mathematical Biosciences 208, no. 1 (2007): 241–69. http://dx.doi.org/10.1016/j.mbs.2006.10.007.
Full textCarlu, M., O. Chehab, L. Dalla Porta, et al. "A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models." Journal of Neurophysiology 123, no. 3 (2020): 1042–51. http://dx.doi.org/10.1152/jn.00399.2019.
Full textCollin, Annabelle, and Sébastien Imperiale. "Mathematical analysis and 2-scale convergence of a heterogeneous microscopic bidomain model." Mathematical Models and Methods in Applied Sciences 28, no. 05 (2018): 979–1035. http://dx.doi.org/10.1142/s0218202518500264.
Full textCorre, S., and A. Belmiloudi. "Coupled lattice Boltzmann simulation method for bidomain type models in cardiac electrophysiology with multiple time-delays." Mathematical Modelling of Natural Phenomena 14, no. 2 (2019): 207. http://dx.doi.org/10.1051/mmnp/2019045.
Full textLei, Chon Lok, Sanmitra Ghosh, Dominic G. Whittaker, et al. "Considering discrepancy when calibrating a mechanistic electrophysiology model." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2173 (2020): 20190349. http://dx.doi.org/10.1098/rsta.2019.0349.
Full textSACHSE, FRANK B., GUNNAR SEEMANN, MATTHIAS B. MOHR, and ARUN V. HOLDEN. "MATHEMATICAL MODELING OF CARDIAC ELECTRO-MECHANICS: FROM PROTEIN TO ORGAN." International Journal of Bifurcation and Chaos 13, no. 12 (2003): 3747–55. http://dx.doi.org/10.1142/s0218127403008910.
Full textREINERTH, G. "P1567 Simulation of cardiac electrophysiology using mathematical models and computer based processing of digital image data." European Heart Journal 24, no. 5 (2003): 285. http://dx.doi.org/10.1016/s0195-668x(03)94705-1.
Full textHANCOX, JULES C., KATHRYN H. YUILL, JOHN S. MITCHESON, and MARY K. CONVERY. "PROGRESS AND GAPS IN UNDERSTANDING THE ELECTROPHYSIOLOGICAL PROPERTIES OF MORPHOLOGICALLY NORMAL CELLS FROM THE CARDIAC ATRIOVENTRICULAR NODE." International Journal of Bifurcation and Chaos 13, no. 12 (2003): 3675–91. http://dx.doi.org/10.1142/s021812740300879x.
Full textRudy, Yoram, and Jonathan R. Silva. "Computational biology in the study of cardiac ion channels and cell electrophysiology." Quarterly Reviews of Biophysics 39, no. 1 (2006): 57–116. http://dx.doi.org/10.1017/s0033583506004227.
Full textDrovandi, C. C., N. Cusimano, S. Psaltis, et al. "Sampling methods for exploring between-subject variability in cardiac electrophysiology experiments." Journal of The Royal Society Interface 13, no. 121 (2016): 20160214. http://dx.doi.org/10.1098/rsif.2016.0214.
Full textNickerson, David P., and Martin L. Buist. "A physiome standards-based model publication paradigm." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1895 (2009): 1823–44. http://dx.doi.org/10.1098/rsta.2008.0296.
Full textSilva, Haroldo S., Adam Kapela, and Nikolaos M. Tsoukias. "A mathematical model of plasma membrane electrophysiology and calcium dynamics in vascular endothelial cells." American Journal of Physiology-Cell Physiology 293, no. 1 (2007): C277—C293. http://dx.doi.org/10.1152/ajpcell.00542.2006.
Full textAziz, Muhamad H. N., and Radostin D. Simitev. "Estimation of Parameters for an Archetypal Model of Cardiomyocyte Membrane Potentials." International Journal Bioautomation 26, no. 3 (2022): 255–72. http://dx.doi.org/10.7546/ijba.2022.26.3.000832.
Full textGerach, Tobias, Steffen Schuler, Jonathan Fröhlich, et al. "Electro-Mechanical Whole-Heart Digital Twins: A Fully Coupled Multi-Physics Approach." Mathematics 9, no. 11 (2021): 1247. http://dx.doi.org/10.3390/math9111247.
Full textLi, Xiang, Ji-qian Zhang, and Jian-wei Shuai. "Isoprenaline: A Potential Contributor in Sick Sinus Syndrome—Insights from a Mathematical Model of the Rabbit Sinoatrial Node." Scientific World Journal 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/540496.
Full textHendrix, Maurice, Michael Clerx, Asif U. Tamuri, et al. "cellmlmanip and chaste_codegen: automatic CellML to C++ code generation with fixes for singularities and automatically generated Jacobians." Wellcome Open Research 6 (June 15, 2022): 261. http://dx.doi.org/10.12688/wellcomeopenres.17206.2.
