Academic literature on the topic 'Elément de transition 3d'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Elément de transition 3d.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Elément de transition 3d"

1

Shima, Hiroyuki, and Tsuneyoshi Nakayama. "Anderson Transition in 3D Systems." Progress of Theoretical Physics Supplement 138 (2000): 515–16. http://dx.doi.org/10.1143/ptps.138.515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Röll, H., and J. Pabst. "Induced magnetic form factors for 3d transition metals and 3d–3d alloys." physica status solidi (b) 135, no. 2 (June 1, 1986): 691–95. http://dx.doi.org/10.1002/pssb.2221350228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

KARAOGLU, B., and S. M. MUJIBUR RAHMAN. "THERMOMECHANICAL PROPERTIES OF 3d TRANSITION METALS." International Journal of Modern Physics B 08, no. 11n12 (May 30, 1994): 1639–54. http://dx.doi.org/10.1142/s0217979294000701.

Full text
Abstract:
We have investigated the density variation of the Einstein temperatures and elastic constants of the 3d transition metals. In this respect we have employed the transition metal (TM) pair potentials involving the sp contribution with an appropriate exchange and correlation function, the d-band broadening contribution and the d-band hybridization term. These calculations are aimed at testing the TM pair potentials in generating the aforesaid quasilocal and local thermomechanical properties.
APA, Harvard, Vancouver, ISO, and other styles
4

Krivanek, Ondrej L., and James H. Paterson. "Elnes of 3d transition-metal oxides." Ultramicroscopy 32, no. 4 (May 1990): 313–18. http://dx.doi.org/10.1016/0304-3991(90)90077-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Paterson, James H., and Ondrej L. Krivanek. "Elnes of 3d transition-metal oxides." Ultramicroscopy 32, no. 4 (May 1990): 319–25. http://dx.doi.org/10.1016/0304-3991(90)90078-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Seike, Tetsuya, and Junichi Nagai. "Electrochromism of 3d transition metal oxides." Solar Energy Materials 22, no. 2-3 (July 1991): 107–17. http://dx.doi.org/10.1016/0165-1633(91)90010-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lokasani, Ragava, Elaine Long, Oisin Maguire, Paul Sheridan, Patrick Hayden, Fergal O’Reilly, Padraig Dunne, et al. "XUV spectra of 2nd transition row elements: identification of 3d–4p and 3d–4f transition arrays." Journal of Physics B: Atomic, Molecular and Optical Physics 48, no. 24 (November 13, 2015): 245009. http://dx.doi.org/10.1088/0953-4075/48/24/245009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ishii, Keishi, and Kozo Ando. "Identification of the 3d^9–3d^84f transition in Zr XIV." Journal of the Optical Society of America B 3, no. 9 (September 1, 1986): 1193. http://dx.doi.org/10.1364/josab.3.001193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shimotomai, Y., R. Miyamoto, H. Kawanaka, and Y. Nishihara. "Metal-Insulator Transition and Magnetism in SrRu0.9T0.1O3(T=3d Transition Metal)." Journal of the Magnetics Society of Japan 25, no. 4−2 (2001): 711–14. http://dx.doi.org/10.3379/jmsjmag.25.711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ferraz, A., R. G. Chapman, N. H. March, B. Alascio, and C. M. Sayers. "Phenomenology of antiferromagnetic metal-insulator transition in 3d transition metal dichalcogenides." Solid State Communications 57, no. 12 (March 1986): 937–39. http://dx.doi.org/10.1016/0038-1098(86)90928-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Elément de transition 3d"

1

Berlureau, Thierry. "Propriétés structurales et magnétiques de quelques composes pseudo-binaires et ternaires ferromagnétiques a température de Curie élevée préparés dans les systèmes: -> terres rares (Nd, Sm) - Fer - Hydrogene-> Gadolinium - Fer - Aluminium-> Uranium - Fer ou Cobalt - Silicium ou Germanium." Phd thesis, Université Sciences et Technologies - Bordeaux I, 1991. http://tel.archives-ouvertes.fr/tel-00164556.

Full text
Abstract:
Deux voies ont été explorées pour rechercher des matériaux pouvant être utilisées comme aimants permanents: a) soit l'amélioration des performances magnétiques de composes connus. Ainsi d'une part l'insertion d'environ 120 K et d'autre part l'enrichissement en fer a l'aide d'une méthode d'hypertrempe de la solution solide GdFe12-xAlx conduit à des composés ferromagnétiques (TC=500 K pour x=2), b) soit l'obtention de nouveaux composés à base d'uranium qui permet d'induire une anisotropie magnétocristalline. L'étude des propriétés structurales des siliciures et germaniures UM10Si2 (M=Fe, Co) et U2M17-yXy (M=Fe, Co et X=Si, Ge) montre une occupation préférentielle du silicium ou du germanium de certains sites cristallographiques des structures types ThMn12 et Th2Ni17. Les propriétés magnétiques de ces composés sont analysees en fonction des distances M-M.
APA, Harvard, Vancouver, ISO, and other styles
2

Kamali-Moghaddam, Saeed. "3d Transition Metals Studied by Mössbauer Spectroscopy." Doctoral thesis, Uppsala universitet, Fysik III, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6163.

Full text
Abstract:
Layered crystals with magnetic elements as Co and Fe have been studied. In TlCo2Se2, where Co atoms in one sheet are separated by Tl and Se from the next Co sheet, magnetic interaction within and between the sheets have been studied. Samples doped with 4% 57Fe replaced Co, show a magnetic spiral character with hyperfine fields in a flower shape in the ab-plane. The magnetic moment of 0.46 μB per Co atom derived from the average field is in good agreement with the result from neutron diffraction. In TlCu1.73Fe0.27Se2 the easy axis of magnetisation is the c-axis. The magnetic moment calculated from the Mössbauer data and SQUID magnetrometry is 0.97 μB per Fe atom with TC = 55(5) K. Multilayers of different elements have been studied. The effect of vanadium atoms on iron atoms at the interface of FeNi/V multilayers has been determined and the intermixing at the interface has been calculated to be 2-3 monolayers. For FeNi/Co 1/1 monolayer the magnetic hyperfine field (Bhf) is 45° out-of-plane, while for superlattices containing 2 to 5 monolayers it is in the plane. An study on Fe/Co superlattice were done by experimental, theoretical and simulational methods. The Bhf is highest for the Fe at the second layer next to the interface and gets the bulk value in the centre of thicker Fe layers. Studied magnetic nanoparticles coated with a lipid bilayer (magnetoliposomes) are found to have the magnetite structure but being non-stoichiometric as a result of the manufacturing process. The composition was approximately 32% γ-Fe2O3 and 68% Fe3O4. The oxidation evolution and its effect on magnetic properties of Fe clusters were also studied by means of different techniques. The extraction and insertion mechanism of lithium in the cathode material Li2FeSiO4 has been monitored by in situ x-ray diffraction and Mössbauer spectroscopy during the first two cycles. The relative amount of Fe+3/ Fe+2 at each end state was in good agreement with the results obtained from electrochemical measurements. A possible explanation to the observed lowering of the potential plateau from 3.10 to 2.80 V occurring during the first cycle, involves a structural rearrangement process in which some of the Li ions and the Fe ions are interchanged. The behaviour of small amounts of Fe in brass is investigated using Mössbauer spectroscopy. It was shown that a heat treatment can increase the amount of the precipitates of γ-Fe and ~650° C is the optimal treatment for having the highest amount of this phase.
APA, Harvard, Vancouver, ISO, and other styles
3

Kamali-Moghaddam, Saeed. "3d transition metals studied by Mössbauer spectroscopy /." Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ghomari, Tewfik. "Contribution à la modélisation 3D volumique de la mise en forme des corps plastiques creux." Reims, 2007. http://www.theses.fr/2007REIMS001.

Full text
Abstract:
L’objectif principal de cet thèse est de mettre au point un logiciel de mise en forme des corps plastiques creux 3D axisymétriques, avec une répartition précise des épaisseurs et un coût de calcul moins élevé. Cela est devenu possible avec l’élaboration d’un nouvel élément fini de solide axisymétrique (baptisé SFRQ-Axi) basé sur le concept cinématique de rotation d’une fibre spatiale (Space Fiber Rotation concept). L’élément fini développé a l’avantage de converger rapidement pour les problèmes à contact présentant des zones de flexion. Le choix de l’algorithme de recherche de contact joue aussi un rôle dans le traitement rapide de la gestion des nœuds candidats au contact. Un algorithme de recherche local simple est élaboré pour tester la pénétration des segments « masters » par les nœuds « slaves ». Des difficultés numériques rencontrées auxquelles nous avions fait face, et qui sont dues aux fortes non linéarités géométriques, matérielles et surtout aux non linéarités de contact. Soulignons aussi la difficulté de gérer l’incompressibilité des éléments finis 3D volumiques ou axisymétriques. Deux approches de calcul implicite et explicite sont traitées pour un exemple de biberon. Les résultats obtenus montre la bonne précision du calcul implicite par rapport au calcul explicite. Les tests de validation de l’élément SFRQ-Axi avec contact sur un test de flexion d’une plaque circulaire, s’enroulant sur un tore rigide, montre la bonne vitesse de convergence et une meilleure précision des résultats des épaisseurs. Les résultats des tests de mise en forme donnent aussi une bonne répartition des épaisseurs à l’intérieur de la plage donnée par les résultats expérimentaux
The principal objective of this thesis is to develop a software of working of the plastic bodies hollow 3D axisymmetric, with a precise distribution of the thicknesses and a cost of less low calculation. That became possible with the development of a new finite element of axisymmetric solid (baptized SFRQ-Axi) based on the kinematic concept of rotation of a space fiber (Space Fiber Rotation concept). The developed finite element has the advantage of converging quickly for the problems with contact presenting of the flexing areas. The choice of the algorithm of search for contact plays also a part in the fast treatment of the management of the nodes candidates to the contact. A simple algorithm of research local is worked out to test the penetration of the segments “masters” by the “Slavic” nodes. Encountered numerical difficulties to which we had faced, and who are due to the strong not geometrical linearities, material and especially with nonthe linearities of contact. Let us underline also the difficulty in managing the incompressibility of the voluminal or axisymmetric finite elements 3D. Two approaches of implicit calculation and clarifies are treated for an example of feeding-bottle. The results obtained shows the good precision of implicit calculation compared to explicit calculation. The tests of validation of the SFRQ-Axi element with contact on a test of inflection of a circular plate, being rolled up on a rigid torus, shows the good speed of convergence and a better precision of the results thicknesses. The results of the tests of working give also a good distribution thicknesses inside the beach given by the experimental results
APA, Harvard, Vancouver, ISO, and other styles
5

Le, Bail Armel. "Structures des verres fluorés des éléments de transition 3d." Phd thesis, Université du Maine, 1985. http://tel.archives-ouvertes.fr/tel-00141107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Le, Bail Armel. "Structures des verres fluores des éléments de transition 3d." Le Mans, 1985. http://www.theses.fr/1985LEMA1002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tian, Cong. "Metallaelectro-Catalyzed C─H Activations by 3d Transition Metals." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-1482-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jassim, Ishmaeel Khalil. "Magnetic and lattice interaction in 3D transition metal compounds." Thesis, Loughborough University, 1990. https://dspace.lboro.ac.uk/2134/31919.

Full text
Abstract:
The importance and nature of magnetic and lattice degrees of freedom and their interaction in transition metal magnets has been investigated. Two different alloy systems in which the magnetic 3D electrons either had localised or itinerant characteristics were chosen. As an example of localised behaviour, Heusler alloys in which the magnetic moment was confined to Mn atoms were chosen, e.g. Pd2MnIn. The manganese atoms are separated by more than 4.6Å. These materials provide a good approximation to a Heisenberg system, having long-range interactions.
APA, Harvard, Vancouver, ISO, and other styles
9

