Academic literature on the topic 'Elimination of quantifiers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Elimination of quantifiers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Elimination of quantifiers"

1

Richardson, Dan. "Elimination of infinitesimal quantifiers." Journal of Pure and Applied Algebra 139, no. 1-3 (1999): 235–53. http://dx.doi.org/10.1016/s0022-4049(99)00013-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Keisler, H. Jerome, and Wafik Boulos Lotfallah. "Almost everywhere elimination of probability quantifiers." Journal of Symbolic Logic 74, no. 4 (2009): 1121–42. http://dx.doi.org/10.2178/jsl/1254748683.

Full text
Abstract:
AbstractWe obtain an almost everywhere quantifier elimination for (the noncritical fragment of) the logic with probability quantifiers, introduced by the first author in [10]. This logic has quantifiers like ∃≥3/4y which says that “for at least 3/4 of all y”. These results improve upon the 0-1 law for a fragment of this logic obtained by Knyazev [11]. Our improvements are:1. We deal with the quantifier ∃≥ry, where y is a tuple of variables.2. We remove the closedness restriction, which requires that the variables in y occur in all atomic subformulas of the quantifier scope.3. Instead of the un
APA, Harvard, Vancouver, ISO, and other styles
3

Keisler, H. Jerome. "Quantifier elimination for neocompact sets." Journal of Symbolic Logic 63, no. 4 (1998): 1442–72. http://dx.doi.org/10.2307/2586661.

Full text
Abstract:
AbstractWe shall prove quantifier elimination theorems for neocompact formulas, which define neocompact sets and are built from atomic formulas using finite disjunctions, infinite conjunctions, existential quantifiers, and bounded universal quantifiers. The neocompact sets were first introduced to provide an easy alternative to nonstandard methods of proving existence theorems in probability theory, where they behave like compact sets. The quantifier elimination theorems in this paper can be applied in a general setting to show that the family of neocompact sets is countably compact. To provid
APA, Harvard, Vancouver, ISO, and other styles
4

Martínez, Néstor G. "Elimination of Quantifiers on Łukasiewicz Logics." Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 35, no. 1 (1989): 15–21. http://dx.doi.org/10.1002/malq.19890350103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kaila, Risto. "On probabilistic elimination of generalized quantifiers." Random Structures and Algorithms 19, no. 1 (2001): 1–36. http://dx.doi.org/10.1002/rsa.1016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Prunescu, Mihai. "Structure with fast elimination of quantifiers." Journal of Symbolic Logic 71, no. 1 (2006): 321–28. http://dx.doi.org/10.2178/jsl/1140641177.

Full text
Abstract:
AbstractA structure of finite signature is constructed so that: for all existential formulas and for all tuples of elements of the same length as the tuple one can decide in a quadratic time depending only on the length of the formula, if holds in the structure. In other words, the structure satisfies the relativized model-theoretic version of P=N P in the sense of [4]. This is a model-theoretical approach to results of Hemmerling and Gaßner.
APA, Harvard, Vancouver, ISO, and other styles
7

Rapp, Andreas. "Elimination of Malitz quantifiers in stable theories." Pacific Journal of Mathematics 117, no. 2 (1985): 387–96. http://dx.doi.org/10.2140/pjm.1985.117.387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kaila, R. "On Almost Sure Elimination of Numerical Quantifiers." Journal of Logic and Computation 13, no. 2 (2003): 273–85. http://dx.doi.org/10.1093/logcom/13.2.273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dickmann, M. A. "Elimination of quantifiers for ordered valuation rings." Journal of Symbolic Logic 52, no. 1 (1987): 116–28. http://dx.doi.org/10.2307/2273866.

Full text
Abstract:
Cherlin and Dickmann [2] proved that the theory RCVR of real closed (valuation) rings admits quantifier-elimination (q.e.) in the language ℒ = {+, −, ·, 0, 1, <, ∣} for ordered rings augmented by the divisibility relation “∣”. The purpose of this paper is to prove a form of converse of this result:Theorem. Let T be a theory of ordered commutative domains (which are not fields), formulated in the language ℒ. In addition we assume that:(1) The symbol “∣” is interpreted as the honest divisibility relation: (2) The following divisibility property holds in T:If T admits q.e. in ℒ, then T = RCVR.
APA, Harvard, Vancouver, ISO, and other styles
10

Montagna, Franco. "Δ-core Fuzzy Logics with Propositional Quantifiers, Quantifier Elimination and Uniform Craig Interpolation". Studia Logica 100, № 1-2 (2012): 289–317. http://dx.doi.org/10.1007/s11225-012-9379-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Elimination of quantifiers"

1

Kaila, Risto. "On almost sure elimination of generalized quantifiers." Helsinki : University of Helsinki, 2001. http://ethesis.helsinki.fi/julkaisut/mat/matem/vk/kaila/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rideau, Silvain. "Éliminations dans les corps valués." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112375/document.

Full text
Abstract:
Cette thèse est une contribution à la théorie des modèles des corps valués. Les principaux résultats de ce texte sont des résultats d’éliminations des quantificateurs et des imaginaires. Le premier chapitre contient une étude des imaginaires dans les extensions finies de Qp. On y démontre que ces corps ainsi que leurs ultraproduits éliminent les imaginaires dans le langage géométrique. On en déduit un résultat de rationalité uniforme pour les fonctions zêta associées aux familles de relations d’équivalences définissables dans les extensions finies de Qp. La motivation première du deuxième chap
APA, Harvard, Vancouver, ISO, and other styles
3

Hong, Hoon. "Improvements in CAD-based quantifier elimination /." The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487684245468432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dolzmann, Andreas. "Algorithmic strategies for applicable real quantifier elimination." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=963958151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Passmore, Grant Olney. "Combined decision procedures for nonlinear arithmetics, real and complex." Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/5738.

Full text
Abstract:
We describe contributions to algorithmic proof techniques for deciding the satisfiability of boolean combinations of many-variable nonlinear polynomial equations and inequalities over the real and complex numbers. In the first half, we present an abstract theory of Grobner basis construction algorithms for algebraically closed fields of characteristic zero and use it to introduce and prove the correctness of Grobner basis methods tailored to the needs of modern satisfiability modulo theories (SMT) solvers. In the process, we use the technique of proof orders to derive a generalisation of S-pol
APA, Harvard, Vancouver, ISO, and other styles
6

Elmwafy, Ahmed Osama Mohamed Sayed Sayed. "Model theory of algebraically closed fields and the Ax-Grothendieck Theorem." University of Western Cape, 2020. http://hdl.handle.net/11394/8275.

Full text
Abstract:
>Magister Scientiae - MSc<br>We introduce the concept of an algebraically closed field with emphasis of the basic model-theoretic results concerning the theory of algebraically closed fields. One of these nice results about algebraically closed fields is the quantifier elimination property. We also show that the theory of algebraically closed field with a given characteristic is complete and model-complete. Finally, we introduce the beautiful Ax-Grothendieck theorem and an application to it.
APA, Harvard, Vancouver, ISO, and other styles
7

Phillips, Laura Rose. "Some structures interpretable in the ring of continuous semi-algebraic functions on a curve." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/some-structures-interpretable-in-the-ring-of-continuous-semialgebraic-functions-on-a-curve(f5a52f43-1bf2-42da-85c0-22847a35dcfc).html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Košta, Marek [Verfasser], and Thomas [Akademischer Betreuer] Sturm. "New concepts for real quantifier elimination by virtual substitution / Marek Košta ; Betreuer: Thomas Sturm." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2016. http://d-nb.info/112211060X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Banerjee, Bonny. "Spatial problem solving for diagrammatic reasoning." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1194455860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nunes, Sampaio Diogo. "Profile guided hybrid compilation." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM082/document.

Full text
Abstract:
L'auteur n'a pas fourni de résumé en français<br>The end of chip frequency scaling capacity, due heat dissipation limitations, made manufacturers search for an alternative to sustain the processing capacity growth. The chosen solution was to increase the hardware parallelism, by packing multiple independent processors in a single chip, in a Multiple-Instruction Multiple-Data (MIMD) fashion, each with special instructions to operate over a vector of data, in a Single-Instruction Multiple-Data (SIMD) manner. Such paradigm change, brought to software developer the convoluted task of producing eff
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Elimination of quantifiers"

1

Caviness, Bob F., and Jeremy R. Johnson, eds. Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer Vienna, 1998. http://dx.doi.org/10.1007/978-3-7091-9459-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

F, Caviness Bob, and Johnson J. R, eds. Quantifier elimination and cylindrical algebraic decomposition. Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

(Editor), Bob F. Caviness, and Jeremy R. Johnson (Editor), eds. Quantifier Elimination and Cylindrical Algebraic Decomposition (Texts and Monographs in Symbolic Computation). Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tennant, Neil. From the Logic of Evaluation to the Logic of Deduction. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198777892.003.0004.

Full text
Abstract:
We deliver the details on the smooth morphing from the verification and falsification rules of the model-relative Logic of Evaluation to the model-invariant, deductive rules of Core Logic. There are good reasons for preferring the parallelized forms of certain elimination rules in natural deduction (the ones for conjunction, the conditional, and the universal quantifier) to their more conventional serial forms. We explain how ⊥ can make its way into proofs as a conclusion, as required for applications of ¬-Introduction. We discuss the notion of harmony between introduction and elimination rule
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Elimination of quantifiers"

1

Nonnengart, Andreas, Hans Jürgen Ohlbach, and Andrzej Szałas. "Elimination of Predicate Quantifiers." In Trends in Logic. Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4574-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ohlbach, Hans Jürgen. "SCAN—Elimination of predicate quantifiers." In Automated Deduction — Cade-13. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61511-3_77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hodes, L., and E. Specker. "Lengths of Formulas and Elimination of Quantifiers I." In Ernst Specker Selecta. Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-9259-9_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hodges, Wilfrid. "A Visit to Tarski’s Seminar on Elimination of Quantifiers." In Proof, Computation and Agency. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0080-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Caires, Luís, and Étienne Lozes. "Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency." In CONCUR 2004 - Concurrency Theory. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-28644-8_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marcja, Annalisa, and Carlo Toffalori. "Quantifier Elimination." In Trends in Logic. Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-0812-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rasga, João, and Cristina Sernadas. "Quantifier Elimination." In Studies in Universal Logic. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56554-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Basu, Saugata, Richard Pollack, and Marie-Francoise Roy. "Quantifier Elimination." In Algorithms in Real Algebraic Geometry. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05355-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Autexier, Serge, Heiko Mantel, and Werner Stephan. "Simultaneous quantifier elimination." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0095435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Goldberg, Eugene, and Panagiotis Manolios. "Partial Quantifier Elimination." In Hardware and Software: Verification and Testing. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13338-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Elimination of quantifiers"

1

Dolzmann, Andreas, and Volker Weispfenning. "Local quantifier elimination." In the 2000 international symposium. ACM Press, 2000. http://dx.doi.org/10.1145/345542.345589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Yijia, and Jörg Flum. "Tree-depth, quantifier elimination, and quantifier rank." In LICS '18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, 2018. http://dx.doi.org/10.1145/3209108.3209160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hong, Hoon, and Mohab Safey El Din. "Variant real quantifier elimination." In the 2009 international symposium. ACM Press, 2009. http://dx.doi.org/10.1145/1576702.1576729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dolzmann, Andreas, Oliver Gloor, and Thomas Sturm. "Approaches to parallel quantifier elimination." In the 1998 international symposium. ACM Press, 1998. http://dx.doi.org/10.1145/281508.281564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vosswinkel, Rick, Dinu Mihailescu-Stoica, Frank Schrodel, and Klaus Robenack. "Determining Passivity via Quantifier Elimination." In 2019 27th Mediterranean Conference on Control and Automation (MED). IEEE, 2019. http://dx.doi.org/10.1109/med.2019.8798571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goldberg, Eugene, and Panagiotis Manolios. "Quantifier elimination via clause redundancy." In 2013 Formal Methods in Computer-Aided Design (FMCAD). IEEE, 2013. http://dx.doi.org/10.1109/fmcad.2013.6679395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gitina, Karina, Ralf Wimmer, Sven Reimer, Matthias Sauer, Christoph Scholl, and Bernd Becker. "Solving DQBF Through Quantifier Elimination." In Design, Automation and Test in Europe. IEEE Conference Publications, 2015. http://dx.doi.org/10.7873/date.2015.0098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Anai, Hirokazu. "Effective quantifier elimination for industrial applications." In the 39th International Symposium. ACM Press, 2014. http://dx.doi.org/10.1145/2608628.2627494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weispfenning, Volker. "Mixed real-integre linear quantifier elimination." In the 1999 international symposium. ACM Press, 1999. http://dx.doi.org/10.1145/309831.309888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Anai, H. "On solving semidefinite programming by quantifier elimination." In Proceedings of the 1998 American Control Conference (ACC). IEEE, 1998. http://dx.doi.org/10.1109/acc.1998.688368.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Elimination of quantifiers"

1

Mulligan, Casey. Automated Economic Reasoning with Quantifier Elimination. National Bureau of Economic Research, 2016. http://dx.doi.org/10.3386/w22922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mulligan, Casey. Quantifier Elimination for Deduction in Econometrics. National Bureau of Economic Research, 2018. http://dx.doi.org/10.3386/w24601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!