Full textFink, Martin, Wayne R. Giles, and Denis Noble. "Contributions of inwardly rectifying K + currents to repolarization assessed using mathematical models of human ventricular myocytes." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1842 (2006): 1207–22. http://dx.doi.org/10.1098/rsta.2006.1765.
Full textHendrix, Maurice, Michael Clerx, Asif U. Tamuri, et al. "chaste codegen: automatic CellML to C++ code generation with fixes for singularities and automatically generated Jacobians." Wellcome Open Research 6 (October 12, 2021): 261. http://dx.doi.org/10.12688/wellcomeopenres.17206.1.
Full textEdwards, Andrew G., and William E. Louch. "Species-Dependent Mechanisms of Cardiac Arrhythmia: A Cellular Focus." Clinical Medicine Insights: Cardiology 11 (January 1, 2017): 117954681668606. http://dx.doi.org/10.1177/1179546816686061.
Full textRomero, Lucía, Esther Pueyo, Martin Fink, and Blanca Rodríguez. "Impact of ionic current variability on human ventricular cellular electrophysiology." American Journal of Physiology-Heart and Circulatory Physiology 297, no. 4 (2009): H1436—H1445. http://dx.doi.org/10.1152/ajpheart.00263.2009.
Full textKügler, Philipp. "Modelling and Simulation for Preclinical Cardiac Safety Assessment of Drugs with Human iPSC-Derived Cardiomyocytes." Jahresbericht der Deutschen Mathematiker-Vereinigung 122, no. 4 (2020): 209–57. http://dx.doi.org/10.1365/s13291-020-00218-w.
Full textPan, Michael, Peter J. Gawthrop, Kenneth Tran, Joseph Cursons, and Edmund J. Crampin. "Bond graph modelling of the cardiac action potential: implications for drift and non-unique steady states." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, no. 2214 (2018): 20180106. http://dx.doi.org/10.1098/rspa.2018.0106.
Full textRasmusson, R. L., J. W. Clark, W. R. Giles, E. F. Shibata, and D. L. Campbell. "A mathematical model of a bullfrog cardiac pacemaker cell." American Journal of Physiology-Heart and Circulatory Physiology 259, no. 2 (1990): H352—H369. http://dx.doi.org/10.1152/ajpheart.1990.259.2.h352.
Full textO'Hara, Thomas, and Yoram Rudy. "Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species." American Journal of Physiology-Heart and Circulatory Physiology 302, no. 5 (2012): H1023—H1030. http://dx.doi.org/10.1152/ajpheart.00785.2011.
Full textUGARTE, JUAN P., CATALINA TOBÓN, ANTÓNIO M. LOPES, and J. A. TENREIRO MACHADO. "A COMPLEX ORDER MODEL OF ATRIAL ELECTRICAL PROPAGATION FROM FRACTAL POROUS CELL MEMBRANE." Fractals 28, no. 06 (2020): 2050106. http://dx.doi.org/10.1142/s0218348x20501066.
Full textHeijman, Jordi, Henry Sutanto, Harry J. G. M. Crijns, Stanley Nattel, and Natalia A. Trayanova. "Computational models of atrial fibrillation: achievements, challenges, and perspectives for improving clinical care." Cardiovascular Research 117, no. 7 (2021): 1682–99. http://dx.doi.org/10.1093/cvr/cvab138.
Full textDoste, Ruben, та Alfonso Bueno-Orovio. "Multiscale Modelling of β-Adrenergic Stimulation in Cardiac Electromechanical Function". Mathematics 9, № 15 (2021): 1785. http://dx.doi.org/10.3390/math9151785.
Full textLi, L., S. A. Niederer, W. Idigo, et al. "A mathematical model of the murine ventricular myocyte: a data-driven biophysically based approach applied to mice overexpressing the canine NCX isoform." American Journal of Physiology-Heart and Circulatory Physiology 299, no. 4 (2010): H1045—H1063. http://dx.doi.org/10.1152/ajpheart.00219.2010.
Full textParikh, Jaimit, Adam Kapela та Nikolaos M. Tsoukias. "Can endothelial hemoglobin-α regulate nitric oxide vasodilatory signaling?" American Journal of Physiology-Heart and Circulatory Physiology 312, № 4 (2017): H854—H866. http://dx.doi.org/10.1152/ajpheart.00315.2016.
Full textGonzález-González, Gabriela, Víctor M. Velasco-Herrera, and Alicia Ortega-Aguilar. "Use of Covariance Analysis in Electroencephalogram Reveals Abnormalities in Parkinson’s Disease." Applied Sciences 11, no. 20 (2021): 9633. http://dx.doi.org/10.3390/app11209633.
Full textGuthrie, Sarah. "Anne Elizabeth Warner. 25 August 1940—16 May 2012." Biographical Memoirs of Fellows of the Royal Society 70 (March 10, 2021): 441–62. http://dx.doi.org/10.1098/rsbm.2020.0046.
Full textQuintanilla, Jorge G., Shlomo Shpun, José Jalife, and David Filgueiras-Rama. "Novel approaches to mechanism-based atrial fibrillation ablation." Cardiovascular Research 117, no. 7 (2021): 1662–81. http://dx.doi.org/10.1093/cvr/cvab108.
Full textAlmassy, Janos, Jong Hak Won, Ted B. Begenisich, and David I. Yule. "Apical Ca2+-activated potassium channels in mouse parotid acinar cells." Journal of General Physiology 139, no. 2 (2012): 121–33. http://dx.doi.org/10.1085/jgp.201110718.
Full textNickerson, D. P., A. Corrias, and M. L. Buist. "Reference descriptions of cellular electrophysiology models." Bioinformatics 24, no. 8 (2008): 1112–14. http://dx.doi.org/10.1093/bioinformatics/btn080.
Full textGroenendaal, Willemijn, Francis A. Ortega, Armen R. Kherlopian, Andrew C. Zygmunt, Trine Krogh-Madsen, and David J. Christini. "Cell-Specific Cardiac Electrophysiology Models." PLOS Computational Biology 11, no. 4 (2015): e1004242. http://dx.doi.org/10.1371/journal.pcbi.1004242.
Full textIzhikevich, Eugene M. "Hybrid spiking models." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1930 (2010): 5061–70. http://dx.doi.org/10.1098/rsta.2010.0130.
Full textÖğmen, H. "On the Mechanisms Underlying Directional Selectivity." Neural Computation 3, no. 3 (1991): 333–49. http://dx.doi.org/10.1162/neco.1991.3.3.333.
Full textClayton, Richard H., Yasser Aboelkassem, Chris D. Cantwell, et al. "An audit of uncertainty in multi-scale cardiac electrophysiology models." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2173 (2020): 20190335. http://dx.doi.org/10.1098/rsta.2019.0335.
Full textRoberts, Byron N., Pei-Chi Yang, Steven B. Behrens, Jonathan D. Moreno, and Colleen E. Clancy. "Computational approaches to understand cardiac electrophysiology and arrhythmias." American Journal of Physiology-Heart and Circulatory Physiology 303, no. 7 (2012): H766—H783. http://dx.doi.org/10.1152/ajpheart.01081.2011.
Full textPongui Ngoma, D. V., V. D. Mabonzo, L. J. P. Gomat, G. Nguimbi, and B. B. Bamvi Madzou. "PARAMETER IDENTIFICATION PROBLEM TO FIND THE CARDIAC POTENTIAL WAVE FORM IN IONIC MODELS." Advances in Mathematics: Scientific Journal 11, no. 11 (2022): 991–1017. http://dx.doi.org/10.37418/amsj.11.11.2.
Full textCrampin, Edmund J., Nicolas P. Smith, A. Elise Langham, Richard H. Clayton, and Clive H. Orchard. "Acidosis in models of cardiac ventricular myocytes." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1842 (2006): 1171–86. http://dx.doi.org/10.1098/rsta.2006.1763.
Full textCHAPELLE, DOMINIQUE, ANNABELLE COLLIN, and JEAN-FRÉDÉRIC GERBEAU. "A SURFACE-BASED ELECTROPHYSIOLOGY MODEL RELYING ON ASYMPTOTIC ANALYSIS AND MOTIVATED BY CARDIAC ATRIA MODELING." Mathematical Models and Methods in Applied Sciences 23, no. 14 (2013): 2749–76. http://dx.doi.org/10.1142/s0218202513500450.
Full textCollin, Annabelle, Sébastien Imperiale, Philippe Moireau, Jean-Frédéric Gerbeau, and Dominique Chapelle. "Apprehending the effects of mechanical deformations in cardiac electrophysiology: A homogenization approach." Mathematical Models and Methods in Applied Sciences 29, no. 13 (2019): 2377–417. http://dx.doi.org/10.1142/s0218202519500490.
Full textBordas, Rafel, Bruno Carpentieri, Giorgio Fotia, et al. "Simulation of cardiac electrophysiology on next-generation high-performance computers." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1895 (2009): 1951–69. http://dx.doi.org/10.1098/rsta.2008.0298.
Full textNiederer, Steven A., Eric Kerfoot, Alan P. Benson, et al. "Verification of cardiac tissue electrophysiology simulators using an N -version benchmark." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1954 (2011): 4331–51. http://dx.doi.org/10.1098/rsta.2011.0139.
Full text