Andersson, Cecilia. "Exploring the Magnetism of Ultra Thin 3d Transition Metal Films." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Loup, Joachim. "Selectivity Control in 3d Transition Metal-Catalyzed C–H Activation." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://hdl.handle.net/21.11130/00-1735-0000-0003-C19E-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Elément de transition 3d"

1

Motizuki, Kazuko, Hideaki Ido, Tadaei Itoh, and Masato Morifuji. Electronic Structure and Magnetism of 3d-Transition Metal Pnictides. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03420-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Motizuki, Kazuko. Electronic structure and magnetism of 3d- transition metal pnictides. Heidelberg: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bratushko, I͡U I. Koordinat͡sionnye soedinenii͡a 3d-perekhodnykh metallov s molekuli͡arnym kislorodom. Kiev: Nauk. dumka, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lovesey, S. W. Resonant (1s-3d) x-ray Bragg diffraction by transition-metal compounds. Chilton: Rutherford Appleton Laboratory, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

B, Sommers C., ed. Calculated electronic properties of ordered alloys: A handbook : the elements and their 3d/3d and 4d/4d alloys. Singapore: World Scientific, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dreyhsig, Jörg. The multiplet problem of 3d transition metal impurities in semiconductors: General aspects and the specific properties of semiconductors doped with cobalt. Berlin: W & T Verlag, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

W, Lovesey S., Rutherford Appleton Laboratory, and Council For The Central Laboratory of The Research Councils., eds. Diffraction and adsorption of x-rays by 3d transition ions: The 1s 3d process. Chilton: Rutherford Appleton Laboratory, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Motizuki, Kazuko, Hideaki Ido, Tadaei Itoh, and Masato Morifuji. Electronic Structure and Magnetism of 3d-Transition Metal Pnictides. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jassim, Ishmaeel Khalil. Magnetic and lattice interaction in 3d transition metal compounds. 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Motizuki, Kazuko, Hideaki Ido, and Tadaei Itoh. Electronic Structure and Magnetism of 3D-Transition Metal Pnictides. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Elément de transition 3d"

1

Papaconstantopoulos, Dimitris A. "The 3d Transition Metals." In Handbook of the Band Structure of Elemental Solids, 115–90. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4419-8264-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Herbert, Thorwald. "Stability and Transition of 3D Boundary Layers." In Laminar-Turbulent Transition, 595–600. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-03997-7_92.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kolobov, Alexander V., and Junji Tominaga. "From 3D to 2D: Fabrication Methods." In Two-Dimensional Transition-Metal Dichalcogenides, 79–107. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31450-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Würz, W., S. Herr, A. Wörner, U. Rist, S. Wagner, and Y. S. Kachanov. "Study of 3D Wall Roughness Acoustic Receptivity on an Airfoil." In Laminar-Turbulent Transition, 91–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-03997-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mielke, Christian, and Leonhard Kleiser. "Investigation of Transition to Turbulence in a 3D Supersonic Boundary Layer." In Laminar-Turbulent Transition, 397–402. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-03997-7_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Motizuki, Kazuko, Hideaki Ido, Tadaei Itoh, and Masato Morifuji. "Basic Properties of 3d-Pnictides." In Electronic Structure and Magnetism of 3d-Transition Metal Pnictides, 3–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03420-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kachanov, Y. S., D. B. Koptsev, and B. V. Smorodskiy. "3D Stability and Receptivity of Two-Dimensional Self-Similar Boundary Layer with Adverse Pressure Gradient." In Laminar-Turbulent Transition, 571–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-03997-7_88.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stanek, J., S. S. Hafner, and P. Fornal. "Metal — tellurium bonds in 3d-transition metal ditellurides." In Hyperfine Interactions (C), 355–58. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0281-3_88.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bracci, L., A. Vacchi, and E. Zavattini. "Laser induced transition 3D-3P in muonic helium." In The Future of Muon Physics, 74–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77960-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sengupta, Tapan K., and Swagata Bhaumik. "3D Routes of Transition to Turbulence by STWF." In DNS of Wall-Bounded Turbulent Flows, 307–45. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0038-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Elément de transition 3d"

1

Dingli, Alexiei, Dylan Seychell, Jonathan Mifsud, Matthew Montebello, and Vanessa Camilleri. "Transition to 3D Social Networking." In 2012 International Conference on Cyberworlds (CW). IEEE, 2012. http://dx.doi.org/10.1109/cw.2012.33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chang, Chau-Lyan. "LASTRAC.3d: Transition Prediction in 3D Boundary Layers." In 34th AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-2542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cupal, Miroslav, Zbynek Raida, and Jan Vélim. "Transition adapters for 3D textile substrates." In 2017 Conference on Microwave Techniques (COMITE). IEEE, 2017. http://dx.doi.org/10.1109/comite.2017.7932358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thakor, P. B., Y. A. Sonvane, A. R. Jani, Arun Pratap, and N. S. Saxena. "Thermodynamical Properties of 3d Transition Liquid Metals." In 5TH NATIONAL CONFERENCE ON THERMOPHYSICAL PROPERTIES: (NCTP-09). AIP, 2010. http://dx.doi.org/10.1063/1.3466546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Flynn, G., and R. Jones. "Attachment line transition with 3D isolated roughness elements." In 37th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-1018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sabharwal, Chaman L., and Jennifer L. Leopold. "Smooth transition neighborhood graphs for 3D spatial relations." In 2013 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP). IEEE, 2013. http://dx.doi.org/10.1109/cimsivp.2013.6583841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lu, Kun-Ta, Pei-Yu Cheng, Yuet-Loy Chan, Yao-Jane Hsu, Chun-I. Lu, Tzu-Hung Chuang, and Der-Hsin Wei. "NEXAFS Investigations of C60 / 3d -Transition Metal Interfaces." In 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS). IEEE, 2016. http://dx.doi.org/10.1109/icaums.2016.8479880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Diefenbach, Paul, Kenneth Oum, and Fredricka Reisman. "Transition to Teaching: 3D classroom simulation and management." In 2010 2nd International IEEE Consumer Electronics Society's Games Innovations Conference (ICE-GIC 2010). IEEE, 2010. http://dx.doi.org/10.1109/icegic.2010.5716910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Choi, Je-Eun, and Masahiro Takei. "3D Tomographic Transition of Particle Distribution in Microchannel." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-35007.

Full text
Abstract:
The three dimensional cross-sectional particle concentrations of particle-liquid two phase flows in the two cross-seciton of microchannel has been reconstructed using process tomography. In the obtained 3D (2D space and time) reconstruction image, the dielectric particle-injected area appears to have a high particle concentration, and the deionized water-injected area appears to have a low particle concentration. Dielectric particles as the solid phase and non-conductive deionized water as the liquid phase are non-uniformly injected to the microchannel. The comparison between the qualitative result of 3D reconstruction image and the quantitative result of particle concentration in flow direction transition is that the particle is reasonably distributed in the particle injected area of the cross-section. Based on the reconstructed particle distribution image, it is easy to estimate the particle diffusion behaviors in microchannel.
APA, Harvard, Vancouver, ISO, and other styles
10

Zimmermann, P. "Innershell photo-ionization of the 3d transition elements." In IV Workshop on Atomic and Molecular Physics, edited by Jozef Heldt. SPIE, 2003. http://dx.doi.org/10.1117/12.544338.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Elément de transition 3d"

1

Iota, V. Magnetism In 3d Transition Metals at High Pressures. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/877770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, K. M., D. E. Jesson, S. J. Pennycook, T. Thundat, and R. J. Warmack. New insights into the kinetics of the stress-driven 2D to 3D transition. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/201781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Morrison, Clyde A. Possible Hosts for Quadruply Ionized 3d(N) Transition Metal Ions: Na2TiSiO5, Y2SiBe2O7, Bi4X3O12, and Bi12XO20 (X = Si, Ge). Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada236543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wogelius, R. A., and D. G. Fraser. Ga, Ca, and 3d transition element (Cr through Zn) partitioning among spinel-lherzolite phases from the Lanzo massif, Italy: Analytical results and crystal chemistry. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/10154294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography