Academic literature on the topic 'Eletrochemistry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Eletrochemistry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Eletrochemistry"

1

Juris, A., V. Balzani, F. Barigelletti, S. Campagna, P. Belser, and A. von Zelewsky. "Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence." Coordination Chemistry Reviews 84 (March 1988): 85–277. http://dx.doi.org/10.1016/0010-8545(88)80032-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kazemi-Rad, Reyhaneh. "A green approach to electrosynthesis of chromeno[3’,4’:5,6] pyrano [2,3-d] pyrimidines." Analytical Methods in Environmental Chemistry Journal 1, no. 01 (November 26, 2018): 39–46. http://dx.doi.org/10.24200/amecj.v1.i01.35.

Full text
Abstract:
Eletrochemistry is a broad, useful, and selective technique method in many research fields. Among them, the investigation of performance of electrochemical methods in determination, synthesis and selective reduction/oxidation of different elements and molecules have attracted growing attention due their intrinsic advantages such as selectivity, low cost, and high yield of synthesis. Moreover, electrocatalytic synthesis of organic molecules is known as a green and environmentally benign method. In the present form, electrocatalytic multicomponent transformation of barbituric acid, aromatic aldehydes, and 4-hydroxycumarin was carried out. The electrocatalytic transformation was done in alcohols in the presence of tetrabutylammounium flouride as an electrolyte in an undivided cell containing an iron electrode as the cathode and a Pt electrode as the anode at a constant current leads to substituted chromeno[3’,4’:5,6] pyrano[2,3-d] pyrimidines in good to high yields (54-92%) at room temperature. The yield of reaction was obtained by gravimetric analysis and calculated upon theoretical conversion.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Li, Xuequn Liu, Chuntai Wang, Xinqiong Liu, Gang Cheng, and Yunhua Wu. "Expression, purification and direct eletrochemistry of cytochrome P450 6A1 from the house fly, Musca domestica." Protein Expression and Purification 71, no. 1 (May 2010): 74–78. http://dx.doi.org/10.1016/j.pep.2009.12.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schmittel, Michael. "Book Review: Organic Eletrochemistry. An Introduction and a Guide. 3rd Edition(revised and enlarged). Edited by H. Lund and M. M. Baizer." Angewandte Chemie International Edition in English 31, no. 5 (May 1992): 656–57. http://dx.doi.org/10.1002/anie.199206561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"The Intenational Society of Eletrochemistry." Electrochimica Acta 42, no. 20-22 (January 1997): iii—v. http://dx.doi.org/10.1016/s0013-4686(97)90117-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Eletrochemistry"

1

Winter, Eduardo. "Influencia de compostos carboxilicos e ions metalicos na degradação de neurotransmissores." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/249435.

Full text
Abstract:
Orientadores: Susanne Rath, Jarbas Jose Rodrigues Rohwedder
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica
Made available in DSpace on 2018-08-09T10:51:51Z (GMT). No. of bitstreams: 1 Winter_Eduardo_D.pdf: 3366512 bytes, checksum: 6c8baea3dd6502c19761ad449683bb95 (MD5) Previous issue date: 2007
Resumo: Muitas doenças neurodegenerativas são associadas com disfunções de neurotransmissores, em particular catecolaminas, no cérebro. Numerosas pesquisas têm indicado que íons metálicos podem induzir estresse oxidativo - dependente da neurodegeneração de dopamina e são responsáveis pelo aparecimento de doenças neurodegenerativas. Em estudos prévios foi verificado que alguns carboxilatos diminuem a velocidade de oxidação de catecolaminas e inibem a passivação de eletrodos sólidos durante a análise voltamétrica destes compostos fenólicos. Este trabalho teve por objetivo estudar a influência de carboxilatos (EDTA, NTA, EGTA, DTPA, acetato, citrato e oxalato) e íons metálicos (Ce(IV), Fe(III) e Hg(II)) durante a oxidação de neurotransmissores (dopamina, serotonina, epinefrina, norepinefrina e L-dopa) no intuito de estabelecer mecanismos de reações que possam contribuir no esclarecimento do papel destes compostos no processo de degeneração dos neurotransmissores, assim como compreender como os carboxilatos inibem o envenenamento do eletrodo durante a varredura de potencial. Para eses propósitos foram empregadas as técnicas de espectrofotometria, voltametria e espectroeletroquímica. A cela espectroeletroquímica de camada delgada desenvolvida incorporou um sistema de três eletrodos, sendo o eletrodo de trabalho uma minigrade de Pt. O sistema foi caracterizado usando o-tolidina e K4[Fe(CN)6]/ K3[Fe(CN)6] e permitiu o monitoramento das reações in situ. Os resultados obtidos mostraram que os carboxilatos desprotonados interagem com os produtos intermediários formados durante a oxidação das catecolaminas por meio de ligações de hidrogênio, sendo estas interações dependentes do pH do meio, estruturas do carboxilato e do próprio neurotransmissor. Foi proposto um mecanismo eletroquímico para a oxidação de aminas biogênicas na presença de carboxilatos no eletrodo de platina. A estabilização dos produtos intermediários formados inibe a formação de compostos poliméricos que são responsáveis pelo envenenamento do eletrodo. Do mesmo modo, os carboxilatos retardam ou inibem a oxidação química de algumas aminas biogênicas por íons metálicos
Abstract: Several neurological disorders are associated with improper catechoalmine regulation in the brain. Numerous researches have indicated that metallic ions can induce oxidative stress-dependent neurodegeneration of dopamine, and are responsible for the induction of neurodegenerative diseases. In previous work was verified that some carboxylates diminishes the oxidation rate of catecholamines and inhibit the well known solid state electrode passivation during voltammetric analysis of these phenolic compounds. The aim of this work was to study the influence of carboxylates (EDTA, NTA, EGTA, DTPA, acetate, oxalate and citrate) and metallic ions (Ce(IV), Fe(III) and Hg(II)) during the oxidation of neurotransmitters (dopamine, serotonin, epinephrine, norepinephrine and L-dopa) in order to establish putative reaction mechanism which could contribute to understand the role of these compounds in neurodegenerative processes, as well as comprehend how the carboxylates inhibit the electrode fouling during potential scan. For these purposes, the studies were carried out using spectrophotometric, voltammetric and spectroelectrochemical techniques. The spectroelectrochemical thin layer cell developed incorporated a three electrode system, using a Pt- minigrade as working electrode. The system was characterized employing o-tolidine and K4[Fe(CN)6]/ K3[Fe(CN)6] and allowed monitoring the electrode reactions in situ. The results obtained showed that the deprotonated carboxylates interacts with the intermediates formed at the electrochemical oxidation of catecholamines by hydrogen bonds. These interactions are dependent on the pH of the medium, as well as on the chemical structures of the carboxylates and neurotransmitters itself. An electrochemical mechanism for the oxidation of biogenic amines in the presence of carboxylates at the platinum electrode is proposed. The stabilization of the intermediates formed inhibits the formation of polymeric compounds that are responsible for the electrode fouling. In the same manner, the carbolxylates retards or inhibit the chemical oxidation of some biogenic amines by metallic ions by the same reaction pathway
Doutorado
Quimica Analitica
Doutor em Ciências
APA, Harvard, Vancouver, ISO, and other styles
2

