Contents
Academic literature on the topic 'Éléments finis, Méthode des – Applications scientifiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Éléments finis, Méthode des – Applications scientifiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Éléments finis, Méthode des – Applications scientifiques"
Demesy, Guillaume, André Nicolet, Frédéric Zolla, and Christophe Geuzaine. "Modélisation par la méthode des éléments finis avec onelab." Photoniques, no. 100 (January 2020): 40–45. http://dx.doi.org/10.1051/photon/202010040.
Full textMnasri, Aida, and Ezzeddine Hadj Taieb. "Simulation numérique par éléments finis des écoulements transitoires à surface libre." La Houille Blanche, no. 5-6 (December 2019): 81–92. http://dx.doi.org/10.1051/lhb/2019032.
Full textRéthoré, Julien, Anthony Gravouil, and Alain Combescure. "Prise en compte de discontinuités en espace et en temps par la méthode des éléments finis étendus." European Journal of Computational Mechanics, September 28, 2007, 827–43. http://dx.doi.org/10.13052/remn.16.827-843.
Full textDissertations / Theses on the topic "Éléments finis, Méthode des – Applications scientifiques"
Bomme, Patricia. "Objets hybrides dans des applications scientifiques orientées objets." Compiègne, 1998. http://www.theses.fr/1998COMP1113.
Full textBARROS, ELISABETH. "Estimation de parametres dans les equations de saint-venant." Paris 6, 1996. http://www.theses.fr/1996PA066465.
Full textBenayoun, Serge. "Calcul local du mouvement : applications à l'imagerie médicale multidimensionnelle." Paris 9, 1994. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1994PA090032.
Full textDroniuc, Niculai. "Développement et applications géotechniques du calcul à la rupture par la méthode des éléments finis." Marne-la-vallée, ENPC, 2001. http://www.theses.fr/2001ENPC0109.
Full textQasmi, Mounir. "LaNanoindentation simulée par la méthode des éléments finis associée aux algorithmes d'analyse inverse : un outil pour accéder aux propriétés mécaniques locales des matériaux : quelques applications." Besançon, 2005. http://www.theses.fr/2005BESA2084.
Full textLochegnies, Dominique. "Résolution numérique par la méthode des éléments finis des problèmes viscoplastiques et applications à l'étirage et au forgeage." Valenciennes, 1988. https://ged.uphf.fr/nuxeo/site/esupversions/a3083d29-4085-4d6c-b4ef-4f0ebdcab1f8.
Full textPicard, Emmanuel. "Filtres planaires en technologies innovantes pour des applications multimédia." Limoges, 2004. http://aurore.unilim.fr/theses/nxfile/default/175f1b18-41c0-49f5-b9c0-cebb24d6b6bf/blobholder:0/2004LIMO0002.pdf.
Full textBouillard, Philippe. "Méthodes de contrôle de la qualité de solutions éléments finis: applications à l'acoustique." Doctoral thesis, Universite Libre de Bruxelles, 1997. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212096.
Full textAs in other application fields, error control is an important issue in acoustic computations. It is clear that the numerical parameters (mesh size h and degree of approximation p) must be adapted to the physical parameter k. The well known ‘rule of the thumb’ for the h version with linear elements is to resolve the wavelength lambda=2 pi k-1 by six elements characterising the approximability of the finite element mesh. If the numerical model is stable, the quality of the numerical solution is entirely controlled by the approximability of the finite element mesh. The situation is quite different in the presence of singularities. In that case, stability (or the lack thereof) is equally (sometimes more) important. In our application, the solutions are ‘rough’, i.e. highly oscillatory if the wavenumber is large. This is a singularity inherent to the differential operator rather than to the domain or the boundary conditions. This effect is called the k-singularity. Similarly, the discrete operator (“stiffness” matrix) becomes singular at eigenvalues of the discretised interior problem (or nearly singular at damped eigenvalues in solid-fluid interaction). This type of singularities is called the lambda-singularities. Both singularities are of global character. Without adaptive correction, their destabilizing effect generally leads to large error of the finite element results, even if the finite element mesh satisfies the ‘rule of the thumb’.
The k- and lambda-singularities are first extensively demonstrated by numerical examples. Then, two a posteriori error estimators are developed and the numerical tests show that, due to these specific phenomena of dynamo-acoustic computations, error control cannot, in general, be accomplished by just ‘transplanting’ methods that worked well in static computations. However, for low wavenumbers, it is necessary to also control the influence of the geometric (reentrants corners) or physical (discontinuities of the boundary conditions) singularities. An h-adaptive version with refinements has been implemented. These tools have been applied to two industrial examples :the GLT, a bi-mode bus from Bombardier Eurorail, and the Vertigo, a sport car from Gillet Automobiles.
As a conclusion, it is recommanded to replace the rule of the thumb by a criterion based on the control of the influence of the specific singularities of the Helmholtz operator. As this aim cannot be achieved by the a posteriori error estimators, it is suggested to minimize the influence of the singularities by modifying the formulation of the finite element method or by formulating a “meshless” method.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Dufour, Frédéric. "Développements de la méthode des éléments finis avec des points d'intégration Lagrangiens : applications à la géomécanique." Phd thesis, Ecole centrale de nantes - ECN, 2002. http://tel.archives-ouvertes.fr/tel-00334013.
Full textChoné, Philippe. "Étude de quelques problèmes variationnels intervenant en géométrie riemannienne et en économie mathématique." Toulouse 1, 1999. http://www.theses.fr/1999TOU10020.
Full textIn the first part of this thesis, we consider a critical point u of a conformally invariant functional on a two-dimensional domain. We show that if u is a priori assumed to be bounded, then u is smooth up to the boundary of the domain. As an application, we establish a regularity result for weak solutions to the equation of surfaces of prescribed mean curvature in a three dimensional compact Riemannian manifold. The variational problems studied in the second part are motivated by economic issues, namely non-linear pricing by a monopolist or a duopolist. The problem consists in maximizing a functional over the cone of convex functions. We give a sufficient condition for the convexity constraint to be active. This condition does hold in many common situations in economics. Typically, in a two-dimensional problem, there exists an area where the rank of the hessian of the solution is 1. We write the Euler equation of the problem and derive the + sweeping conditions. We explain how to use these conditions to compute the solution. This method, however, requires some prior knowledge of the solution. We therefore study the numerical approximation of the problem. We show how to apply some simple finite-elements methods to the problem. There is, however, a strong theoretical obstruction to the convergence of these methods (in dimension greater than 2). Finally we consider duopoly models that involve non-concave and non-coercive functionals. We study best reply maps and Nash equilibria in these models
Books on the topic "Éléments finis, Méthode des – Applications scientifiques"
1938-, Stephansson Ove, ed. Fundamentals of discrete element methods for rock engineering: Theory and applications. Amsterdam: Elsevier, 2007.
Find full textDaniele, Boffi, and Centro internazionale matematico estivo. Summer School, eds. Mixed finite elements, compatibility conditions, and applications: Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 26 - July 1, 2006. Berlin: Springer, 2008.
Find full textStephansson, Ove, and Lanru Jing. Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications, Volume 85 (Developments in Geotechnical Engineering) (Developments in Geotechnical Engineering). Elsevier Science, 2007.
Find full text