Dall\'Antonia, Luiz Henrique. "Caracterização eletroquímica e ótica de filmes de óxido espesso crescidos sobre ouro." Universidade de São Paulo, 1995. http://www.teses.usp.br/teses/disponiveis/88/88131/tde-08062009-100248/.

Full text
Abstract:
Através de polarização potenciostática de eletrodos de ouro policristalino em vários potenciais de polarização, 1,8,...., 2,4 V, ERH, por tempos de ate 72 h, em meios ácido e alcalino, conduz a formação de quatro estados do Óxido, OC1, OC2, OC3 e OC4, distinguíveis, durante o processo de redução pela técnica de voltametria cíclica. O estado quase-bidimensional (OC1) tende a um limite de duas monocamadas, em meio ácido, e penas uma em meio básico, de AuOads, enquanto, o filme espesso (OC2, OC3 e OC4, Au2O3) não atinge qualquer limite de crescimento. Os diagramas de carga catódica total (que mede o crescimento do filme de Óxido) vs log tempo de polarização revelam duas regiões lineares: (a) lenta, abaixa de 1 mC cm-2, (b) rápida, acima de 1 mC cm-2. Este comportamento é atribuído a um novo mecanismo de crescimento do óxido. Durante o crescimento do filme de óxido em altos potenciais anódicos, passando pelo vários estágios identificáveis por voltametria cíclica, pequenas mas significantes mudanças ocorrem na cinética de geração de O2. Os diagramas de Tafel revelam duas regiões lineares para a reação de geração de oxigênio, R.G.O., em meios ácido e alcalino. O mecanismo da R.G.O. é preliminarmente discutido. Finalmente, estudos dos filmes espesso de óxido de ouro foram realizados in situ por elipsometria espectroscópica. Os espectros do filme de óxido na faixa de comprimento de onda entre 300 e 800 nm, nos vários estágios de crescimento foram obtidos. Está mostrado que, ambos, a espessura do filme e o espectro ótico podem ser calculados em cada estágio durante o crescimento do óxido assumindo a existência de um filme fino altamente absorvente, adjacente à superfície do metal, e no topo deste um segundo filme que se assemelha mais a uma forma hidratada do \"Au2O3\". Este último filme atinge espessuras da ordem de várias centenas de A, quando polarizado por até 72 h.
Potentiostatic polarization of polycrystalline Au electrodes at various polarization potentials, 1.8, ..., 2.4 V, RHE, for polarization times up to 72h, in acid and basic solutions, leads to formation of four oxide states, OC1, OC2, OC3 and OC4, distinguished, in reduction, using linear-sweep voltammetry. The quasi-2d state (OC1) tends to the limit of two monolayers in acid solution and one monolayer in basic solution of AuOads, while the quasi-3d state (OC2-OC4, Au2O3) does not reach any limit in its extent. The cathodic total charge log polarization time plots reveal two linear regions: (a) slow, up to 1 mC cm-2, and (b) fast, beyond 1 mC cm-2. This behavior is attributed to a new oxide growth mechanism. During growth of the oxide film at high anodic potentials through the various stages identifiable in cyclic voltammetry, small but significant changes in the kinetics of O2, evolution arise. Tafel slopes for the oxygen evolution reaction, OER, reveal two linear region in acid and alkaline medium. The mechanism of the OER is preliminarily discussed. Finally, studies of the thick anodic oxide films on Au is done in situ by spectroscopic ellipsometry. The spectrum of the oxide film in the wavelength range 300 to 800 nm, at various stages of film growth is obtained. It is shown that both film thickness and optical spectrum can be solved at each stage in oxide growth assuming a highly absorbing thin film adjacent to the metal surface, and, on the top of it, a second film, which is most probably a hydrous form of \"Au2O3\". The latter film reaches thicknesses of severa1 hundreds A± up to 72h of anodization.
APA, Harvard, Vancouver, ISO, and other styles
3

Souza, Antonio Albuquerque de. "Estudos eletroquímicos do 2-[p-nitrofenil (hidroxi) metil] acrilato de metila: um fármaco antitumoral e sua reatividade frente a GSH, dsDNA e oxigênio." Universidade Federal de Alagoas, 2007. http://repositorio.ufal.br/handle/riufal/1092.

Full text
Abstract:
The present work presents electrochemical studies of Baylis-Hillman adducts, that show significant anti-tumoral activity. Electrochemical techniques used were Cyclic Voltammetry, Differential Pulse Voltammetry, Square Wave Voltammetry and Controlled Potential Electrolysis. The reduction behaviour of methyl 2-[p-nitrophenyl(hydroxy) methyl] acrylate (2) in aprotic medium (DMF + TBAP, 0.1 mol L-1) was typical of nitroaromatics, with three reduction waves, the first two related to the reduction of the nitro function. The third wave refers to the reduction of the acrylate group, similarly to the observed behavior of the pattern compound, the 2-[phenyl(hydroxy)methyl] acrylate (1). In protic medium (phosphate buffer, pH 6.9), compound 2 shows one reduction wave related to the generation of the derived hydroxylamine. In alkaline buffer (EtOH + phosphate, DMF + phosphate or EtOH + bicarbonate + NaOH, pH ~9), the electron transfer led to the formation of the stable nitro radical anion. Controlled potential electrolysis, in neutral protic medium, in 4 e-/4H+ process, furnished a dimer, after the nitro group reduction. Electrochemical studies performed on a dsDNA biosensor suggest that one of the targets for the biological action of 2 is the DNA. The DNA damage, verified by the presence of the oxidation peaks of the nucleobases guanine and adenine, is observed only, after the nitro group reduction (pharmacophore) to reactive intermediates, which reinforce the importance of the bioreduction for the biological action. The electrochemical and spectrophotometric studies, in the presence of GSH and GSSG, revealed that the reduction products of the nitro group interact with the endobiotics, in a different way. For phosphate + NaOH, pH 9.4, the addition of GSH to the solution of 2, led to the increase of current intensity for the first reduction wave that turns irreversible. The second reduction wave, relative to the hydroxylamine production, is no more observed in the voltammogram. Due to the acid nature of GSH, together with the inefficient buffering effect of the medium, glutathione acts as a protons donor, leading to a stable nitroso derivative. On the other hand, in bicarbonate + NaOH buffer, the pH is kept and glutathione is present in its dissociated form. Voltammetric changes are minimum, with a slight increase in the reversibility of the process concerning formation of nitro anion radical. At more negative potentials, the wave related to the production of hydroxylamine disappears, showing that GSH interacts with products of posterior reduction of the nitro group. The possible catalysis in the presence of O2 was not evidenced. These electrochemical results help in the understanding of the anticancer activity of 2 that can be considered a hypoxia targeted bioreductive agent with a glutathione depleting function
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
No presente trabalho, foram realizados estudos eletroquímicos de compostos que apresentam expressiva atividade antiproliferativa, conhecidos como adutos de Baylis-Hillman. As técnicas utilizadas foram: voltametria cíclica, de pulso diferencial e de onda quadrada e eletrólise a potencial controlado. Os estudos eletroquímicos revelaram um comportamento padrão para o composto nitroaromático 2-[p-nitrofenil(hidroxi)] acrilato de metila (2). Em meio aprótico (DMF + TBAP, 0,1 mol L-1), o composto 2 apresentou três ondas de redução, sendo as duas primeiras referentes à redução do grupo nitro e, assim como no composto padrão não nitrado, 2-[fenil(hidroxi)] acrilato de metila (1), a onda adicional, em potencial mais negativo, relaciona-se à redução do grupo acrilato. Em meio prótico, tampão fosfato pH 6,9, uma única onda catódica relativa à formação da hidroxilamina é observada. Nos estudos em meio aquoso alcalino (EtOH + fosfato, DMF + fosfato ou EtOH + bicarbonato de sódio + NaOH, pH ~ 9), observou-se a formação de intermediário radicalar estável, o ânion radical nitro. Eletrólises em potencial controlado, em meio prótico neutro, levaram à formação e isolamento de um dímero, após redução do grupo nitro, em processo de 4e-/4 H+. Estudos eletroquímicos realizados em biossensor de dsDNA, sugerem que um dos alvos para ação biológica de 2 é o DNA. A lesão ao DNA, refletida pela presença de picos diagnósticos de oxidação das bases guanina e adenina, mensuráveis eletroquimicamente, é observada apenas após redução do grupo nitro (farmacóforo) a intermediários reativos, reforçando a necessidade de biorredução do grupo para posterior atividade biológica. Os estudos eletroquímicos e espectrofotométricos, em presença de GSH e GSSG, revelaram que os produtos de redução do grupo nitro interagem com os endobióticos, de maneira diferente. Para o meio fosfato + NaOH, pH 9,4, a adição de GSH promoveu o aumento na intensidade de corrente para o primeiro processo eletródico, bem como a perda de reversibilidade. Já a segunda onda de redução, relativa à formação da hidroxilamina, não foi observada no voltamograma. De acordo com as funções ácidas da GSH, aliada ao ineficiente efeito tamponante desse meio, a glutationa atua como doador de prótons, favorecendo a formação do derivado nitroso. Por outro lado, em tampão bicarbonato + NaOH, onde se tem um eficiente efeito tamponante e a glutationa se encontra na forma desprotonada, as alterações voltamétricas são mais discretas, com aumento da reversibilidade do processo referente à formação do ânion radical nitro. Em potenciais mais negativos, a onda relativa à geração da hidroxilamina desaparece, o que evidencia a interação de GSH com os produtos de redução estendida do grupo nitro. A possibilidade de catálise, em presença de oxigênio, não foi evidenciada para 2. Os resultados obtidos fornecem subsídios úteis para a compreensão do mecanismo de ação antitumoral de 2, que pode ser considerado um agente biorredutivo, com função adicional seqüestradora de glutationa
APA, Harvard, Vancouver, ISO, and other styles
4

Fugivara, Cecílio Sadao. "Cinética de adsorção do n-propanol sobre eletrodo de platina platinizada em solução de ácido sulfúrico." Universidade de São Paulo, 1989. http://www.teses.usp.br/teses/disponiveis/46/46132/tde-19022009-145126/.

Full text
Abstract:
Relata-se um estudo sobre o processo de eletrossorção do n-propanol sobre eletrodos de platina eletrodispersa em soluções de H2SO4 1 N, a diferentes temperaturas (12 a 51 ºC) e potencíais (0,30 a 0,60 V). São abordados os aspectos relacionados com a cinética de adsorção dos possíveis intermediários formados na desidrogenação do n-propanol, bem como a determinação das constantes de velocidade em cada etapa. São apresentadas as energias de ativação do processo de adsorção para graus de cobertura, θ = 0 e θ ≠ 0. A adsorção do álcool estudado a potencial controlado na região da dupla camada elétrica, ocorre através da desidrogenação da molécula, seguida pela ionização do hidrogênio adsorvido. A isoterma cinética de adsorção foi obtida a partir dos cronoamperogramas de desidrogenação do álcool e mostra uma variação linear de θ com o logaritmo do tempo de adsorção (t), para 0,25 < θ < 0,80. Por outro lado, a relação entre E = f (log li), onde li é a máxima corrente não estacionária obtida a t = 0, é linear com coeficiente angular igual a 2,3 (2 RT/F). Esse valor indica que no início da adsorção do n-propanol, apenas um elétron está envolvido no processo. Da mesma maneira que no metanol, supõe-se que a desidrogenação do n-propanol não ocorre através da eliminação simultânea dos dois átomos de hidrogênio ligados no carbono-α, mas por duas etapas consecutivas de desidrogenação: R - CH2 - OH j1→ R - .CH - OH + H+ + e- ( 1 ) R - .CH - OH j2→ R - ..C - OH + H+ + e- ( 2 ) Desse modo, a corrente anódica não estacionária (j), proveniente da ionização do hidrogênio formado na desidrogenação do n-propanol é resultante da soma das correntes j>SUB>1 e j2 produzidas nas reações descritas nas equações (1) e (2). Quando o tempo de adsorção é muito curto, isto é , j2 = 0, a corrente não estacionária é determinada apenas pela adsorção da espécie R-.CH-OH. Considerando esta hipótese e as isotermas de Temkin e Elovich foi obtida uma equação que descreve o grau de cobertura pela espécie R-.CH-OH, (θ1) em função do tempo. θ1 = - Qmáx B/k2t (1-A-B ln t) + k1/k2 onde Qmáx é a carga máxima de cobertura, k1 e k2 são as constantes de velocidade de adsorção das espécies R-.CH-OH e R-..C-OH, respectivamente, A e B são as constantes da equação de Elovich. A equação precedente permitiu determinar as constantes de velocidade de adsorção k1 e k2. A partir desses valores em diferentes temperaturas foram obtidas as energias de ativação para as reações (1) e (2). Verificou-se que os tempos de máxima cobertura por R.CHOH e de inflexão, obtidos respectivamente de θ1= f (log t) e j-1 = f(t), são comparáveis para dada temperatura e potencial.
The kinetics and mechanism of n-propanol adsorption on a platinized platinum electrode was studied in 1 N H2SO4 at several temperatures, by means of the potential pulse method. Between 0.30 V and 0.60 V (RHE), the adsorption occurs via a dehydrogenation of the α-carbon, followed by a rapid ionization of the adsorbed hydrogen atoms. The kinetic isotherms obtained by integration of the chronoamperograms show a linear variation of the surface coverage, θ, with logarithm of the adsorption time, tads, in the range 0.25 ≤ θ ≤ 0.80. This indicates that the adsorption rate can be expressed in tems of an Elovich equation. It is shown that the relation Eads vs log Ii, where Eads is the adsorption potential and Ii is the maximum non-stationary current at t = 0, is a straight line with a slope equal to 2.3[2RT/F], independently of the temperature. These data show that the initial adsorption step envolves a monoelectronic charge transfer, and can be represented by the following equation: R-CH2-OH j1→ R-.CH-OH + H+ + e- ( 1 ) Therefore, it is assumed that the adsorption occurs via a two step consecutive reaction, given by equations (1) and (2): R-.CH-OH j2→ R-..C-OH + H+ + e- ( 2 ) with the two adsorbed species R-.CH-OH and R-..C-OH characterized by their degree of coverage θ1 and θ2, respect ively. The non-stationary anodic current, j, is then the sum of currents j1 and j2 resulting from reactions described by equations (1) and (2). When the adsorption time is very short, it can be assumed that j = j1 + j2 ≈ j1, and that θ = θ 1 + θ2 ≈ θ1. From those assumptions, the following equation relating θ1 with t was obtained: θ1 = -Qmáx . B/[k2.t (1-A-B). ln t ] + k1/k2 (3) where Qmáx is the charge related with the maximum surface coverage, k1 and k2 the apparent rate constants of reactions (1) and (2), respectively, and A and B are constants from the Elovich equation. Equation (3) permitted the evaluation of the rate constants k1 and k2 for distinct Eads values. From the data at different temperatures, the apparent activation energies of both reactions were calculated.
APA, Harvard, Vancouver, ISO, and other styles
5

Cierpka, Christian. "Zeitaufgelöste PIV-Untersuchungen zur Strömungskontrolle mittels elektromagnetischer Kräfte in schwach leitfähigen Fluiden." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1240481487194-92722.

Full text
Abstract:
Die vorwiegend experimentelle Arbeit befasst sich mit der systematischen Untersuchung von Parametervariationen bei der aktiven Strömungskontrolle mit elektromagnetischen Kräften. An einer angestellten Platte und einem NACA0015-Profil wurde die saugseitige abgelöste Strömung durch das Einbringen einer periodischen wandparallelen Lorentzkraft an der Vorderkante beeinflusst und experimentell mittels zeitaufgelöster Particle Image Velocimetry (PIV) untersucht. Dabei wurde für verschiedene Anstellwinkel und Reynoldszahlen die Frequenz der Anregung, deren Impulseintrag und der zeitliche Kraftverlauf variiert. Strömungsmechanische Untersuchungen experimenteller und numerischer Natur wurden für eine elektrochemische Zelle und den Fall der Elektrolyse an Millieelektroden unter dem Einfluss externer Magnetfelder durchgeführt. Die Übereinstimmung der gemessenen und berechneten Geschwindigkeitsfelder war dabei sehr gut. Entgegen der Annahme, dass im Falle homogener Magnetfelder keine Strömungen induziert werden, konnte nachgewiesen werden, dass durch die lokale Krümmung der elektrischen Feldlinien in Elektrodennähe starke Lorentzkräfte generiert werden. Dies führt zu sehr komplexen Primär-und Sekundärströmungen. Die gleichen Effekte bewirken ebenfalls in der Nähe von Millieelektroden starke Lorentzkräfte in homogenen magnetischen Feldern. Die experimentellen Beobachtungen an Millieelektroden von Leventis et. al (2005), welche zum Beweis der Konzentrationsgradientenkraft herangezogen wurden, konnten alle auf das Wirken lokaler Lorentzkräfte zurückgeführt werden. Der experimentelle Nachweis der Konzentrationsgradientenkraft steht damit weiterhin aus. Zur Messung der Konzentrationen in elektrochemischen Systemen wurde erstmals das Hintergrundschlierenverfahren angewendet. Dieses Verfahren erlaubt die Bestimmung der räumlichen Konzentrationsgradienten mit erheblich weniger messtechnischen Aufwand gegenüber spektroskopischen Methoden und der Schlierentechnik.
APA, Harvard, Vancouver, ISO, and other styles
6

Cierpka, Christian. "Zeitaufgelöste PIV-Untersuchungen zur Strömungskontrolle mittels elektromagnetischer Kräfte in schwach leitfähigen Fluiden." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23653.

Full text
Abstract:
Die vorwiegend experimentelle Arbeit befasst sich mit der systematischen Untersuchung von Parametervariationen bei der aktiven Strömungskontrolle mit elektromagnetischen Kräften. An einer angestellten Platte und einem NACA0015-Profil wurde die saugseitige abgelöste Strömung durch das Einbringen einer periodischen wandparallelen Lorentzkraft an der Vorderkante beeinflusst und experimentell mittels zeitaufgelöster Particle Image Velocimetry (PIV) untersucht. Dabei wurde für verschiedene Anstellwinkel und Reynoldszahlen die Frequenz der Anregung, deren Impulseintrag und der zeitliche Kraftverlauf variiert. Strömungsmechanische Untersuchungen experimenteller und numerischer Natur wurden für eine elektrochemische Zelle und den Fall der Elektrolyse an Millieelektroden unter dem Einfluss externer Magnetfelder durchgeführt. Die Übereinstimmung der gemessenen und berechneten Geschwindigkeitsfelder war dabei sehr gut. Entgegen der Annahme, dass im Falle homogener Magnetfelder keine Strömungen induziert werden, konnte nachgewiesen werden, dass durch die lokale Krümmung der elektrischen Feldlinien in Elektrodennähe starke Lorentzkräfte generiert werden. Dies führt zu sehr komplexen Primär-und Sekundärströmungen. Die gleichen Effekte bewirken ebenfalls in der Nähe von Millieelektroden starke Lorentzkräfte in homogenen magnetischen Feldern. Die experimentellen Beobachtungen an Millieelektroden von Leventis et. al (2005), welche zum Beweis der Konzentrationsgradientenkraft herangezogen wurden, konnten alle auf das Wirken lokaler Lorentzkräfte zurückgeführt werden. Der experimentelle Nachweis der Konzentrationsgradientenkraft steht damit weiterhin aus. Zur Messung der Konzentrationen in elektrochemischen Systemen wurde erstmals das Hintergrundschlierenverfahren angewendet. Dieses Verfahren erlaubt die Bestimmung der räumlichen Konzentrationsgradienten mit erheblich weniger messtechnischen Aufwand gegenüber spektroskopischen Methoden und der Schlierentechnik.
APA, Harvard, Vancouver, ISO, and other styles
7

Fang, Zhichao. "Chip-based Sensors for Disease Diagnosis." Thesis, 2010. http://hdl.handle.net/1807/32039.

Full text
Abstract:
Nucleic acid analysis is one of the most important disease diagnostic approaches in medical practice, and has been commonly used in cancer biomarker detection, bacterial speciation and many other fields in laboratory. Currently, the application of powerful research methods for genetic analysis, including the polymerase chain reaction (PCR), DNA sequencing, and gene expression profiling using fluorescence microarrays, are not widely used in hospitals and extended-care units due to high-cost, long detection times, and extensive sample preparation. Bioassays, especially chip-based electrochemical sensors, may be suitable for the next generation of rapid, sensitive, and multiplexed detection tools. Herein, we report three different microelectrode platforms with capabilities enabled by nano- and microtechnology: nanoelectrode ensembles (NEEs), nanostructured microelectrodes (NMEs), and hierarchical nanostructured microelectrodes (HNMEs), all of which are able to directly detect unpurified RNA in clinical samples without enzymatic amplification. Biomarkers that are cancer and infectious disease relevant to clinical medicine were chosen to be the targets. Markers were successfully detected with clinically-relevant sensitivity. Using peptide nucleic acids (PNAs) as probes and an electrocatalytic reporter system, NEEs were able to detect prostate cancer-related gene fusions in tumor tissue samples with 100 ng of RNA. The development of NMEs improved the sensitivity of the assay further to 10 aM of DNA target, and multiplexed detection of RNA sequences of different prostate cancer-related gene fusion types was achieved on the chip-based NMEs platform. An HNMEs chip integrated with a bacterial lysis device was able to detect as few as 25 cfu bacteria in 30 minutes and monitor the detection in real time. Bacterial detection could also be performed in neat urine samples. The development of these versatile clinical diagnostic tools could be extended to the detection of various cancers, genetic, and infectious diseases.
APA, Harvard, Vancouver, ISO, and other styles
8

Musthafa, O. T. Muhammed. "Titanium Nitride-Based Electrode Materials For Oxidation Of Small Molecules : Applications In Electrochemical Energy Systems." Thesis, 2010. https://etd.iisc.ac.in/handle/2005/2223.

Full text
Abstract:
Synopsis of the thesis entitled “Titanium Nitride-Based Electrode Materials for Oxidation of Small Molecules: Applications in Electrochemical Energy Systems” submitted by Muhammed Musthafa O. T under the supervision of Prof. S. Sampath at the Department of Inorganic and Physical Chemistry of the Indian Institute of Science for the Ph.D degree in the faculty of science. Fuel cells have been the focus of interest for many decades because of the ever increasing demands in energy. Towards this direction, there have been considerable efforts to find efficient electrocatalysts to oxidize small organic molecules (SOMs) such as methanol, ethanol, glycerol, hydrazine and borohydride that are of potential interest in direct fuel cells. Most studies revolve around platinum which is the best electrocatalyst known for the oxidation of many SOMs. However, platinum is extremely susceptible to carbon monoxide (CO) poisoning which is an intermediate in the electrooxidation of aliphatic alcohols. The best known catalyst, platinum-ruthenium alloy (PtRu), suffers from leaching of Ru during cycling resulting in decrease in efficiency in addition to loss of precious metal. Another important aspect of fuel cell catalyst degradation is corrosion of widely-used carbon support, under fuel cell conditions. Corrosion of carbon support weakens the adherence of catalyst particles on the support and in turn results in loss of catalyst and also in its easy oxidation. Carbon corrosion is also reported to decrease the electronic continuity of the catalyst layer. Hence, replacement of carbon support with durable material is required. The present research explores the use of non-carbonaceous, transition metal nitride for anchoring catalytic particles. The favorable physicochemical properties of titanium nitride (TiN) such as extreme hardness, excellent corrosion resistance in aggressive electrolytes, resistance to nearly all chemicals, salt and humidity, very good support for the adherence of fuel cell catalysts and excellent electronic conductivity motivated us to use this material for anchoring fuel cell catalysts such as Pt, PtRu and Pd. In the present studies, TiN coated on stainless steel (SS 304) surface is used as an electrode material. Catalysts such as Pt, Pd and PtRu are anchored on to TiN and used for the oxidation of methanol and ethanol in acidic as well as in alkaline media. Use of bare TiN is explored for the oxidation of sodium borohydride. The efficiency of TiN supported catalysts are compared with carbon supported ones. Preliminary studies on the use of TiN supported catalysts in fuel cells have been conducted as well. Figure 1 shows the topographic atomic force microscopic (AFM) image in combination with scanning Kelvin probe (SKP) image of platinized TiN (Pt-TiN) surface. Since Pt particles are metallic, they are expected to show lower work function values than that of TiN domains which is indeed observed in figure 1B where the location of Pt particles is shown as dip in the work function. Very interestingly, the interface of Pt-TiN possesses very different work function values confirming the existence of metal-support interaction and this is expected to have positive implications in fuel cell catalysis. Figure 1. Contact mode AFM (A) and the corresponding scanning Kelvin probe image (B) of Pt-TiN surface. Figure 2. Cyclic voltammograms of Pt-TiN and Pt-C electrodes in 0.5 M H2SO4 containing 0.5 M methanol at a scan rate of 10 mV/s. Loading of the catalyst used is 1 mg of Pt/cm2. The performance of Pt-TiN and PtRu-TiN are compared with the corresponding carbon supported catalysts (Pt-C, PtRu-C) for the electrooxidation of methanol. Figure 2 shows the voltammograms obtained on Pt-TiN and Pt-C in presence of acidified methanol. TiN supported catalyst performs better than carbon supported catalyst in terms of high currents at low over voltages (based on I-t measurements), long term stability and high exchange current densities (based on Tafel studies). The electrochemical characteristics of methanol oxidation on Pt-TiN and Pt-C catalysts are given in table 1. The current densities observed on TiN supported catalyst are almost three times higher than that of carbon supported catalyst confirming the promoting effect of TiN support towards methanol oxidation reaction. The performance of Pt-TiN electrocatalyst under fuel cell conditions reveals peak power densities close to 396 mW/cm2 at a current density of 375 mA/cm2, at 90C. Table 1. Characteristics of methanol oxidation on TiN and carbon supported catalysts in acidic medium. Material Onset Ep (mV) Ip EAA Ip Ip/Ib E=Ep-Eb potential (mA/mg (cm2/mg)b (mA/cm2 (mV) of Pt)a of Pt)c (mV) Pt-TiN 170 720 56 78.4 0.714 1.24 82 Pt-C 250 700 18 68.6 0.262 0.98 106 a Mass activity; Ip is the forward peak current and Ib is the reverse peak current; Ep and Eb are forward and reverse peak potentials. b Electrochemically active area (EAA) c Current density normalized for EAA Figure 3. In-situ FTIR spectra on bare TiN surface as a function of applied DC bias vs.SCE. The spectra are shown in regions of 1000 to 2000 cm-1 (A) and 2500 to 4000 cm-1 (B). Electrolyte used is 0.5 M methanol in 0.5 M H2SO4. Reference spectrum is obtained at 0 V. In-situ FTIR spectroelectrochemical measurements have been carried out to understand the intermediates and products formed during methanol oxidation. TiN surface is highly reflective and is quite amenable for reflectance IR studies. Figure 3 shows the potential dependant spectral characteristics of TiN in methanolic sulphuric acid. The bands observed at 1600 and 3600 cm-1 correspond to –OH bending and stretching vibrations of adsorbed water molecules. Interestingly, bands corresponding to adsorbed water are observed even at remarkably low over potentials of around 0.1 V vs. SCE where CO poisoning of Pt can be very severe. This experiment confirms the ability of inexpensive TiN to function like expensive Ru in fuel cell catalysis. Similar studies have been carried out for ethanol electrooxidation on TiN supported catalysts such as Pd, Pt and PtRu in acidic as well as alkaline conditions. Adherence of fuel cell catalyst on to TiN and carbon support is followed by cycling the electrode potential continuously as shown in figure 4. The adherence of Pd on TiN surface is very good and the stability tests reveal that Pd adheres and remains on TiN for a long time as compared to carbon support. Figure 4. Cyclic voltammograms of Pd-C (A) and Pd-TiN (B) in 1 M KOH at 100 mV/s. Pd loading used is 83 µg/cm2. In the chapter on borohydride oxidation, bare TiN electrode is used for the electrochemical oxidation of sodium borohydride. In direct borohydride fuel cells (DBFC), H2 evolution that occurs at low over voltages decreases the apparent number of electrons transferred and consequently the fuel cell efficiency. TiN has been shown to be a relatively H2 evolution-free electrocatalyst for borohydride oxidation (figure 5A). As shown in figure 5A, no H2 oxidation is observed (below -0.5 V) on TiN surface with increase in concentration of borohydride. This point to the fact that direct oxidation of borohydride is very favourable on TiN electrode and is confirmed by fuel cell measurements as shown in figure 5B. Non-platinum DBFCs using TiN as the anode (borohydride oxidation) and prussian blue supported carbon (PB-C) as the cathode (oxygen or hydrogen peroxide) electrocatalysts (figure 5B) reveal peak power density of 107 mW/cm2 for a current density 130 mA/cm2, at 80C. Figure 5. Cyclic voltammograms of TiN in 1 M NaOH containing varying concentrations of borohydride at a scan rate of 20 mV/s (A). Polarization studies of DBFC with TiN anode catalyst and PB-C (prussian blue supported on carbon) cathode catalyst (B). Anolyte is 0.79 M borohydride in 5 M NaOH and catholyte is 2.2 M acidified H2O2. The second aspect of the thesis is related to the use of TiN to prepare visible light active, nitrogen doped TiO2 (N-TiO2). This is carried out by electrochemical anodization of TiN in 0.5 M HNO3 at 1.4 V. The X-ray photoelectron spectroscopy (XPS) suggests the formation of oxide phase on anodized TiN surface (figure 6A) and is confirmed by reflectance UV-Visible spectroscopy. The visible light activity is used for the sunlight induced reduction of graphene oxide to reduced graphene oxide. As shown in the Raman spectra (figure 6B), a negative shift of the D and G band positions by about 20 cm-1 and the intensity ratio reversal after reduction confirms the formation of reduced graphene oxide on N-TiO2. Figure 6. (A) Ti (2p) region of XPS of fresh TiN and anodized TiN. Anodization has been carried out at 1.4 V vs. SCE in 0.5 M HNO3. (B) Raman spectra of exfoliated graphene oxide on anodized TiN before and after sunlight induced reduction. In summary, TiN has been shown to be an active support material for fuel cell catalysts in the present studies. The appendix details the basic electrochemical studies on TiN using various redox couples, electroploymerization of aniline and the formation of nanostructures on TiN surface. (For figures pl refer the abstract pdf file)
APA, Harvard, Vancouver, ISO, and other styles
9

Musthafa, O. T. Muhammed. "Titanium Nitride-Based Electrode Materials For Oxidation Of Small Molecules : Applications In Electrochemical Energy Systems." Thesis, 2010. http://hdl.handle.net/2005/2223.

Full text
Abstract:
Synopsis of the thesis entitled “Titanium Nitride-Based Electrode Materials for Oxidation of Small Molecules: Applications in Electrochemical Energy Systems” submitted by Muhammed Musthafa O. T under the supervision of Prof. S. Sampath at the Department of Inorganic and Physical Chemistry of the Indian Institute of Science for the Ph.D degree in the faculty of science. Fuel cells have been the focus of interest for many decades because of the ever increasing demands in energy. Towards this direction, there have been considerable efforts to find efficient electrocatalysts to oxidize small organic molecules (SOMs) such as methanol, ethanol, glycerol, hydrazine and borohydride that are of potential interest in direct fuel cells. Most studies revolve around platinum which is the best electrocatalyst known for the oxidation of many SOMs. However, platinum is extremely susceptible to carbon monoxide (CO) poisoning which is an intermediate in the electrooxidation of aliphatic alcohols. The best known catalyst, platinum-ruthenium alloy (PtRu), suffers from leaching of Ru during cycling resulting in decrease in efficiency in addition to loss of precious metal. Another important aspect of fuel cell catalyst degradation is corrosion of widely-used carbon support, under fuel cell conditions. Corrosion of carbon support weakens the adherence of catalyst particles on the support and in turn results in loss of catalyst and also in its easy oxidation. Carbon corrosion is also reported to decrease the electronic continuity of the catalyst layer. Hence, replacement of carbon support with durable material is required. The present research explores the use of non-carbonaceous, transition metal nitride for anchoring catalytic particles. The favorable physicochemical properties of titanium nitride (TiN) such as extreme hardness, excellent corrosion resistance in aggressive electrolytes, resistance to nearly all chemicals, salt and humidity, very good support for the adherence of fuel cell catalysts and excellent electronic conductivity motivated us to use this material for anchoring fuel cell catalysts such as Pt, PtRu and Pd. In the present studies, TiN coated on stainless steel (SS 304) surface is used as an electrode material. Catalysts such as Pt, Pd and PtRu are anchored on to TiN and used for the oxidation of methanol and ethanol in acidic as well as in alkaline media. Use of bare TiN is explored for the oxidation of sodium borohydride. The efficiency of TiN supported catalysts are compared with carbon supported ones. Preliminary studies on the use of TiN supported catalysts in fuel cells have been conducted as well. Figure 1 shows the topographic atomic force microscopic (AFM) image in combination with scanning Kelvin probe (SKP) image of platinized TiN (Pt-TiN) surface. Since Pt particles are metallic, they are expected to show lower work function values than that of TiN domains which is indeed observed in figure 1B where the location of Pt particles is shown as dip in the work function. Very interestingly, the interface of Pt-TiN possesses very different work function values confirming the existence of metal-support interaction and this is expected to have positive implications in fuel cell catalysis. Figure 1. Contact mode AFM (A) and the corresponding scanning Kelvin probe image (B) of Pt-TiN surface. Figure 2. Cyclic voltammograms of Pt-TiN and Pt-C electrodes in 0.5 M H2SO4 containing 0.5 M methanol at a scan rate of 10 mV/s. Loading of the catalyst used is 1 mg of Pt/cm2. The performance of Pt-TiN and PtRu-TiN are compared with the corresponding carbon supported catalysts (Pt-C, PtRu-C) for the electrooxidation of methanol. Figure 2 shows the voltammograms obtained on Pt-TiN and Pt-C in presence of acidified methanol. TiN supported catalyst performs better than carbon supported catalyst in terms of high currents at low over voltages (based on I-t measurements), long term stability and high exchange current densities (based on Tafel studies). The electrochemical characteristics of methanol oxidation on Pt-TiN and Pt-C catalysts are given in table 1. The current densities observed on TiN supported catalyst are almost three times higher than that of carbon supported catalyst confirming the promoting effect of TiN support towards methanol oxidation reaction. The performance of Pt-TiN electrocatalyst under fuel cell conditions reveals peak power densities close to 396 mW/cm2 at a current density of 375 mA/cm2, at 90C. Table 1. Characteristics of methanol oxidation on TiN and carbon supported catalysts in acidic medium. Material Onset Ep (mV) Ip EAA Ip Ip/Ib E=Ep-Eb potential (mA/mg (cm2/mg)b (mA/cm2 (mV) of Pt)a of Pt)c (mV) Pt-TiN 170 720 56 78.4 0.714 1.24 82 Pt-C 250 700 18 68.6 0.262 0.98 106 a Mass activity; Ip is the forward peak current and Ib is the reverse peak current; Ep and Eb are forward and reverse peak potentials. b Electrochemically active area (EAA) c Current density normalized for EAA Figure 3. In-situ FTIR spectra on bare TiN surface as a function of applied DC bias vs.SCE. The spectra are shown in regions of 1000 to 2000 cm-1 (A) and 2500 to 4000 cm-1 (B). Electrolyte used is 0.5 M methanol in 0.5 M H2SO4. Reference spectrum is obtained at 0 V. In-situ FTIR spectroelectrochemical measurements have been carried out to understand the intermediates and products formed during methanol oxidation. TiN surface is highly reflective and is quite amenable for reflectance IR studies. Figure 3 shows the potential dependant spectral characteristics of TiN in methanolic sulphuric acid. The bands observed at 1600 and 3600 cm-1 correspond to –OH bending and stretching vibrations of adsorbed water molecules. Interestingly, bands corresponding to adsorbed water are observed even at remarkably low over potentials of around 0.1 V vs. SCE where CO poisoning of Pt can be very severe. This experiment confirms the ability of inexpensive TiN to function like expensive Ru in fuel cell catalysis. Similar studies have been carried out for ethanol electrooxidation on TiN supported catalysts such as Pd, Pt and PtRu in acidic as well as alkaline conditions. Adherence of fuel cell catalyst on to TiN and carbon support is followed by cycling the electrode potential continuously as shown in figure 4. The adherence of Pd on TiN surface is very good and the stability tests reveal that Pd adheres and remains on TiN for a long time as compared to carbon support. Figure 4. Cyclic voltammograms of Pd-C (A) and Pd-TiN (B) in 1 M KOH at 100 mV/s. Pd loading used is 83 µg/cm2. In the chapter on borohydride oxidation, bare TiN electrode is used for the electrochemical oxidation of sodium borohydride. In direct borohydride fuel cells (DBFC), H2 evolution that occurs at low over voltages decreases the apparent number of electrons transferred and consequently the fuel cell efficiency. TiN has been shown to be a relatively H2 evolution-free electrocatalyst for borohydride oxidation (figure 5A). As shown in figure 5A, no H2 oxidation is observed (below -0.5 V) on TiN surface with increase in concentration of borohydride. This point to the fact that direct oxidation of borohydride is very favourable on TiN electrode and is confirmed by fuel cell measurements as shown in figure 5B. Non-platinum DBFCs using TiN as the anode (borohydride oxidation) and prussian blue supported carbon (PB-C) as the cathode (oxygen or hydrogen peroxide) electrocatalysts (figure 5B) reveal peak power density of 107 mW/cm2 for a current density 130 mA/cm2, at 80C. Figure 5. Cyclic voltammograms of TiN in 1 M NaOH containing varying concentrations of borohydride at a scan rate of 20 mV/s (A). Polarization studies of DBFC with TiN anode catalyst and PB-C (prussian blue supported on carbon) cathode catalyst (B). Anolyte is 0.79 M borohydride in 5 M NaOH and catholyte is 2.2 M acidified H2O2. The second aspect of the thesis is related to the use of TiN to prepare visible light active, nitrogen doped TiO2 (N-TiO2). This is carried out by electrochemical anodization of TiN in 0.5 M HNO3 at 1.4 V. The X-ray photoelectron spectroscopy (XPS) suggests the formation of oxide phase on anodized TiN surface (figure 6A) and is confirmed by reflectance UV-Visible spectroscopy. The visible light activity is used for the sunlight induced reduction of graphene oxide to reduced graphene oxide. As shown in the Raman spectra (figure 6B), a negative shift of the D and G band positions by about 20 cm-1 and the intensity ratio reversal after reduction confirms the formation of reduced graphene oxide on N-TiO2. Figure 6. (A) Ti (2p) region of XPS of fresh TiN and anodized TiN. Anodization has been carried out at 1.4 V vs. SCE in 0.5 M HNO3. (B) Raman spectra of exfoliated graphene oxide on anodized TiN before and after sunlight induced reduction. In summary, TiN has been shown to be an active support material for fuel cell catalysts in the present studies. The appendix details the basic electrochemical studies on TiN using various redox couples, electroploymerization of aniline and the formation of nanostructures on TiN surface. (For figures pl refer the abstract pdf file)
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography